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Background
Coronary heart disease has been the leading cause of death worldwide [1], and the coro-
nary atherosclerosis is the dominant cause of coronary heart disease. In early athero-
sclerosis, coronary artery remodeling slows down the progression of vascular stenosis 
with the accumulation of coronary plaques. Intravascular ultrasound (IVUS) is one of 
the most effective real-time medical imaging techniques, which plays a critical role in 
the diagnosis and treatment of coronary heart disease.

2D IVUS images acquired serially by an IVUS catheter pulling back through the 
coronary artery can evaluate arterial distensibility caused by atherosclerotic plaque. 
The accurate segmentation of lumen and external elastic membrane cross-sectional 
area (EEM-CSA) from 2D coronary IVUS images that contributes to assessing the 

Abstract 

Background:  Intravascular ultrasound (IVUS) is the golden standard in accessing the 
coronary lesions, stenosis, and atherosclerosis plaques. In this paper, a fully automatic 
approach by an 8-layer U-Net is developed to segment the coronary artery lumen 
and the area bounded by external elastic membrane (EEM), i.e., cross-sectional area 
(EEM-CSA). The database comprises single-vendor and single-frequency IVUS data. 
Particularly, the proposed data augmentation of MeshGrid combined with flip and 
rotation operations is implemented, improving the model performance without pre- or 
post-processing of the raw IVUS images.

Results:  The mean intersection of union (MIoU) of 0.937 and 0.804 for the lumen and 
EEM-CSA, respectively, were achieved, which exceeded the manual labeling accuracy 
of the clinician.

Conclusion:  The accuracy shown by the proposed method is sufficient for subse-
quent reconstruction of 3D-IVUS images, which is essential for doctors’ diagnosis in the 
tissue characterization of coronary artery walls and plaque compositions, qualitatively 
and quantitatively.
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atherosclerosis plaque and its vulnerability by measuring lumen diameter, plaque eccen-
tricity, plaque burden, etc., has crucial clinical significance. However, it is time-consum-
ing and experience-dependent for doctors to manually delineate the lumen and EEM 
contours on the 2D IVUS images. A typical IVUS pullback contains more than 3000 
images, so an accurate, fast, and fully automatic segmentation of lumen and EEM-CSA 
is highly desirable, but remains a challenging task due to the relative complexity of the 
IVUS images.

Several segmentation techniques and methods in image processing and computer 
vision have been performed for coronary IVUS images [2, 3]. Traditional image process-
ing methods, including graph search, active surfaces, and active contours, were applied 
to segment IVUS images based on local image properties or global gray-level properties 
[4]. 3D fast marching method [5, 6], incorporating the texture gradient and the gray-level 
gradient, was applied to segment the walls of the coronary artery with an interactive ini-
tialization on EEM borders. In recent years, deep learning has been widely applied in the 
medical imaging analysis and achieved remarkable results [7, 8]. It has been utilized to 
detect the lumen and media–adventitia borders in IVUS due to its capabilities in auto-
matic feature extraction [9, 10].

In this paper, we develop a U-Net [11] and evaluate the modified U-Net-based pipe-
line that automatically segments the lumen and EEM-CSA from 2D IVUS images. The 
pipeline has two major steps: first, the data augmentation of MeshGrid combined with 
flip and rotation operations (MeshGrid–Flip–Rotate) is performed on raw IVUS images; 
second, an 8-layer deep U-Net is used for pixel-level prediction [12].

Results
Experiments were carried out for segmenting the lumen and EEM-CSA with four 
augmentation strategies of No Augmentation, Flip–Rotate, MeshGrid, MeshGrid–
Flip–Rotate. The contours predicted by the method with MeshGrid–Flip–Rotate aug-
mentation (3rd row of Fig. 1) were in higher agreement with the ground truth (2nd row 
of Fig. 1) for a range of morphologies, in comparison with those with No augmentation 
(4th row of Fig. 1), MeshGrid (5th row of Fig. 1), and Flip–Rotate (6th row of Fig. 1). 
Taking the 2nd and 3rd column as example, the results of last 3 rows show that some 
noise points would be segmented in the background and EEM-CSA area.

Table 1 quantifies the segmentation results from the four data augmentation strategies. 
Compared with the other three data augmentation strategies, the way of MeshGrid–
Flip–Rotate presented better segmentation performance in both lumen and EEM-CSA, 
with MIoU of 0.937 and 0.804, respectively. The reason why 8-layer U-Net does not 
exceed EEM segmentation result of Ji Yang et al. [10] could be addressed from two per-
spectives. On the one hand, the training data are too small to train a powerful segmenta-
tion model; for another, 8-layer U-Net’s architecture could be further optimized.

Discussion
The IVUS images varied significantly from the intensity gradient of edge of lumen to the 
contour curvature of plaques. The current dataset was limited to the single-vendor and 
single-brand. However, the proposed method provided acceptable segmentation results 
for both lumen and EEM-CSA from the frames in the dataset. On the visual comparison, 
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in the case of the EEM-CSA segmentation, the performance was lower for complex 
frames while it was comparable good for simple frames; excellent results were seen for 
lumen segmentation for all cases. The segmentation of bifurcation images might be dif-
ficult due to the ambiguous vessel definition. The amount of calcified plaque could be 
possibly underestimated by IVUS and images of the vessel wall could be degraded due 
to geometric distortions, and shadows at the back of calcified plaques, all of these could 
make the model difficult to train. The case data including calcified plaque needs to be 
enriched in future to train a more robust model.

Fig. 1  6× 5 image matrix of segmentation result comparison for four different data augmentation strategies. 
The rows show the original image and different image augmentation strategies, including raw IVUS images 
as inputs (1st row), ground truth images as outputs (2nd row), No augmentation (4th row), Meshgrid (5th 
row), Flip–Rotate (6th row) and Meshgrid–Flip–Rotate (3rd row). The columns represent different IVUS image 
cases, choosing images of different shapes and sizes as much as possible (1st columns to 5th columns). The 
figure shows that Meshgrid–Flip–Rotate (3rd row) method have best segmentation performance, which are 
very close to the ground truth images
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The data augmentation of MeshGrid–Flip–Rotate helped improve the segmentation 
performance. It was capable of generalizing well to eliminate the outliers (3rd row of 
Fig.  3). Neither pre-processing steps nor post-processing steps were necessary. The 
model was trained well on the current dataset, which provided MIoU of 0.937 for lumen 
predictions. This result is better than the results in the literature in Table 1. Investigat-
ing the reason, we believe that the help mainly comes from MeshGrid–Flip–Rotate data 
augmentation method and the 8-layer U-Net network that can extract more image fea-
tures. However, when the testing set deviated far from the training set, such as serious 
artifacts, mixture plaques and branch vessels, the accuracy for EEM-CSA became rela-
tively low (MIoU of 0.804). It can be improved largely when more coronary IVUS data of 
different categories are collected for training in the future.

From clinical perspective, a clinical threshold to assess the quality of the method 
should be provided by expert physicians to interpret the segmentation feature with 
complex or simple frames. For example, a fast pullback through the calcified lesion may 
result in loss of image features, increase of catheter artifacts and calcified shadows from 
the echogenicity of the lumen and plaque textures, which makes it tougher to be anno-
tated even by experienced physicians. The cardiac cycle motion and coronary vessel pul-
sation due to the variability or arrhythmia of heart rate might push the catheter to touch 
the vessel and plaque boundaries, which increase the artifacts and motion jitters in the 
IVUS images.

Our future research is to extend the current dataset to enhance the robustness and 
generality of our method presented in this paper. The heterogeneous dataset of IVUS 
images shall cover different medical centers, different probe frequencies from different 
venders. More IVUS image categories from different artery pullback sections and differ-
ent characteristics should be considered: plaque, bifurcations, branches, shadow artifact, 
stent, catheter artifact, etc. Each frame shall be cross-labeled by three expert physicians 
according to the respective categories to assess the method, which will make it more 
convincing.

Conclusion
In this paper, an 8-layer U-Net is proposed with the data augmentation of MeshGrid–
Flip–Rotate, which specifically fits for the coronary IVUS lumen and EEM-CSA segmen-
tation task. The experimental results show its superiority in segmentation accuracy and 
efficiency. Furthermore, it provides a good start for the image-based gating to implement 

Table 1  The quantitative performance for the four different data augmentation strategies

The italic number results represent best MIoU performance in Lumen and EEM-CSA, our MeshGrid–Flip–Rotate can achieve 
0.937 MIoU of lumen, which is better than other methods. But MIoU results of EEM-CSA is 0.804, which is inferior to 0.860 of 
Ji Yang et al.

Augmentation strategies MIoU (lumen) MIoU (EEM-CSA)

No augmentation 0.872 0.703

Flip–Rotate 0.915 0.759

MeshGrid 0.894 0.747

MeshGrid–Flip–Rotate 0.937 0.804

Ji Yang et al.[10] 0.900 0.860
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3D-IVUS reconstruction when fused with X-ray projections, which enables fluid and 
dynamic analysis on plaques and vascular walls of coronary arteries.

Method
In this section, we first introduce the coronary IVUS dataset used for training and test-
ing. Then, the 8-layer deep U-Net architecture that predicts the masks for the lumen and 
the EEM-CSA of IVUS images is presented. The training details are described, and the 
metric for evaluating the proposed method is illustrated.

Dataset and augmentation

We use the coronary IVUS dataset from The Second Affiliated Hospital of Zhejiang Uni-
versity School of Medicine. It consists of in vivo pullback of coronary artery acquired 
by the iLab IVUS from Boston Scientific Corporation equipped with the 40-MHz 
OptiCross catheter. It contains IVUS frames from 30 patients, which are chosen at the 
end-diastolic cardiac phase in DICOM formats, with the resolution of 512 × 512. The 
dataset is divided into two parts, 567 frames of 24 patients for training and 108 frames of 
6 patients for testing, respectively. The training set is used for building the deep learning 
model and the testing set is used to evaluate the model performance.

IVUS images contain catheter, lumen, endothelium, intima, media, external elastic 
membrane, adventitia, atherosclerosis plaque. The external elastic membrane is usually 
treated as the borders of media and adventitia. The media is gray or dark as it contains 
dense smooth muscle. The adventitia is similar to external tissues surrounding the vas-
cular walls. The endothelium and intima are thinner than the lumen and media. Thus, 
the lumen and EEM-CSA can be manually annotated by experienced physicians as the 
ground truth for metric evaluation. Each IVUS frame has been manually annotated for 
the lumen and EEM-CSA in the short-axis view by three clinical experts, daily working 
with the specific IVUS brand from the Cardiology Department, shown in Fig. 2. Each 
expert is blinded to the other two experts’ annotations and each frame is repeatedly 
labeled by each of the three experts to ensure the correctness and blindness of the anno-
tations. From the visual point of view of annotation, 92% of the annotated cases have 
high consistency.

The training set comprises 567 frames, which is not large enough for training a 
CNN model from scratch. Data augmentation is essential for better performance. The 

Fig. 2  Ground truth labeling for lumen and EEM-CSA. The right image is raw IVUS image as train inputs, the 
middle image is annotation mask image as train outputs, the left image is a superposition of right and middle 
image
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augmentation is twofold and performed online. First, the coronary IVUS raw images and 
the corresponding ground truth are randomly (1) rotated at angles: 90°, 180° or 270°; 
(2) flipped up–down or left–right. Secondly, the MeshGrid is added to the raw image at 
pixel-level, providing the relative location information. Due to the relatively fixed posi-
tion like intima and adventitia in IVUS images, MeshGrid could play a good guiding role 
in training process, which guides the neural network where to look.

Network architectures

The U-Net is one type of the fully convolutional network [13] and is the most com-
mon convolutional network architecture for biomedical image segmentation. It consists 
of encoder and decoder parts and predicts segmentation mask at pixel-level instead 
of image-level classification. The encoder part is used for down-sampling and extracts 
higher-level features. The decoder part is used for up-sampling the output from the 
encoder part and concatenates the feature maps of the corresponding layer by skip con-
nection. The skip connection is to relieve the gradient diffusion problem due to deep lay-
ers. The final decoder layer is activated by softmax to produce the class probability map 
to recover the segment predictions.

The encoder part has 9 blocks and each incorporates two repeated operations of 3 × 3 
convolution, batch normalization and LeakyReLU activation. The down-sampling opera-
tion of 3 × 3 convolution with stride 2 × 2 reduces feature maps by half. The size of the 
8th block is 2 × 2 to capture the deeper abstract information. The decoder part has 8 
blocks to restore the image dimension. Each up-sampling operation contains a 5 × 5 
deconvolution with stride 2. The skip connection concatenates the corresponding fea-
ture maps. The last convolution outputs the probability map of mask class prediction by 
softmax activation. The entire architecture is shown in Fig. 3. The parameter initializa-
tion of all layers of the model uses the random initialization method.

Compared to other U-Net variations, our proposed U-Net was no major innovation 
in structure. We replaced the original 4-layer network with an 8-layer network, which 
been able to extract deeper image features. The actual results also confirmed this simple 
deepening design.

Implementation details

The model was trained and evaluated on Dell PowerEdge T640 server with Xeon Silver 
4114 processor, 128 GB of RAM, and four Nvidia GTX 1080Ti graphics cards. It took 
less than 90 min for training and 10 ms per image for inference.

We implement model training with TensorFlow framework. The less frames are 
not enough to train the CNN from scratch, in addition to data augmentation, we 
also employed transfer learning to initialize the encoder of U-Net’s weights using 
VGG16[14]. The optimizer was Adam [15], which was fast and robust. The weights were 
initialized randomly and the batch size was set to 16. The initial learning rate was 0.001 
with the decay of 0.1 every 2000 iterations. A total of 8000–10000 iterations were done 
for training. Lumen and EEM-CSA were trained and predicted at one shot with the soft-
max function as the output activation, which gave each pixel its class probability. The 
loss function was the sparse softmax cross entropy [16]:
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with K being the number of classes, pj being the predicted probability belonging to class 
j, and pyj being the true probability.

Evaluation criteria

In semantic segmentation, the mean intersection over union (MIoU) is a widely used 
metric to evaluate the model, which is a common measure in semantic segmentation 
[17]. We compute the MIoU score between the ground truth and the predicted masks:

(1)L(pŷ, p) = −

K∑

j=1

pŷj log(pj),

(2)
pj = softmax(xj) =

exj

K∑
k=1

exk

,

(3)
MIoU =

1

k + 1

k∑

i=0

pii
k∑

j=0

pij +
k∑

j=0

pji − pii

,

Fig. 3  The proposed U-Net Architecture with 8 layers. The 8-layer deep U-Net consists of three parts, 
encoding networks (left in the figure), decoding networks (right in the figure) and skip connection (black 
arrow in the middle)
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with k being the number of classes excluding background, and pij being the number of 
pixels of class i predicted to class j.
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3D: Three-dimensional; IVUS: Intravascular ultrasound; EEM-CSA: External elastic membrane cross-sectional area; 
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