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Abstract 

Background:  Recently, error-related negativity (ERN) signals are proposed to develop 
an assist-as-needed robotic stroke rehabilitation program. Stroke patients’ state-of-
mind, such as motivation to participate and active involvement in the rehabilitation 
program, affects their rate of recovery from motor disability. If the characteristics of the 
robotic stroke rehabilitation program can be altered based on the state-of-mind of the 
patients, such that the patients remain engaged in the program, the rate of recovery 
from their motor disability can be improved. However, before that, it is imperative to 
understand how the states-of-mind of a participant affect their ERN signal.

Methods:  This study aimed to determine the association between the ERN signal and 
the psychological and cognitive states of the participants. Experiments were con-
ducted on stroke patients, which involved performing a physical rehabilitation exercise 
and a questionnaire to measure participants’ subjective experience on four factors: 
motivation in participating in the experiment, perceived effort, perceived pressure, 
awareness of uncompleted exercise trials while performing the rehabilitation exercise. 
Statistical correlation analysis, EEG time-series and topographical analysis were used to 
assess the association between the ERN signals and the psychological and cognitive 
states of the participants.

Results:  A strong correlation between the amplitude of the ERN signal and the psy-
chological and cognitive states of the participants was observed, which indicate the 
possibility of estimating the said states using the amplitudes of the novel ERN signal.

Conclusions:  The findings pave the way for the development of an ERN based 
dynamically adaptive assist-as-needed robotic stroke rehabilitation program of which 
characteristics can be altered to keep the participants’ motivation, effort, engagement 
in the rehabilitation program high. In future, the single-trial prediction ability of the 
novel ERN signals to predict the state-of-mind of stroke patients will be evaluated.

Keywords:  Assist-as-needed, Brain–computer interface (BCI), Cognitive, Error-related 
negativity (ERN), Error-related potential (ErrP), Psychological, Stroke rehabilitation, 
Training-ERN, Training-ErrP
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Background
In recent years, stroke has become the leading cause of disability in the world [1]. With 
the rapid growth in the number of stroke patients worldwide, there is an urgent need for 
efficient rehabilitation approaches [1]. Recently, assist-as-needed (AAN) robotic stroke 
rehabilitation programs have gained popularity because of their potential ability to con-
duct rehabilitation programs autonomously and provide assistance to stroke patients 
in performing the rehabilitation exercises only when required [2, 3]. However, a recent 
study by Rodgers et al. [4] reported that AAN robot therapies delivered using the MIT-
Manus robotic gym did not show any significant improvement in upper-limb functional 
abilities in comparison to standard stroke rehabilitation care, the latter which is 45 min 
of appropriate rehabilitation therapy for a minimum of 5 days per week.

Error-related potential (ErrP) is an event-related potential signal that is elicited in the 
human brain following the perception of an error [5, 6]. In a recently reported study, it 
was shown that ErrP signals could be observed in a new task situation, i.e., when stroke 
patients were performing physical rehabilitation exercises, called training-ErrP onwards 
[7]. The training-ErrP signal was proposed for the development of a human-in-the-loop 
AAN robotic stroke rehabilitation system, which can modulate the robotic assistance 
level in real time using the brain’s intrinsic feedback mechanism [7]. The amount of time 
spent in actively performing the rehabilitation exercises is positively linked with the rate 
and amount of recovery from stroke disabilities [8]. As adaptive rehabilitation programs 
have shown to promote prolonged training sessions and engagement in the rehabilita-
tion programs [9, 10], a training-ErrP-led human-in-the-loop AAN robotic stroke reha-
bilitation program can provide a higher rate of recovery to stroke patients from their 
motor impairments in comparison to the existing state-of-the-art AAN robotic stroke 
rehabilitation programs and standard stroke rehabilitation care [4, 7, 11].

The error-related negativity (ERN) signal of a typical ErrP signal, called typical-ERN 
hereafter, has two major components: negative-going deflection (Ne) at approximately 
50–200 ms following the perception of an error, followed by a positive activity (Pe) at 
~200–500 ms [11]. To date, several studies have investigated the effects of various physi-
cal and psychological states of human participants on the amplitude of their typical-ERN 
signals [12–15]. Maruo et al. [16] showed how the motivational significance of the com-
mitted error affects the amplitude of the ERN signal. Specifically, larger ERN amplitudes 
were observed when errors were important for the participants. Similarly, Hajcak et al. 
[17] showed larger ERN amplitudes in trials carrying larger rewards. Peters et  al. [18] 
showed that higher anxiety is linked with larger ERN amplitudes, and that depressive 
symptoms attenuate ERN amplitudes. Moore et al. [19] showed that mental fatigue built 
over time, and decreased attention, result in reduced ERN amplitudes. Apart from these, 
other factors such as age [14], personality traits [20], ethnicity [14] and even gender [14] 
affect the typical-ERN signal. Notably, due to the association between the typical-ERN 
signals and the psychological states mentioned earlier, the typical-ERN signals can serve 
as a predictor for the psychological states [13].

A number of studies have reported that psychological states, such as motivation and 
pressure to participate in the rehabilitation program, affect a patient’s engagement in 
the rehabilitation program [15, 19, 21]. Previous studies linked the patient’s engage-
ment in the rehabilitation program with the rate of recovery from motor impairments 
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[22]. Moreover, a number of studies have also demonstrated the association between 
the effort in performing the rehabilitation exercises and the rate of recovery from motor 
impairment [23, 24]. Hence, if parameters of the physical rehabilitation program, such 
as the exercise type, its difficulty level, and assistance level given, are modified not only 
based on the presence and absence of ERN signal associated with a training-ErrP signal 
(named training-ERN onwards), as proposed in [7, 11], but also on patients’ engagement 
and effort level, a dynamically adaptive stroke rehabilitation system can be developed 
which will keep stroke patients engaged in the rehabilitation program. Furthermore, any 
change in the training-ERN signal due to the change in the state-of-mind of a participant 
can increase the inter-participant as well as inter-trial variability, which can reduce the 
detection rate of the training-ERN signal. This, in turn, will ultimately reduce the effi-
ciency of the training-ErrP-led AAN robotic stroke rehabilitation system. Nevertheless, 
with prior knowledge of the participant’s state-of-mind and understanding of its effect 
on the training-ERN signal, the parameters of the training-ERN detector can be adjusted 
to accommodate state-of-mind changes of the participant. Nevertheless, before develop-
ing such a system, it is imperative to understand how the states-of-mind of participants 
can affect their training-ERN signal. This problem has not been studied yet.

To address this issue, in this study, the effect of stroke patients’ psychological and cog-
nitive states on the training-ERN signal are reported. In essence, this study investigated:

	 i.	 the effects of psychological and cognitive states of stroke patients, specifically, 
motivation to participate in the rehabilitation program, perceived effort, perceived 
pressure, and awareness of uncompleted exercise trials (hereafter, the four states 
are collectively called MEPA states), on the amplitude of training-ERN signal;

	 ii.	 the possibility of predicting the level of the MEPA states of stroke patients using 
the amplitudes of their training-ERN signals.

Here, the awareness of uncompleted exercise trials states a cognitive state of the 
patients. We hypothesized that the amplitude of the patients’ training-ERN signal would 
correlate with the level of the four MEPA states. The findings from this study will con-
tribute towards the development of a dynamically adaptive AAN robotic stroke reha-
bilitation system, for which characteristics can be altered to achieve maximum patient 
motivation, effort and engagement in the rehabilitation program, which can enhance the 
neuroplasticity of the brain and improve the rate of recovery of stroke patients.

Methods
Experiment protocol and EEG data acquisition

Fifteen stroke patients (5 female, mean age: 57.5 ± 11.3 years) participated in this study. 
The inclusion criteria for participation were: (1) age over 18; (2) upper-limb motor 
impairment resulting from an ischemic or hemorrhagic stroke; (3) first ever and single 
stroke, between 1 week and 6 months of the experiment; (4) moderate-to-severe upper-
limb impairment due to stroke (i.e., Brunnstrom stage I–IV); (5) no cognitive impair-
ments; (6) able and willing to give consent and to comply with the requirements of the 
protocol. Among the 15 stroke patients, two had Brunnstrom stage I, eight had stage II, 
one had stage III, and four had stage IV movement in their upper-limb. The experiment 
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of this study was approved by the ethics committee of the 2nd Hospital of Jiaxing, China, 
and the experiment was conducted in accordance with the declaration of Helsinki. In 
the experiment, patients performed a standard Bobath’s rehabilitation exercise: shoul-
der flexion–extension while adjoining both hands. The experimental timelines are 
shown in Fig.  1. A fixation cross (see Fig.  1a) marked the start of a trial. Participants 
were asked to start performing the rehabilitation exercise depicted in Fig. 1b once the 
3–2–1 timer (see Fig. 1c) finished and the instruction shown in Fig. 1d showed up. Par-
ticipants were asked to complete the exercise before the ‘Time’s up!’ screen (see Fig. 1e) 
appeared. The trials in which participants completed the exercise before the ‘Time’s up!’ 
screen appeared were marked as correct trials, and the trials in which they were unable 
to complete the exercise before the ‘Time’s up!’ screen appeared were marked as error 
trials. Each participant participated in at least one session of the experiment containing 
24 trials each, out of which about 35% of the trials were error trials. The data of Patients 
1 and 9 had to be excluded from the analyses because Patient 1 aborted the experiment 
at the start and Patient 9 did not perform the experiment as per the instructions given. 
While the participants were performing the rehabilitation exercise (the experiment), 58 
channels of monopolar EEG were recorded using an active EEG electrode system and 
g.HIamp amplifier (g.tec GmbH, Austria) as per the international 10–20 system. For 
detailed information on the experiment protocol, participants’ clinical information, and 
data acquisition, see [7].

EEG data pre‑processing

A series of pre-processing steps were performed offline on the raw EEG data using 
MATLAB and EEGLAB [26]-based custom scripts to prepare the data for further anal-
ysis. The step-by-step methodology employed to pre-process the raw EEG data before 
carrying out the analyses is depicted in Fig. 2. Data were bandpass filtered in the range 
0.1–128 Hz using a Windowed sinc finite impulse response filter (zero phase shift) to 
remove low-frequency drifts and high-frequency noise, as per the parameters recom-
mended in [27]. Then the data were down-sampled to 512 Hz, and artifactual channels 
were removed with manual inspection. Artifact Subspace Reconstruction (ASR) [28] 
and Independent Component Analysis (ICA) [26] were used to remove transients, and 
stereotypical and non-stereotypical artifacts, primarily ocular, muscular and cardiac 
artifacts. After that, the continuous data were segmented into epochs ranging from 0 to 

Fig. 1  Experimental timeline and visual stimuli of an exercise trial. Instructions were delivered in the 
following order. a A fixation cross marking the start of a trial, b exercise video, c a 3–2–1 timer, d instruction 
to the participant to start performing the exercise, e participants were asked to complete the exercise before 
this screen appeared
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450 ms relative to the onset of Fig. 1e. Only error trials were kept for further processing, 
as they represent the ERN signals [11]. Individual epoch means were subtracted from 
the respective epochs to remove any DC offset left. Further analyses were carried out on 
the pre-processed data epochs. The grand-average waveforms of error trials, correct tri-
als and training-ErrP signals at the Cz electrode location are shown in Fig. 3. The train-
ing-ErrP signal (in black in Fig. 3) is the difference of the neural responses of error trials 
(in blue in Fig. 3) and correct trials (in red in Fig. 3). The training-ErrP waveform has 
been highlighted in green at time points where the signal is significantly different against 
zero (p < 0.01, one-sample t-test), which essentially exhibits the time points where the 
error trials’ neural responses are significantly different from the correct trials’ neural 
responses.

Assessment of psychological and cognitive states

Psychological states of the stroke patients were assessed with the Intrinsic Motivation 
Inventory (IMI) questionnaire developed by Ryan et al. [25], which is a multidimensional 
assessment tool with seven scales to assess participants’ subjective experiences related to 
a targeted activity in an experiment. The seven scales are the interest/enjoyment, effort/

Fig. 2  Step-by-step methodology employed to pre-process the raw EEG data before carrying out the 
analyses
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importance, perceived competence, perceived choice, felt pressure/tension, value/use-
fulness, and personal relatedness scales, thus yielding seven individual subscale scores 
while performing a given activity. The IMI questionnaire was adapted to the experiment 
and was employed to measure participants’ subjective experience on the three subscales: 
interest/enjoyment, effort/importance, pressure/tension. The interest/enjoyment is consid-
ered as the self-reported measures of intrinsic motivation; pressure/tension is considered 
as the self-reported measures of stress level, which is a negative predictor of intrinsic 
motivation; and effort/importance is a separate variable relevant to some motivation 
questions [25]. The adapted version of the IMI questionnaire contained 17 statements, 
as listed in Table 1. In addition, three statements, as listed in Table 2, were included to 
assess the cognitive state of the participants, by assessing participants’ awareness of the 
trials in which they failed in completing the rehabilitation exercise in the given time (i.e., 
error trials). Hereafter, the cognitive state is called the awareness of error state. The state-
ments listed in Tables 1 and 2 were unified randomly and then used.

At the end of the experiment, participants were asked to fill in the questionnaire to 
state the status of the emotions they felt during the experiment on a seven-point Likert 
scale (1: not at all true and 7: very true). All questionnaires were filled out by the par-
ticipants themselves if they were able to hold a pen or otherwise by one of the experi-
menters. This assessment lasted 10–20 min. For every participant, a score for each of the 
four-subscales was obtained by averaging of the scores given on statements belonging to 
a subscale. In this way, the scores (levels) of the MEPA states of the participants during 
the experiment were estimated. These scores were then used for further analyses.

Correlation analysis

The training-ERN signal associated with the training-ErrP signal contains three peaks: 
a positive-going deflection at 100 ms (P100); followed by a negative-going deflection at 

Fig. 3  Grand-average waveforms of error trials (training-ERN signals, in blue), correct trials (in red) and 
training-ErrP signals (in black) at Cz electrode. The waveforms were smoothed out with a 25-Hz low-pass FIR 
filter, for an illustration purpose. Training-ErrP signal (in black) is the difference of the neural responses of error 
trials and correct trials. Green highlights show the time-points where the training-ErrP signal is significantly 
different against zero (p < 0.01, one-sample t test)
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135 ms (N135); and lastly, a larger negative peak at 410 ms (N400); see Fig. 3 [7]. Ampli-
tude values of the three peaks were noted for all participants’ error trials from the pre-
processed EEG data. Subsequently, for all 13 participants, an average value for each of 
the three peaks was calculated by averaging the peak amplitude values of all the error 
trials belonging to a participant, which were used for further analyses.

Statistical correlation analysis was carried out to assess the effects of the scores of the 
MEPA states on the amplitude of the training-ERN signal. However, before the statisti-
cal analyses, the Shapiro–Wilk test (α = 0.05) was used to verify the normal distribution 
of the amplitude of the training-ERN signal and the scores of the MEPA states of the 13 
participants [29]. The null hypothesis of Shapiro–Wilk assumes a normal distribution, 
while the alternative hypothesis denies that. Skewness and kurtosis z-value were used 
as additional measures to confirm the normality of the average data samples [30]. The 
null hypothesis, i.e., the assumption of normal distribution, was not rejected for all but 
N135 amplitude values. The p-values were found to be higher than 0.05; and in addition, 
skewness and kurtosis z-values were within the ± 1.96 range, further strengthening the 
assumption of normal distribution. Therefore, a parametric measure of correlation, the 

Table 1  All statements of adapted version of intrinsic motivation inventory questionnaire 
(Ryan et al. [25])

The Factor column describes to which subscale the respective statement belongs to, I = interest/enjoyment, E = perceived 
effort/importance, P = perceived pressure/tension
a  Scores of these statements were subtracted from 8, before being used for taking an average

Item Statement Factor

1 I enjoyed doing this activity very much I

2 I put my maximum effort to maintain the accuracy and complete the 
exercise within time

E

3 I did not feel nervous at all while doing this activity Pa

4 I think this was a boring activity Ia

5 I tried very hard to complete the exercises on time E

6 I was very relaxed while doing this activity Pa

7 I would describe this activity as very interesting I

8 It was important to me to do well at this task E

9 This activity was fun to do I

10 I felt very uneasy while doing this activity P

11 I did not put much energy into this task Ea

12 I thought this activity was quite enjoyable I

13 This activity did not hold my attention at all Ia

14 I was anxious while working on this activity P

15 I did not try very hard to do well at this activity Ea

16 I felt like I was enjoying the activity while I was doing it I

17 I felt pressured while doing these P

Table 2  Statements used to assess the awareness of error state

Item Statement

1 I am sure that in some trials I did not complete the exercise on time

2 I am fully aware of the trials in which I failed to complete the exercise on time

3 I know in some trials I did not perform the exercises accurately
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Pearson correlation coefficient, was used to evaluate the correlation between the MEPA 
states of the participants and the training-ERN signal. An upper and lower limit of 95% 
confidence interval (CI) was also estimated using bootstrap distribution repeated over 
10,000 times. All statistical analyses were conducted using IBM SPSS Statistics 26.

Results
With the help of scatter plots and linear-regression lines, the relationships among the 
three peaks of the training-ERN signal and the considered psychological and cognitive 
states (MEPA) are depicted in Fig. 4.

Figure  4a–c shows the scatter plots illustrating the effect of interest/enjoyment 
score on the P100, N135 and N400 training-ERN peaks (respectively). A higher 
interest/enjoyment score has been associated with stronger ERN response, i.e., 
more positive P100, r(11) = 0.68, p = 0.011, 95%CI[0.280.92] and more negative 

Fig. 4  Correlation measurements between the amplitude of peaks of the training-ERN signal and the 
psychological and cognitive states of the participants. The solid blue lines in the scatter plots show the 
linear-regression lines, and the dotted red curves show the upper and lower limit of 95% confidence interval 
(CI) estimated using bootstrap distribution repeated over 10,000 times. The x-axis of the figures represents 
the scores (levels) of the MEPA states of the participants, ranging from 1 to 7
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N400,r(11) = −.48, p = 0.097, 95%CI[−0.83− 0.06] . The α level for statistical signifi-
cance has been set to 0.017 after correcting for multiple comparisons.

Figure  4d–f shows the scatter plots illustrating the effect of perceived pressure/ten-
sion score on the P100, N135 and N400 training-ERN peaks (respectively). A higher 
perceived pressure/tension score has been associated with weaker ERN response, i.e., 
more negative P100, r(11) = −0.53, p = 0.063, 95%CI [−0.82− 0.07] and more positive 
N400,r(11) = 0.28, p = 0.349, 95%CI [−0.260.67].

Figure  4g–i shows the scatter plots illustrating the effect of perceived effort/impor-
tance score on the P100, N135, and N400 training-ERN peaks (respectively). A higher 
perceived effort/importance score has been associated with stronger ERN response, 
i.e., more positive P100, r(11) = 0.70, p = 0.008, 95%CI [0.140.93] and more negative 
N400,r(11) = −0.51, p = 0.074, 95%CI [−0.82− 0.03].

Figure  4j–l shows the scatter plots illustrating the effect of awareness of error score 
on the P100, N135, and N400 training-ERN peaks (respectively). A higher awareness of 
error score has been associated with a mixed ERN response, i.e., stronger ERN or more 
negative N135, r(11) = −0.39, p = 0.194, 95%CI [−0.800.42] and weaker ERN or more 
positive N400, r(11) = 0.63, p = 0.02, 95%CI [0.160.90].

To carry out further analyses, the median values of the scores of all four MEPA states 
were noted, and patients were subdivided into two groups: one group of patients hav-
ing the scores of the MEPA state under consideration, higher than the median value 
(named above median onwards); and the second group having the scores lower than 
the median value (named below median onwards). Both the above median and below 
median groups consisted of six patients each. Afterwards, the training-ERN waveforms 
and topographical maps of the two groups were compared at the three ERN peaks. The 
averaged training-ERN waveforms at the Cz electrode and the topographical maps of the 
two groups for interest/enjoyment and awareness of error state are shown in Fig. 5a, b, 
respectively. As observed in the results presented so far (Fig. 4), the interest/enjoyment 
state and awareness of error state have a weak correlation with N135 and P100 train-
ing-ERN peaks, respectively; as a result, the ERN waveforms were only compared at the 
other two peaks for the two states.

It is to be noted that the ERN waveforms and topographical map comparisons of 
above median and below median groups were only carried out for interest/enjoyment 
and awareness of error states. In the case of perceived pressure/tension, none of the cor-
relations shows significance even before the correction for multiple comparisons. In 
the case of perceived effort/importance, more than one patients were having the states’ 
scores equal to the median value, which made it difficult to divide the groups in the 
above median and below median groups with the minimum number of six trials required 
to get reliable results [31].

An independent-samples t-test was performed to evaluate whether the difference 
in the interest/enjoyment and awareness of error scores, by means of above median 
and below median group, causes a statistically significant difference in training-ERN 
peaks’ amplitudes. Before carrying out the independent-samples t test, the Shapiro–
Wilk test, as well as skewness and kurtosis z-value, were used to confirm the normal 
distribution of the ERN peaks. In line with the trend observed in Fig.  4, the above 
median interest/enjoyment score group showed a significantly stronger (at α = 0.05 ) 
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training-ERN response (M = 2.74, SD = 3.95) in comparison to the below median 
interest/enjoyment score group (M = −1.65, SD = 0.78), t(10) = 2.68, p = 0.023 for 
P100 peak (see Fig.  5a; Table  3). Similarly, for N400 peak also, the above median 
interest/enjoyment score group showed a significantly stronger training-ERN 
response (M = −5.43, SD = 4.55) in comparison to the below median interest/
enjoyment score group (M = 2.28, SD = 5.35), t(10) = −2.69, p = 0.023 (see Fig.  5a; 
Table 3). A similar trend is also evident from the central regions of the topographi-
cal maps shown in Fig.  5a. Similarly, in line with the mixed-trend observed in 
Fig.  4, the above median awareness of error score group showed a stronger train-
ing-ERN response (M = −6.02, SD = 6.93) in comparison to the below median 
awareness of error score group (M = −3.02, SD = 3.06), t(10) = −0.97, p = 0.355 

Fig. 5  The averaged training-ERN waveforms at the Cz electrode location and the topographical maps of the 
above median and below median groups for a interest/enjoyment state and b awareness of error state

Table 3  Mean, standard deviation and independent-samples t test statistics of difference 
in  training-ERN peaks of  patients with  interest/enjoyment state score above median 
and below median, and awareness of error state score above median and below median 

State Peak amplitude 
latency (ms)

Above median/below 
median group

Mean ± SD T-test statistics (-inter)

Interest/enjoyment 100 Above 2.74 ± 3.95 t(10) = 2.68, p = 0.023

Below –1.65 ± 0.78

410 Above –5.43 ± 4.55 t(10) = –2.69, p = 0.023

Below 2.28 ± 5.35

Awareness of error 135 Above –6.02 ± 6.93 t(10) = –0.97, p = 0.355

Below –3.02 ± 3.06

410 Above 1.72 ± 5.60 t(10) = 1.85, p = 0.094

Below –4.34 ± 5.75
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for N135 peak (see Fig.  5b; Table  3). On the other hand, for N400 peak, the above 
median awareness of error score group showed a weaker training-ERN response 
(M = 1.72, SD = 5.60) in comparison to the below median awareness of error score 
group (M = −4.34, SD = 5.75), t(10) = 1.85, p =0.094 (see Fig.  5b; Table  3). A simi-
lar mixed pattern is also evident from the central regions of the topographical maps 
shown in Fig. 5b. However, the difference in the ERN responses at the two latencies 
did not show significance (see Table 3).

Discussion
The goal of this study was to assess whether the ERN signal associated with the novel 
training-ErrP signal is affected by the psychological and cognitive states of stroke 
patients, and to evaluate the possibility of estimating participants’ psychological and 
cognitive states using the amplitude of their training-ERN signal. The psychological and 
cognitive states included in this study were motivation to participate in the experiment, 
perceived effort, perceived pressure, and awareness of uncompleted exercise trials. The 
present study found strong evidence for an association between the amplitudes of train-
ing-ERN peaks and participants’ scores on the MEPA states. Strong correlations among 
the peaks of the training-ERN signal and the MEPA states indicate that the states can be 
estimated using the amplitude of the patient’s training-ERN peaks.

The interest/enjoyment scale represents the intrinsic motivation of the participants to 
participate in the experiment [25], and the pressure/tension scale represents the stress of 
the participants to participate in the experiment [25]. The interest/enjoyment and pres-
sure/tension correlation results showed higher brain activations by means of stronger 
training-ERN response for higher motivation levels and weaker training-ERN responses 
for higher stress levels which is a negative predictor for motivation levels. Moore et al. 
[19] have linked motivation with mental fatigue which affects the task performance of 
participants. As long as one feels that the perceived rewards of executing a task are suf-
ficient, the motivation to participate in the task remains [19]. By contrast, insufficient 
rewards diminish the motivation of the participants, which results in disengagement 
from the task [19]. Higher motivation and thereby higher task engagement results in an 
enhanced action monitoring system of the brain, which results in stronger ERN signals, 
as observed in the case of association between training-ERN and interest/enjoyment 
scores in the present study. These results are in keeping with previous observational 
studies which set out the association between motivation levels and typical-ERN signal 
amplitudes [15, 16, 32]. In addition, previous studies have also observed an impaired 
action monitoring system in participants in whom symptoms of stress and depression 
exist [12, 13, 18]. The results of these studies are in agreement with the association 
between the perceived pressure/tension scores and training-ERN amplitudes observed in 
the present study.

The perceived effort of the participants to execute the task represents a conscious sen-
sation of how hard the participant had to drive their impaired upper-limb to complete 
the rehabilitation exercise in the given time. Greater effort to carry out a task shows 
higher cognitive resource engagement and lower mental fatigue [15]. A number of previ-
ous studies have linked lower effort and higher mental fatigue with weak typical-ERN 
signals, and vice versa [19, 33]. Boksem et  al. [15] conducted an experiment in which 



Page 12 of 15Kumar et al. BioMed Eng OnLine           (2021) 20:13 

participants performed a given task continuously for 2  h. They observed a change in 
the task performance with ongoing fatigue, which was accompanied by a substantial 
decrease in ERN amplitude, indicating that action monitoring of the brain is impaired 
in fatigued participants. In the present study, a higher perceived effort/importance score 
was observed to be associated with a significant increase in P100 amplitude and a sub-
stantial increase in the N400 amplitude of the training-ERN signal, which is consist-
ent with the literature. A higher effort has also been linked with a higher perception of 
rewards, which results in enhanced action monitoring, which increases the ERN ampli-
tude [21]. Nevertheless, a higher perception of reward comes down to individual percep-
tion towards the benefit of rehabilitation exercises or the stroke rehabilitation program 
in general; which can be investigated in the future.

A positive deflection, i.e., the Pe peak of a typical-ERN signal, has been linked with cog-
nizance of the error made [34–36]. In other words, when the participants are unaware of 
the error, Pe has been observed to be strongly diminished. However, a negative deflec-
tion, i.e., the Ne peak of a typical-ERN signal, is unaffected by this unawareness [34–36]. 
The present study has revealed an increase in the amplitude of the N135 peak with an 
increase in the score of awareness of error state, though not statistically significant; on 
the other hand, the P100 peak has remained largely unaffected. Interestingly, this behav-
ior of training-ERN signal is opposite to that of a typical-ERN signal. In training-ERN 
signal, an unaffected P100 and stronger N135 peaks occur; whereas in a typical-ERN sig-
nal, unaffected Ne and stronger Pe peaks occur, in response to greater awareness of error 
[34–36]. Notably, Kumar et al. [7] observed a reverse polarity in the ERN signal associ-
ated with the training-ErrP signal in comparison to the polarity observed in typical-ERN 
signals in the literature [11, 34–36], which supports the opposite behavior observed in 
the present study. This result suggests the attribution of P100 deflection of the training-
ERN signal with Ne deflection seen in typical-ERN signals, as well as the attribution of 
N135 deflection of the training-ERN signal with the Pe deflection seen in typical-ERN 
signals [7, 34–36]. The decrease in the amplitude of the N400 peak with an increase in 
awareness of error score can be attributed to the methodological differences in relation 
to the training-ERN signals. The observed relationship between the training-ERN signal 
and the typical-ERN signal can assist in understanding the neural mechanism behind 
the training-ERN signal and in comparing ERN signals of various task modalities [11].

Although a handful of correlations among the peaks of the training-ERN signal and 
the psychological and cognitive states showed statistical significance, the majority of 
correlations follow a consistent trend supported by the literature. These correlations 
indicate the possibility of developing a training-ERN based algorithm that can estimate 
patients’ psychological and cognitive states through the amplitude of their training-
ERN signals. With the help of such algorithms, a dynamic rehabilitation program can be 
established in which the characteristics of the program, such as exercise type, difficulty 
and duration, can be altered to keep the states such as motivation, effort and engage-
ment high, which can improve the rate and amount of recovery from stroke disabilities 
[8, 22, 24]. Previous studies have also explored the use of the automatic nervous system 
(ANS) to develop a dynamic rehabilitation program. For instance, Koenig et al. [37] and 
Novak et al. [38] used inputs from ANS such as skin-conductance level, heart rate and 
skin temperature to estimate the engagement and arousal level of stroke patients while 
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performing rehabilitation movements, and proposed their use in developing a closed-
loop auto-adaptive rehabilitation program. Such systems have been shown to promote 
the engagement level and participation, and improve the overall user experience [9, 10, 
39], which can increase the rate and amount of recovery from stroke disabilities [8, 22, 
24]. However, stroke patients often show long-lasting abnormalities in ANS, which can 
alter the functioning of ANS-based auto-adaptive rehabilitation programs [40]. In addi-
tion, for every ANS function included in the auto-adaptive rehabilitation program, such 
as skin-conductance level and heart rate, the complexity of the rehabilitation system 
increases. On the other hand, the psychophysiological measurements using the training-
ERN signal does not increase the complexity of the system, given that EEG measure-
ment and processing already form a part of the training-ErrP-led AAN robotic stroke 
rehabilitation system [7]. However, the stroke may influence the training-ERN signal 
depending upon the location of the brain lesion, which is an important issue for future 
research. Nevertheless, the present study provides a stepping stone for the use of train-
ing-ERN signals to estimate the psychological and cognitive states of the stroke patients; 
while substantial work is needed before such a system can be used in the real world. 
For instance, the feasibility to predict the state-of-mind of stroke patients in single trials 
of training-ERN signals needs to be determined using classification or regression mod-
els, as the group-level analyses alone, as conducted in this study, do not guarantee sin-
gle-trial prediction feasibility. However, the determination of the true state-of-mind of 
stroke patients for every single trial is quite challenging, especially with questionnaires, 
at which more work is needed before patients’ psychological and cognitive states can be 
integrated in robot-control algorithms. Furthermore, factors such as the error trials rate 
and recovery level of stroke patients can also influence the training-ERN signal as well as 
the state-of-mind of stroke patients, and need to be evaluated through longitudinal stud-
ies with a higher number of participants, before such a training-ErrP-led dynamically 
adaptive AAN robotic stroke rehabilitation system can be used in practice in real-world 
applications.

Conclusion
Training-ERN is a new type of ERN signal recently observed by our research group, 
which adds a novel modality to develop AAN robotic stroke rehabilitation programs. 
The present research aimed to determine the association between the training-ERN sig-
nal and the psychological and cognitive states of the participants, which is a first such 
attempt to the best of the author’s knowledge. In this study, experiments were conducted 
on stroke patients which involved performing a physical rehabilitation exercise and a 
questionnaire to measure participants’ subjective experience in respect of four states 
while performing the rehabilitation exercise: motivation to participate in the experiment; 
perceived effort; perceived pressure; and awareness of uncompleted exercise trials. The 
study has identified strong correlations among the amplitude of the training-ERN signal 
and the psychological and cognitive states of the participants; which indicates the pos-
sibility of estimating the said states using the amplitude of their training-ERN signal. The 
new understandings gained from this study would help in developing a training-ERN-
based, dynamically adaptive AAN robotic stroke rehabilitation system which can alter 
its characteristics in order to keep the participants’ psychological and cognitive states 
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such as motivation, effort and engagement high, which can drive the neuroplasticity of 
the brain and improve the rate of recovery of stroke patients from their motor impair-
ment. In future, the single-trial prediction ability of the training-ERN signals to predict 
the state-of-mind of stroke patients will be evaluated.
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