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Abstract 

Background:  Anterior mediastinal cysts (AMC) are often misdiagnosed as thymomas 
and undergo surgical resection, which caused unnecessary treatment and medical 
resource waste. The purpose of this study is to explore potential possibility of com-
puted tomography (CT)-based radiomics for the diagnosis of AMC and type B1 and B2 
thymomas.

Methods:  A group of 188 patients with pathologically confirmed AMC (106 cases 
misdiagnosed as thymomas in CT) and thymomas (82 cases) and underwent routine 
chest CT from January 2010 to December 2018 were retrospectively analyzed. The 
lesions were manually delineated using ITK-SNAP software, and radiomics features 
were performed using the artificial intelligence kit (AK) software. A total of 180 tumour 
texture features were extracted from enhanced CT and unenhanced CT, respectively. 
The general test, correlation analysis, and LASSO were used to features selection and 
then the radiomics signature (radscore) was obtained. The combined model including 
radscore and independent clinical factors was developed. The model performances 
were evaluated on discrimination, calibration curve.

Results:  Two radscore models were constructed from the unenhanced and enhanced 
phases based on the selected four and three features, respectively. The AUC, sensitiv-
ity, and specificity of the enhanced radscore model were 0.928, 89.3%, and 83.8% in 
the training dataset and 0.899, 84.6%, and 87.5% in the test dataset (higher than the 
unenhanced radscore model). The combined model of enhanced CT including radiom-
ics features and independent clinical factors yielded an AUC, sensitivity and specificity 
of 0.941, 82.1%, and 94.6% in the training dataset and 0.938, 92.3%, and 87.5% in the 
test dataset (higher than the unenhanced combined model and enhanced radscore 
model).

Conclusions:  The study suggested the possibility that the combined model in 
enhanced CT provided a potential tool to facilitate the differential diagnosis of AMC 
and type B1 and B2 thymomas.
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Background
Thymoma is the most common tumour in the anterior mediastinum [1, 2]. Accord-
ing to the 2015 World Health Organization (WHO) classification of thymic epithelial 
tumours, thymomas are no longer classified as benign tumours. Except for micronod-
ular thymoma with lymphoid stroma and micro-thymomas are benign, all other types 
of thymoma are considered malignant tumours [3]. Thus, when the mediastinal mass is 
suspected to be a thymoma, surgical resection is needed [4, 5].

Currently, routine computed tomography (CT) is widely used as a routine method 
diagnosing lesions in the thymoma and anterior mediastinal cysts (AMC). Type A and 
AB thymomas have many thymic epithelial cells and are heterogeneous on enhanced 
CT imaging. Type B3 thymomas and thymic carcinomas may invade the surrounding 
structures due to their high invasiveness, and most of them can easily be distinguished 
from cysts preoperatively. Otherwise, type B1 and B2 thymomas comprise many lym-
phocyte cells and even enhancement on enhanced CT imaging, and thymoma often have 
a complete capsule, making it difficult to distinguish them from AMC [6–8]. Meanwhile, 
the CT value of some AMC may be similar to the soft tissue density, due to the influ-
ence of mediastinal large blood vessels and the thorax, the CT values of the enhanced 
mediastinal window are not accurate, and some are even lower than the unenhanced 
CT values [9, 10], which make the diagnoses mainly based on radiologists’ subjective 
experience. Thus, patients with AMC are often misdiagnosed as thymomas and undergo 
surgical resection, not only causing unnecessary treatment but also wasting medical 
resources. In this study, 106 included cases of AMC were all misdiagnosed as thymomas 
and underwent surgical resection.

Radiomics can extract a high-throughput objective and quantitative image features 
from CT, magnetic resonance imaging (MRI), or positron emission tomography (PET) 
to reflect tumour heterogeneity [11–13] and explore the potential relationships between 
features and pathophysiology to predict clinical outcomes, such as differential diagno-
sis, classification, distant metastases, survival [14–17]. A few studies discussed the role 
of quantitative image analysis based on magnetic resonance imaging (MRI) parameters 
in differentiation anterior mediastinal cysts from other solid masses, which may help to 
characterize correlation of thymic epithelial tumours with World Health Organization 
classification and clinical staging [18, 19]; Qualitative CT radiomics analysis were also 
applied to thymic tumours grading [20]; however, radiomics-based studies of only AMC 
distinguished from type B1 and B2 thymomas have not been reported. Therefore, this 
retrospective study attempts to study whether CT radiomics can reflect the heterogene-
ity between AMC and type B1 and B2 thymoma and to avoid the resection of AMC that 
are misdiagnosed as thymomas.

Results
Patient characteristics

106 anterior mediastinal cysts patients (all were misdiagnosed as thymomas in CT) and 
82 type B1 and B2 thymomas patients were included in the study. A patient pathologi-
cally confirmed AMC but was misdiagnosed as thymoma in CT image was shown in 
Fig. 1.
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Detail clinical features in training and test dataset were described in Table 1. The maxi-
mum diameter [21] of the tumour was 0.9–7.7 cm, and the average diameter was 3.0 ± 1.4 
cm. A statistically significant difference was found in lesion size and unenhanced CT 
value between AMC and thymomas in the training dataset, but no statistically significant 
difference in age and primary site (P > 0.05). There was a significant difference found in 
enhanced CT value, change of CT value and radscore in the training and test datasets. 
Moreover, the radscore was the dominant factor impacting the prediction of the differen-
tial diagnosis between AMC and type B1 and B2 thymomas (P < 0.001).

Radscore model development and performance evaluation

Among the 180 features of enhanced CT, the correlation based on the heatmap, two 
main clusters of 188 patients were compared, and a visual association was found, dem-
onstrating the potential discriminative power of these radiomics features (Fig. 2).

Fig. 1  A patient pathologically confirmed anterior mediastinal cyst. a Round lesion located in the anterior 
mediastinum; b CT value of 50.73 HU in the unenhanced mediastinal window, CT value of 39.15 HU in the 
enhanced mediastinal window, even lower than the unenhanced CT value; c light microscopy of frozen 
section of a lesion stained, original magnification × 100 showing the ciliated columnar epithelium lining the 
lesion capsule

Table 1  Characteristics of patients in the training and test datasets

Bold indicates p values below 0.05 were considered significant in both training and test datasets

Continuous variables: represented as mean ± standard deviation (SD); Chi-square test or Fisher’s exact test [number and 
percentage (%)]

CT computed tomography, HU Hounsfield unit, change of CT value enhanced CT value − unenhanced CT value, AMC anterior 
mediastinal cysts

Characteristics Training dataset (N = 130) Test dataset (N = 58)

AMC (N = 74) Thymoma (N = 56) P AMC (N = 32) Thymoma (N = 26) P

Age (years) 54.19 ± 8.05 50.71 ± 9.17 0.110 55.81 ± 9.52 44.62 ± 13.04 0.013

Gender 0.213 0.577

 Male 34(45.9%) 18(32.1%) 20 (62.5%) 12 (46.2%)

 Female 40 (54.1%) 38 (67.9%) 12(37.5%) 14 (53.8%)

Primary site 0.301 0.041

 Left 44 (59.5%) 30 (53.6%) 22 (68.7%) 18 (69.2%)

 Right 30 (40.5%) 26 (46.4%) 10 (31.3%) 8 (30.8%)

Lesion size (cm) 2.72 ± 1.40 3.41 ± 1.26 0.043 2.60 ± 1.34 3.52 ± 1.24 0.069

Unenhanced CT 
value

33.14 ± 17.59 43.34 ± 9.76 0.004 27.90 ± 17.14 38.06 ± 9.21 0.053

Enhanced CT value 35.26 ± 18.19 67.74 ± 16.34 0.000 34.40 ± 20.04 57.07 ± 16.61 0.003
Change of CT value 2.13 ± 12.45 24.40 ± 12.67 0.000 6.50 ± 14.68 19.01 ± 13.25 0.025
Radscore − 2.52 ± 2.22 2.30 ± 2.72 0.000 − 2.41 ± 1.77 1.96 ± 2.66 0.000
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After the feature selection, four and three imaging features were finally selected from 
unenhanced phase and enhanced phase CT, respectively, for the construction of the rad-
score model. The VIFs of four features in unenhanced CT and three features in enhanced 
phase CT were all less than ten, which indicated no severity collinearity. The lasso images of 
the unenhanced and enhanced phases were shown in Fig. 3.

Equation 1 represents the unenhanced phase CT for four radiomics features:

Equation 2 represents the enhanced phase CT for three radiomics features:

The AUC, sensitivity, and specificity of the enhanced radscore model were 0.928, 
89.3%, and 83.8%, respectively, in the training dataset and 0.899, 84.6%, and 87.5%, 
respectively, in the test dataset (higher than the unenhanced radscore model) (Table 2). 
The AUC values were consistent with the results of 1000 times bootstrap analysis in both 
training and test dataset (mean ± standard deviation: training dataset: 0.928 ± 0.025; test 
dataset: 0.899 ± 0.039).

Development of combined model and models comparison

Two clinical unenhanced CT value and enhanced CT value were selected from seven 
clinical features to develop the clinical models by stepwise multivariable analysis using 
the minimum Akaike information criterion (AIC) as the stop rule. A combined model 
including radscore, unenhanced CT value and enhanced CT value was constructed. The 
VIFs of combined models were calculated, the values all were less than ten, which indi-
cated no severity collinearity.

(1)
radscore =0.293×Quantile0.025+ 1.306× VoxelValueSum

+ 0.356×GLCMEntropy_angel0_offset1− 0.532

×HaralickCorrelation_AllDirection_offset1_SD− 0.278.

(2)
Radscore = 2.706×RMS+0.520×VoxelValueSum−0.951×SurfaceVolumeRatio−0.447.

Fig. 2  Radiomics heatmap of the extracted 180 texture features. Unsupervised clustering of patients 
(n = 188) on the y-axis and expression of radiomics features (n = 180) on the x-axis reveal clusters of patients 
with similar radiomic expression patterns. The groups of these radiomics features were labelled on the right 
side
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Equation 3 represents the unenhanced phase CT for combined model:

Equation 4 represents the enhanced phase CT for combined model:

The performance of clinical models, radscore models, and combined models of the 
unenhanced and enhanced phases CT were evaluated by ROC (Fig. 4). The AUC, sen-
sitivity, specificity, 95% confidence interval (CI), P value, Youden index of the train-
ing and test datasets of the unenhanced model and enhanced model were detailly 
shown in Table 2. The AUC of combined model was greater than radscore model and 

(3)
Combine - model =0.822× radscore+ 0.127× enhanced CT value

− 0.074 × unenhanced CT value− 3.443.

(4)
Combine - model =0.633× radscore+ 0.083× enhanced CT value

− 0.053× unenhanced CT value− 2.319.

Fig. 3  Feature selection using LASSO to shrink some regression coefficients to exactly zero (loss function 
minimize
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cross-validations were used to determine the optimal values of tuning parameter (λ). We selected λ via 1-SE 
(standard error). The optimal λ is the largest value for which the partial likelihood deviance is within one SE of 
the smallest value of partial likelihood deviance. a, c Tuning parameter (λ) selection in the LASSO model 
shown versus log (λ). Dotted vertical lines were drawn at the optimal values using the minimum binomial 
deviation value, log (λ) = − 3.38 in unenhanced CT and log (λ) = − 3.67 in enhanced CT; b, d LASSO 
coefficient profiles of the 180 texture features. A coefficient profile plot was produced against the log (λ) 
sequence. Option l resulted in four nonzero coefficients on unenhanced phase CT imaging and three 
nonzero coefficients on enhanced phase CT imaging
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clinical model in two datasets of enhanced and unenhanced CT, the combined model of 
enhanced CT was the highest. So, the diagnosis efficiency of enhanced model was better 
than unenhanced model.

Combined nomogram of the enhanced CT model

A combined nomogram of the enhanced CT was constructed based on radscore, unen-
hanced CT value, and enhanced CT value. The combined nomogram and calibration 
curves also indicated good agreement between the nomogram prediction and actual 
observation in both the training and test datasets (Fig.  5). For the training dataset, a 
non-significant statistic (P = 0.735) of the Hosmer–Lemeshow test indicated no signifi-
cant deviation from an ideal fitting. The AUC value was 0.941 (95% CI 0.853–0.984). 
For the test dataset, a non-significant statistic (P = 0.602) and an AUC of 0.938 (95% CI 
0.781–0.993) were obtained (Table 2). Using the bootstrap method, the AUC values were 
consistent with above results in both training and test dataset (mean ± standard devia-
tion: training dataset: 0.941 ± 0.021; test dataset: 0.938 ± 0.033).

Discussion
In this study, a nomogram based on enhanced CT was developed and validated using 
radiomics method for quantified the probability of the differential diagnosis of anterior 
mediastinal cysts and type B1 and B2 thymomas. The combined nomogram was con-
structed by incorporating the radscore and the two clinical features of unenhanced CT 
value and enhanced CT value. The radscore was calculated from the CT images, which 
was developed by the selective image features. The combined model of enhanced CT 
images yielded an optimal AUC in both training and test datasets (training dataset: 
0.941, test dataset: 0.938). Invasive procedures such as endoscopic biopsy of the medias-
tinal mass are dangerous, because these masses are near the heart and mediastinal great 

Table 2  Differential diagnostic efficiency between AMC and type B1 and B2 thymomas

Bold indicates p values below 0.05 were considered significant in both training and test datasets

AUC​ 95% CI Sensitivity Specificity Youden P value

Radscore model

 Unenhanced CT

  Training dataset 0.823 0.709–0.907 0.757 0.821 0.578 0.000
  Test dataset 0.856 0.676–0.958 1 0.769 0.769 0.000

 Enhanced CT

  Training dataset 0.928 0.835–0.977 0.893 0.838 0.731 0.000
  Test dataset 0.899 0.730–0.979 0.846 0.875 0.721 0.000

Combined model

 Unenhanced CT

  Training dataset 0.933 0.843–0.980 0.893 0.838 0.731 0.000
  Test dataset 0.928 0.768–0.991 0.923 0.875 0.798 0.000

 Enhanced CT

  Training dataset 0.941 0.853–0.984 0.821 0.946 0.767 0.000
  Test dataset 0.938 0.781–0.993 0.923 0.875 0.798 0.000
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vessels [22, 23]. Thus, a non-invasive biomarker that can be obtained preoperatively to 
diagnose anterior mediastinal cysts from type B1 and B2 thymomas will be valuable in 
clinical practice.

For our study, we found that the extracted features of the unenhanced and enhanced 
CT images were different, and the models had different efficiency. The AUC of the 
unenhanced radscore model were 0.823 in training dataset and 0.856 in test dataset, 
respectively, and 0.928 and 0.899 for enhanced radscore model, which were higher 
than those of the unenhanced radscore model. The AUCs of the training and test 
datasets of the unenhanced combined model were 0.933 and 0.928, respectively, and 
the AUCs of the training and test datasets of the enhanced combined model were 
0.941 and 0.938, respectively, also higher than those of the unenhanced model. The 
results suggested that the features of enhanced phase CT imaging can better reflect 
the internal heterogeneity of AMC than unenhanced phase CT imaging. The AUCs of 

Fig. 4  ROC curves of the models. a, b The clinical model, radscore model and combined model of the 
unenhanced phase in the training dataset (AUC = 0.897, 0.823, 0.933) and test dataset (AUC = 0.870, 0.856, 
0.928); c, d the clinical model, radscore model and combined model of the enhanced phase in the training 
dataset (AUC = 0.928, 0.928, 0.941) and test dataset (AUC = 0.788, 0.899, 0.938)
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the combined model both in the unenhanced and enhanced phases were higher than 
those of the radscore model, the combined models included not only image features 
but also unenhanced CT and enhanced CT values of the mediastinal window of clini-
cal features, indicating that the clinical features of the CT value was a very important 
biomarker for the differential diagnosis between anterior mediastinal cysts and type 
B1 and B2 thymomas. As the nomogram illustrates, the radscore accounted for most 
of the proportion compared with the other clinical features, making the radiomics 
signature as a cardinal biomarker to predict the differential diagnosis of AMC and 
type B1 and B2 thymomas. The higher the total points of the nomogram are, the more 
likely type B1 and B2 thymomas are to be diagnosed.

Yasaka et al. [24, 25] studied that the enhanced phase CT could better reflect the inter-
nal heterogeneity of anterior mediastinal thymomas and other masses than the unen-
hanced phase using quantitative computed tomography texture analysis to estimate the 
histological subtypes of thymic epithelial tumours and differentiation between solid 
masses and cysts. Only few scholars have conducted relevant research in the radiomics 
field. Wang et al. [26] obtained the results that the AUCs were 0.829 and 0.860 for the 

Fig. 5  Combined nomogram and calibration curve of the enhanced CT. a The developed combined 
nomogram to predict the probability of the differential diagnosis between the anterior mediastinal cysts 
and type B1 and B2 thymomas. By summing the scores of each point and locating it on the total score scale, 
the estimated probability of the differential diagnosis could be determined; b, c calibration curves to predict 
the training and test datasets. The 45° straight line represents the perfect match between the actual (y-axis) 
and nomogram-predicted (x-axis) differential diagnosis probabilities. A closer distance between two curves 
indicates higher accuracy prediction and actual observation for the anterior mediastinal cysts and type B1 
and B2 thymomas in both the training and test datasets



Page 9 of 14Liu et al. BioMed Eng OnLine           (2020) 19:89 	

radiomics signature based on unenhanced and enhanced CT images in differentiating 
advanced stage thymomas from early stage thymomas, respectively. However, Sui et al. 
[27] believed that the unenhanced phase could better distinguish high-risk and low-risk 
thymomas than the enhanced phase, because more texture features were selected from 
the unenhanced phase than from the enhanced phase, and tumour heterogeneity was 
better detected in the unenhanced phase, the above studies were similar to our results 
that the enhanced CT and unenhanced CT radiomics can better differentiating the dif-
ferent stages of thymoma, the enrolled thymomas were confirmed by Masaoka clinical 
stage and WHO histologic classification. In our study, only AMC distinguished from 
type B1 and B2 thymomas was enrolled to research, because most of type B3 thymic 
carcinomas can easily be distinguished from cysts preoperatively by CT manifestations. 
Otherwise, type B1 and B2 thymomas often have a complete capsule even on enhanced 
CT imaging, making it difficult to distinguish them from AMC. Through this study, the 
AUCs of combined model distinguishing AMC distinguished from type B1 and B2 thy-
momas in enhanced and unenhanced CT were all greater than 0.9 in training and test 
datasets, the sensitivity and specificity were also greater than 0.8. More sample sizes and 
multi-center external data will be included to further validate our results.

The seven feature parameters selected in this study reflected the distribution of the 
image grey value, texture features and spatial differences of VOI [28–30]. The feature 
parameters extracted from the unenhanced phase were the Quantile0.025 and VoxelVal-
ueSum of the histogram texture, the feature parameters extracted from the enhanced 
phase were the RMS, VoxelValueSum of histogram texture and SurfaceVolumeRa-
tio of formfactor texture. The feature parameters extracted from the unenhanced and 
enhanced phases both included the VoxelValueSum, also indicating that the tumour size 
had important contributions for differentiating between AMC and thymomas. The coef-
ficient SurfaceVolumeRatio extracted from the enhanced phase was −  0.951 and was 
negatively correlated with the proportion of thymoma diagnosed, thus indicating a more 
subglobular mediastinal lesion and a greater likelihood of a thymoma diagnosis, which 
was consistent with a radiologist’s diagnosis by routine imaging [31]. GLCM is defined 
by the joint probability density of pixels at different positions, reflecting comprehensive 
information about the direction and amplitude of the imaging grey distribution, mainly 
reflecting the influence of pixels on spatial dependence and the relationship with the sur-
rounding environment. The feature parameters extracted from the unenhanced phase 
were GLCMEntropy_angel0_offset1 and HaralickCorrelation_AllDirection_offset1_SD 
of GLCM texture, which indicated the heterogeneity of the lesion and degrees of com-
plexity and similarity of the greyscale distribution; this features reflect the degree of the 
difference of the internal details of the lesion from different aspects, the critical factor to 
distinguish between AMC and thymomas.

Our study still had several limitations. First, the patients were collected from a single 
institution retrospectively and the number of patients included in our study was also 
small, the statistical results reflected in our results may be limited, further larger sample 
size and multi-center are needed to test the proposed model. Second, we cannot explain 
the selected feature results to clinicians and patients reasonably.
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Conclusion
In summary, the combined model based on enhanced CT and clinical factors as a non-
invasive biomarker may provide a potential tool to facilitate the differential diagnosis of 
anterior mediastinal cysts and type B1 and B2 thymomas. With further clinical research, 
a radscore model may provide complementary diagnostic information and help to avoid 
unnecessary surgical resection for patients with anterior mediastinal cysts.

Methods
Subjects

This retrospectively study was approved by the ethics committee of the hospital, and the 
requirement for informed consent was waived.

188 patients with AMC or type B1 and B2 thymomas confirmed by pathology in the 
department of thoracic oncology at our hospital from January 2010 to December 2018 
were collected. The inclusion criteria were as follows: (1) complete routine unenhanced 
and enhanced chest CT images; (2) round and uniformly dense lesions without infil-
tration of surrounding tissues. (3) All included AMC misdiagnosed as thymomas and 
underwent resection. Patients with incomplete CT images were excluded. Finally, 188 
patients were included in the study, 84 males and 104 females, mean aged 52 (19–70) 
years.

Baseline clinical features were derived from our medical records, including age, sex, 
primary site (left or right), lesion size, unenhanced CT value, enhanced CT value and 
change of CT value (enhanced CT value minus unenhanced CT value).

Examination methods

Unenhanced and 1-phase enhanced chest CTs were performed using a Siemens Defi-
nition Flash 64 row. The scanning sequences were the following parameters: tube volt-
age 120 kV, tube current 250 mAs, 5-mm section collimation, field of view, 300 mm, 
matrix, 512 × 512, pixel size, 0.68 × 0.68 mm. 38-s delay scan was for enhanced phase 
CT scan after the administration of 100 to 120 mL of 300 mg/mL iodinated contrast 
material (Loversol Injection; Liebel-Flarsheim Canada Inc.) at a 3-mL/s injection rate 
with a pump injector. All patients were scanned with the same machine using identical 
scanning parameters to ensure the same imaging parameters.

VOI segmentation and radiomics feature extraction

The chest CT images were obtained from the Picture Archiving and Communication 
Systems (PACS) database. For both the unenhanced phase and enhanced phase CT 

Fig. 6  Lesion segmentation. a CT images were acquired first; b radiologists manually draw a region 
slice-by-slice that encloses the contour of lesion; c lesion segmentation in 3D-VOI



Page 11 of 14Liu et al. BioMed Eng OnLine           (2020) 19:89 	

images of the mediastinal window, a 3D volume of interest (VOI) manual segmenta-
tion was performed using ITK-SNAP software (Version3.4.0, http://www.itksn​ap.org/) 
(Fig. 6). When multiple tumours were present, the largest diameter tumour was used to 
analyse.

We randomly chose 60 unenhanced and enhanced CT images for intraclass correlation 
coefficient (ICC). The segmentation was performed independently by two experienced 
radiologists. Intra-observer ICC was computed by comparing two extractions of reader 
A (10 years of experience in chest CT). Inter-observer ICC was computed by comparing 
reader A and reader B (15 years of experience in chest CT). When the ICC was greater 
than 0.75, it was considered good agreement, and the remaining 128 image segmenta-
tion was performed by reader A. We then obtained two feature sets (feature set 1 of 188 
overall patients were extracted by reader A and feature set 2 of 60 randomly images by 
reader B). The feature set 1 was used to perform the model training and feature set 2 was 
used to test the robustness and reproducibility of features from set 1.

Image processing was applied before feature extraction, including image resample to 
1 × 1 × 1 mm3 voxel size and image grey normalization to uniform greyscale of 0–255. 
A total number of 180 image features were extracted for each patient from the enhanced 
and unenhanced CT images based on VOI by AK software (Artificial Intelligence Kit 
V3.0.0.R; GE Healthcare). The feature set included histogram features (number = 42), 
grey level co-occurrence matrix (GLCM) features (number = 58), grey-level run-length 
matrix (RLM) features (number = 60), formfactor features (number = 9) and grey-level 
size-zone matrix (GLZSM) features (number = 11) [32]. These features could character-
ize intratumour heterogeneity, may contain the underlying genotypes and protein struc-
tures [33, 34].

Feature selection and radiomics signature construction

To eliminate the differences in the value scales of extraction features, feature normaliza-
tion was performed before feature selection, each feature for all patients was normalized 
with Z scores subtracting the mean value and divided by standard deviation [35].

All the patients were randomly divided into the training (n = 130) and test (n = 58) 
datasets at a ratio of 7:3 [36]. The feature selection and radiomics signature construction 
was performed in the training dataset. Four steps were used to feature selection. First, 
the ICC was used to select the robustness and reproducibility features to reduce the 
manual segmentation among different radiologists [37]. ICC greater than 0.75 indicated 
a high correlation according to the thumb rule [38]. Second, univariate logistic regres-
sion was used to select the independent risk features with P < 0.05. Third, correlation 
analysis was conducted on any two features, when the correlation coefficient was greater 
than 0.9, excluding one of them. The final step method was least absolute shrinkage and 
selection operator (LASSO) [39] to further select the most useful features by penalty 
parameter tuning λ, we chose the optimal λ based on the minimum criteria according to 
tenfold cross-validation. This method was widely used for the radiomics analysis of high-
dimensional features but small medical images.

http://www.itksnap.org/
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The selected features were used to construct the radscore model. A radiomics signa-
ture (radscore) was then calculated for each patient via a linear combination of selected 
features that was weighted by their respective coefficients.

Construction and validation of combined model

Univariate logistic regression was used for seven clinical features in the training data-
sets, including gender, age, primary site, lesion size, unenhanced CT value, enhanced 
CT value and change of CT value, to select independent clinical predictors. Multivari-
able logistic regression analysis combining above independent clinical risk factors and 
radscore was applied to develop combined model for the differential diagnosis between 
AMC and type B1 and B2 thymomas [40]. To detect the multi-collinearity between vari-
ables in the combined model, the variance inflation factor (VIF) was used to perform the 
collinearity diagnosis with the VIFs > 10 indicating a severity collinearity [41].

The discrimination and calibration curve were used to evaluate the performances of 
the clinical models, radscore models and combined models (unenhanced and enhanced 
CT) in the training and test datasets. The discrimination performance was accessed by 
receiver operating characteristic (ROC) curve and area under the curve (AUC), accu-
racy, sensitivity and specificity. To estimate the predict error, we further tested the pro-
posed model of enhanced CT using a 1000-iteration bootstrap analysis in both datasets 
of enhanced CT. For each repetition, a random subset of 50% patients from training or 
test was selected and the corresponding AUC was calculated [42]. Furthermore, nomo-
gram of the combined model of enhanced CT was constructed. The calibration curve 
was used to detect the consistency between the predicted and actual AMC probability, 
which was quantitatively evaluated by Hosmer–Lemeshow test indicating the goodness 
of model fit when P > 0.05 [43].

Statistical analysis

All statistical analysis was executed by R software (version 3.0.1; http://www.Rproj​ect.
org). Univariate analysis for clinical features was performed using independent sample 
t test or the Mann–Whitney U for continues variable and Chi-squared test for categori-
cal variable (sex, primary site). The statistical significance levels were all two-sided, with 
statistical significance set at 0.05 [44]. Multivariate logistic regression analysis was per-
formed using the “stats” package. Nomogram construction was performed using the 
“rms” package.
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