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Abstract 

Background: Neurofeedback aids volitional control of one’s own brain activity using 
non-invasive recordings of brain activity. The applications of neurofeedback include 
improvement of cognitive performance and treatment of various psychiatric and neu-
rological disorders. During real-time magnetoencephalography (rt-MEG), sensor-level 
or source-localized brain activity is measured and transformed into a visual feedback 
cue to the subject. Recent real-time fMRI (rt-fMRI) neurofeedback studies have used 
pattern recognition techniques to decode and train a brain state to link brain activities 
and cognitive behaviors. Here, we utilize the real-time decoding technique similar to 
ones employed in rt-fMRI to analyze time-varying rt-MEG signals.

Results: We developed a novel rt-MEG method, state-based neurofeedback (sb-NFB), 
to decode a time-varying brain state, a state signal, from which timings are extracted 
for neurofeedback training. The approach is entirely data-driven: it uses sensor-level 
oscillatory activity to find relevant features that best separate the targeted brain states. 
In a psychophysical task of spatial attention switching, we trained five young, healthy 
subjects using the sb-NFB method to decrease the time necessary for switch spatial 
attention from one visual hemifield to the other (referred to as switch time). Training 
resulted in a decrease in switch time with training. We saw that the activity targeted 
by the training involved proportional changes in alpha and beta-band oscillations, in 
sensors at the occipital and parietal regions. We also found that the state signal that 
encodes whether subjects attend to the left or right visual field effectively switches 
consistently with the task.

Conclusion: We demonstrated the use of the sb-NFB method when the subject learns 
to increase the speed of shifting covert spatial attention from one visual field to the 
other. The sb-NFB method can target timing features that would otherwise also include 
extraneous features such as visual detection and motor response in a simple reaction 
time task.
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Background
The term real-time neurofeedback (rt-NFB) refers to a collection of psychophysiological 
techniques employed to train individuals to control their own brain activity. This control 
occurs through self-regulation of behaviorally relevant functional networks and can be 
implemented to provide self-administered therapeutic interventions [1–6]. Two common 
non-invasive functional imaging modalities used in rt-NFB training are real-time electroen-
cephalography (rt-EEG) and real-time functional magnetic resonance imaging (rt-fMRI). A 
recent trend in the rt-fMRI studies is to use multivoxel pattern analysis (MVPA), a neuroim-
aging technique that decodes brain states (activation profiles that reflect behaviors relevant 
to a specific brain function) and provides feedback in real-time [7–11]. A disadvantage of rt-
fMRI is that it measures the slow hemodynamic response, indirectly related to the millisec-
ond-scale of the neurophysiological activity. Real-time magnetoencephalography (rt-MEG) 
has also been used in rt-NFB training. MEG has a spatial resolution of about 2 cm on the 
cortex and has millisecond temporal resolution, making it ideal for situations in which both 
spatial localization and temporal resolution are desired [12, 13].

In this paper we propose a novel rt-MEG neurofeedback training method, which we 
refer to as state-based neurofeedback (sb-NFB). This method derives a feedback cue 
from the recorded changes in brain state based on the output of a fully data-driven pipe-
line. Unlike previous neurofeedback methods, which target a behavioral feature specific 
to a specific brain activity pattern, here we use the changes in brain activity (different 
states) to target temporally defined behaviors, such as the speed of switching spatial 
attention. The sb-NFB method uses as input oscillatory activity captured by all the MEG 
sensors. Through using dimensionality reduction techniques, we weighed sensors and 
oscillatory bands to optimally separate the targeted cognitive states. We used linear sup-
port vector machines (SVMs) as the classification tool in MVPA analysis and decoded a 
cognitive state in real-time from the dataset after we performed dimensionality reduc-
tion. The “state” of sb-NFB is the aforementioned cognitive state, representing a behav-
ior, such as attending to a particular spatial location, or preparing to do an action, such 
as waiting for an auditory cue to press a button. The method we proposed consists of 
two components. First, the off-line component trains the decoding algorithms. Second, 
the on-line component applies these algorithms to obtain the time course of a brain state 
whose time course is then used to extract timing features relevant to the neurofeedback 
training protocol.

Results
We present data from five participants who underwent 6 days of rt-NFB training. The 
sb-NFB protocol was applied in MEG while participants performed the spatial atten-
tion switching task. A detailed description of the participants can be found in “Partici-
pants” section. The task is presented in “Experimental protocol” and “The feedback cue” 
sections. The details on data acquisition and preprocessing are described in “MEG data 
acquisition” section. The mathematical treatment of the problem is presented in “Real-
time calculation of time-varying brain state for feedback”, “The training component” and 
“Sampling from the training period” sections.

The results describe the outcome of the analyses performed for extracting key com-
ponents of the effects of sb-NFB training on “switch time”, that is the time required to 
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switch spatial attention from one hemifield to another. Specifically, we discuss how the 
target of NFB training (the switch time) changes during training (“Performance during 
NFB training” section), the components of the partial least squares (PLS) that are most 
strongly represented in the neurofeedback (“State-decoding performance” section), and 
how the spatial pattern changes in order to detect the switch time (“State-decoding per-
formance” section).

Performance during NFB training

In Fig. 1, we show the performance of the five subjects who participated in neurofeed-
back training. Note that even subject S4 who did not consistently improve did have a 
trend to reduce the switch time except on the last day.

State‑decoding performance

This section illustrates the sensor weighting components used in the switch time cal-
culation for the NFB cue. Here, the PLS regression computation is used to compute 
weights to determine attention location. We show the patterns of sensor-level data that 

Fig. 1 Switch time across the 6 days of sb-NFB training for each of NFB subjects S1 to S5 and the average 
over subjects. For each subject, average switch time is plotted for each day of training. The error bars 
represent 1 standard error above and below the mean across trials. The bottom right figure represents the 
average switch time across the 5 subjects on each day with error bars representing 1 standard error across 
subjects
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resulted in classifying the left and right attention state. The sb-NFB algorithm produced 
a set of orthogonal “components” consisting of weights on all 306 sensors in each of the 
frequency bands as described in “The training component” and “Sampling from the 
training period” sections (alpha, beta, and gamma). The gamma-band, due to its high 
frequency and thus volatility compared to lower frequencies of the alpha and beta bands, 
did not result in an informative classification information (less than 5% discrimination 
power in the first component).

The sensor weights were either positive or negative. The sign of sensor weights sug-
gests that the algorithm identified a pattern of activation where high power in the 
positively weighted sensors was correlated with low power in the negatively weighted 
sensors. We monitored the changes to these patterns over the course of training, to 
determine whether the pattern was maintained or strengthened with training. Figure 2 
shows the maps of the weights of the magnetometer channels in our MEG (see “MEG 
data acquisition” section) after PLS, prior to the SVM separation. The first three compo-
nents, which comprised 76% of the weights in the alpha and beta bands are illustrated.

In the first component, the alpha-band has strong power in the right hemisphere 
occipital sensors (yellow) anti-correlated with the right the hemisphere parietal and 

Fig. 2 Magnetometer sensor weighting across the sensor cap for the first three components resulting from 
the PLS regression. The color heatmaps show the weighting of magnetometer sensor measurements along 
the first three PLS dimensions used to classify visual attention directed to the left or right visual fields. Areas in 
blue indicate sensors (represented as black dots over those areas) that are higher in power when attending to 
the left visual field (LVF), whereas areas in red comprise sensors that are higher in power when attending to 
the right visual field (RVF)
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temporal sensors (blue). In the right hemisphere, when attention is allocated to the left 
visual hemifield, we see anti-correlation in the parietal and temporal sensors between 
the alpha and beta bands. Thus, we conjecture that the beta power is high when the 
alpha power is low, and that the strength of the alpha/beta ratio discriminates between 
attention to the left or the right visual hemifield. However, the Pearson correlation of the 
projection of this component onto the sensor data across training days did not reveal 
significant change over the course of training (ρ = − 0.203, p = 0.282).

In the second component, there was significant involvement of the occipital and pari-
etal sensors in the alpha-band. The alpha power in the left and right hemisphere sen-
sors was anti-correlated. There was a significant and correlated component of the alpha 
power in the frontal sensors straddling both hemispheres, suggesting that the fron-
toparietal and occipital-parietal sensors activation are related. The Pearson correlation 
showed a weak trend of decrease in the significance of the second component over the 
days of training (ρ = − 0.341, p = 0.065), suggesting that the occipital activation corre-
lated with the frontal activation, decreased with training.

In the third component, sensors activations in both the alpha and beta frequency 
bands were mostly prefrontal in both the left and the right hemispheres. However, some 
contribution of alpha power was also seen in occipital sensors. Pearson correlation did 
not show a significant correlation between the activations in the third component and 
the day of training (ρ = 0.173, p = 0.360). Taken together, these results suggest that the 
activation patterns between different cortical areas were necessary to best separate LVF 
and RVF.

State‑decoding performance

The sb-NFB method must detect the shift of attention within a single trial. In this task 
(described in detail in Appendix), the subject covertly switched attention from the left to 

Fig. 3 Decoded state signal. a Averaged state signal for trials with switch when initially attending to the right 
(red) and initially attending to the left (blue) visual field in S1. b Averaged state signal for trials with switch 
when initially attending to the right (red) and initially attending to the left (blue) visual field in S2. The x-axis 
denotes the time relative to the change in motion direction. Time zero denotes the time when the attention 
switch occurred. The y-axis denotes the distance from the separating hyperplane from the support vector 
machine in arbitrary units. The goal of the distance measure is to represent separability of where spatial 
attention is directed in one dimension (along the perpendicular to the separating hyperplane). Positive 
values indicate that covert attention is directed to the LVF and negative values indicate the covert attention is 
directed to the RVF. Horizontal dotted lines indicate 2 standard deviations above and below zero
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the right or from the right to the left visual field in 80% of trials. The mean and standard 
error of state signals related to attention shifts are shown in Fig. 3a, b for participants S1 
and S2, respectively, time-locked to the change in motion direction in the attended aper-
ture. The other 20% of trials had no switch of attention and therefore were not included 
in the data analysis.

Figure  3a, b reveals a noticeable delay from the cue to the action of completing the 
switch of attention between one visual hemifield to the other. We quantified the delay 
by finding the time between cue presentation and the time of crossover of the threshold 
line. For S1, the delay was 223 ms ± 79 ms, and for S2, the delay was 209 ms ± 133 ms.

Discussion
In this study, we propose a state-based neurofeedback (sb-NFB) method for rt-MEG 
neurofeedback training. The sb-NFB method decodes the timings related to brain state 
within single trials using oscillatory activity separated into frequency bands. The goal of 
this method is to train cognitive behaviors which cannot be directly measured through 
purely behavioral techniques. For example, here we measured the time to switch atten-
tion from one spatial location to another. If instead we measured the reaction time to 
press the button, that measure would indeed include the targeted switch time, but it 
would include as confounding factors the time involved in detecting the cue as well as 
the time to button press. Therefore, behavioral feedback training on reaction time may 
lead to improvement on how fast the subject detects the cue or how fast the subject 
presses the button instead of improving the speed of the spatial attention switch. The 
present method is entirely data-driven, that is it makes no assumptions on activation 
patterns related to the targeted brain states. The unique activation profile of each subject 
may be used as a basis for developing personalized neurofeedback training protocols.

This method is different from EEG-based neurofeedback, but employs frequency-
based techniques from this domain. EEG-based neurofeedback studies have dem-
onstrated that higher activity within specific frequency bands is associated with 
performance on a specific cognitive task. For example, Vernon et  al. [14] sought to 
evaluate NFB-derived performance on semantic working memory or attention. In three 
subject groups, performance on semantic memory and attention was examined prior to 
initiating NFB training. During NFB training, the first group was instructed to enhance 
theta (4–7 Hz) activity and simultaneously inhibit activity in delta (0–4 Hz) and alpha 
(8–12 Hz) bands. They found that NFB positively influenced performance on working 
memory, which is associated with the theta band [15–17]. The second NFB training 
group was instructed to enhance sensorimotor rhythm (SMR) activity (12–15 Hz), while 
simultaneously inhibiting theta (4–7 Hz) and beta (18–22 Hz) bands. These results sug-
gest that rt-NFB training positively influenced performance on sustained attention and 
memory.

A drawback of NFB based on standard clinical EEG (10–20 system) is that activa-
tion can only be localized to cortical regions at a lower spatial resolution [18, 19]. MEG 
has higher localization accuracy than typical EEG configurations, though localization 
accuracy is comparable between high density EEG and MEG [20]. Real-time functional 
magnetic resonance imaging (rt-fMRI) on the other hand can measure target activa-
tions localized to a millimeter scale anywhere across the brain volume [1, 4, 6, 21]. The 
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disadvantage of rt-fMRI compared to rt-MEG/EEG is that it cannot capture the dynamic 
activity discussed here, due to feedback at the time scale of seconds. Another drawback 
of EEG is that with a large number of electrodes there is a long preparation time in EEG 
compared to MEG [22].

A number of EEG- or MEG-based neurofeedback studies have targeted at attention 
or other cognitive functions. However, these studies did not include “dynamic” features, 
such as the speed at which the subject switches spatial attention, which is the goal of sb-
NFB. Instead, these studies focused on enhancing “static” features, such as alertness or 
lateralization of spatial attention. For example, Egner et al. [23, 24] used EEG to train the 
increase of the ratio of the sensorimotor rhythm (SMR) power to the beta rhythm power 
in healthy participants for the purpose of augmenting alertness. They differentiated 
between errors of omission, or mistakes due to perceptual error or misunderstanding, 
and errors of commission, or mistakes due to incorrect button presses and impulsive-
ness. The results showed that participants who trained successfully to increase this ratio 
had fewer errors of commission [23, 24]. Barnea and colleagues [25] trained the ratio of 
SMR power to theta rhythm in EEG on the performance of an attention network test 
[26]. They found that targeting different sensors led to changes in behavior related to 
alertness, spatial orienting, and executive control [25]. In MEG one study trained alpha-
band lateralization across occipital sensors and showed that it enhanced the subjects’ 
ability to modulate their alpha-band lateralization at will and that such modulation 
affected the ability to discriminate faces presented in the left or right visual field [12]. 
Using the Posner cueing task [27], another investigation trained the alpha modulation 
index (AMI, the normalized alpha-band power difference between attention to the left 
and right visual fields) over occipital sensors [13]. They reported that NFB training on 
the AMI affected attentional bias in the Posner Cueing task.

Using the SAST task we applied the sb-NFB method to train the time required for 
the spatial shift of covert spatial attention. The ability to quickly switch spatial attention 
is necessary for many everyday tasks. For example, in a volleyball game, players must 
switch attention between players and the ball. While driving a car, one needs to attend 
to and switch attention between the other cars on the road, stop-lights, bicycles, and 
pedestrians. At the beach, lifeguards must monitor numerous swimmers and switch spa-
tial attention between them to respond immediately to signs of drowning.

The study demonstrates an sb-NFB pipeline which targets temporally defined features. 
The neurofeedback training presented here showed decrease in switch time across sub-
jects. It is possible that with further training, saturation level would be reached, which 
would be more effective in characterizing the achievable improvement in sb-NFB train-
ing. A control for sb-NFB training was not implemented to compare against the decrease 
in switch time. After this proof-of-concept demonstration of sb-NFB we plan to run a 
new study with a new set of subjects, perhaps with a sham-NFB cue in MEG, or with a 
related behavioral cue, such as reaction-time. With the data presented here we were able 
to show that we could effectively measure and monitor the decrease in switch time over 
a number of training days in multiple subjects. This demonstrates the efficacy of this 
pipeline for monitoring and feeding back the switch time.
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Conclusion
In this paper, we showed that the state-based neurofeedback method (sb-NFB) could be 
used to decode and train on timing-related features. For the sb-NFB method to be an 
effective tool for studies of cognitive enhancements and to be useful in clinical appli-
cations, we need to demonstrate that the learned self-regulation is maintained after 
the end of the training period and that it transfers to situations where neurofeedback 
is not available. Furthermore, we will also investigate how subjects’ performance and 
changes in the patterns of cortical functional connectivity before and after training com-
pare between training with the sb-NFB methods versus behavioral training (perceptual 
learning).

Methods
Participants

Five individuals (4 female; M = 24.3 years, SD = 5.1 years) participated in this study. All 
participants were naïve to the purpose of the study and had not previously participated 
in a perceptual learning or an rt-NFB study. All had previous experience with psycho-
physical tasks. An essential inclusion criterion was that subjects were able to maintain 
stable fixation throughout an entire trial during the experimental task. This was evalu-
ated by the experimenter during a preliminary session where subjects were administered 
20 example trials before the start of the experiment. All participants were right-handed, 
had no known neurological or psychiatric disorders, had normal or corrected-to-nor-
mal vision, and were not red-green color blind. They gave written informed consent in 
accordance with the Declaration of Helsinki and the procedures and protocols approved 
by the local Ethics Committees on Human Research at Boston University and Massa-
chusetts Institute of Technology (MIT). Task examples were administered at Boston 
University. The neurofeedback training in MEG was conducted at the MIT McGovern 
Institute for Brain Research.

Experimental protocol

The purpose of the NFB training was to decrease the time that subjects required for 
switching spatial attention from one visual field to the other over multiple consecutive 
days of training in MEG. The stimulus shown schematically in Fig. 4 is described in detail 
in Appendix. Before the beginning of the experiment, participants were instructed to 
pay attention to either red dots or green dots. They were also asked that for the duration 
of each trial they maintained their fixation on the cross-hair white fixation mark pre-
sented at the center of the display. The stimulus began by simultaneously displaying in 
the right and left visual field, in two circular apertures two random-dot kinematograms 
(RDK) consisting of red and green dots. The center of each aperture was presented at 8 
degrees eccentricity from the central fixation mark. The red and green dot patterns were 
superimposed on each other and moved diagonally and orthogonally to each other. The 
superimposed patterns made attending to the aperture necessary to perceive a change in 
direction to the specified dot pattern. After 500–1000 ms from the beginning of the trial, 
a white arrow, pointing to the left or right, was superimposed onto the fixation mark, 
indicating which RDK (in the left or right visual field) to attend to. As soon as subjects 
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perceived the direction change of the attended dots, they had to switch attention to the 
aperture displayed in the non-attended (opposite) visual field (during the “switch” win-
dow). As soon as the arrow was displayed, a small disk of either a faint red or green color 
was superimposed on the RDK in the location to be switched to. Throughout the attend 
and switch windows the disc briefly changed color (e.g., from red to green) at random 
times and was displayed at random locations within that aperture. The participants’ task 
was to respond as soon as possible, via a button box press with the right hand, to the 
color of the disk after they have shifted attention to that visual field. Of the total 80 trials 
in a block, in 16 (catch trials) the direction of the attended dots motion did not change, 
and thus in the absence of the cue to switch attention, the participants were instructed to 
continue attending to the motion until the end of the trial when the screen went blank.

Fig. 4 The NFB task. At the beginning of each trial, a fixation mark is shown at the center of the screen. 
Participants are asked to maintain fixation at the center of the screen (fixation cross/arrow) for the full 
duration of each trial. A feedback thermometer was displayed just above the fixation mark, with height 
(indicated in red) representing the speed of attention switch in the previous trial. On the left and right side 
of the screen were displayed two apertures equidistant from the fixation mark. Each aperture contained a 
random dot kinematogram (RDK) consisting of an equal percentage of red and green dots. In each aperture, 
the dots moved in diagonal planar motion with the green dots moving orthogonally to the red dots. During 
the “Init. Attend Period”, an arrow was superimposed on the fixation cross, which indicates the hemifield that 
the participant was required to attend. The arrow sign was obtained by adding two skewed lines on one 
horizontal end of the fixation cross, thus keeping the center of the fixation mark unchanged. The subjects 
continue to fixate the intersection point of the two perpendicular lines of the cross when the arrow was 
present and not move the eyes to the attended hemifield. At the same time, a disc superimposed on the RDK 
was displayed in the opposite aperture and was set to change location and color (red or green) at random 
time intervals throughout each trial. After a variable period of time, the RDK (red or green) in the attended 
aperture may change direction; if the attended dots change direction, the participant must switch attention 
to the aperture in the opposite hemifield and as quickly and as accurately as possible indicate by a button 
press the color of the disk (red or green). The two apertures are removed from the screen concurrently with 
the participant response (or if no response is entered after a delay of 300–500 ms) and the height of the 
thermometer is updated to reflect the switch time of the previously completed trial. In the case of catch trials 
(when the direction of motion in the attended RDK does not change) the height of the thermometer does 
not change
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The feedback cue

After either the participant responded or the trial ended, the feedback was presented as 
a vertical, red thermometer situated 2° above the fixation mark. The thermometer had a 
maximum height of 3°, a width of 1°, and luminance of 40 cd/m2. It was surrounded by 
a grey border of 0.1° thickness and luminance of 35 cd/m2. The height of the thermom-
eter was based on zt =

(

ρ − µρ

)/

σρ , the z-scored switch time, where µρ is the mean 
switch time and σρ is the standard deviation of switch times from the previous block of 
trials. The computation of ρ will be explained in “The training component” and “Sam-
pling from the training period” sections. A 0.5° deflection in the thermometer was set to 
correspond to �zt = 1 with zt = 0 at the middle so that the range of the thermometer, 
whose height was 3° was zt = −3 . . . 3.

MEG data acquisition

The magnetoencephalography (MEG) study was conducted at the Athinoula A. Marti-
nos Imaging Center at MIT’s McGovern Institute for Brain Research. Participants were 
seated in a chair under the MEG sensor array and faced the projection screen placed at 
a distance of 138 cm. The task stimuli, see “Experimental protocol” and “The feedback 
cue” sections, were projected onto a 44” back-projection screen through an aperture in 
the MEG chamber using a Panasonic DLP projector (Model #PT-D7500U). During the 
experiment, the room lighting was dimmed.

The MEG data were acquired with a 306-channel Neuromag Triux whole-head MEG 
system (Elekta-Neuromag, Finland), comprising 102 pairs of planar gradiometers and 
102 magnetometers. The system was housed in a three-layer magnetically shielded 
and sound-proof room (Ak3b, Vacuumschmelze GmbH, Hanau, Germany). In the rt-
NFB task discussed here, the MEG sensor data were segmented into trials, − 1000 … 
3000  ms relative to the onset of motion direction change in the attended aperture. 
The data from the catch trials, where the direction of motion did not change, were 
discarded from the analysis.

The data were transmitted between the acquisition workstation to the stimulus 
workstation using Fieldtrip real-time buffer [28]. Data were transmitted in 100  ms 
pieces and were assembled on the stimulus workstation. Subsequently, to attenuate 
environmental noise a signal-space projection (SSP) operator constructed using the 
singular value decomposition (SVD) of the empty room MEG data was applied to the 
data at the stimulus machine [29].

Real‑time calculation of time‑varying brain state for feedback

The aim of the sb-NFB method we propose is to train the temporal dynamics of the 
brain state, corresponding to the timing when a targeted cognitive behavior begins, 
ends, or changes. In this section, we describe the process of defining and detecting 
the brain states reflecting cognitive behaviors targeted by the training.

To decode a brain state, the decoding algorithm is trained on a set of MEG sen-
sor data. Therefore, sb-NFB requires a time period in which the brain state is 
known (referred to as the training window in Fig.  5). Following conventions of the 
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machine-learning literature, we refer to the time period in which the brain state 
change is measured, such as a shift of attention from one visual field to the other, as 
the development window. Due to the computational complexity (1530 dimensions) 
involved in training the decoder, the training is conducted between the testing blocks. 
This is the training component of the sb-NFB method. It results in a signal transfor-
mation that best separates the features of interest. The outcome of the signal trans-
formation is used in the state decoding component to transform raw MEG signal data 
into a state signal that represents the brain states targeted by the sb-NFB.

The training component

Using data from the training period, the signal transformation was trained as follows: 
(i) the dimensionality of the data was reduced by an unsupervised dimensionality 
reduction step, and (ii) the features that optimally separate the reduced dimensional-
ity dataset were extracted.

Sampling from the training period

In the algorithm, a fixed set of samples was selected from the training period and 
were labeled with the corresponding brain state. In our implementation, we randomly 
selected 3 samples during the training period for each trial. We used a 200 ms buffer 
after the cue was presented to ensure that the subject is provided sufficient time after 
seeing the cue to attend to the target side of the visual field to obtain samples.

Fig. 5 State-based neurofeedback (sb-NFB). During training (left), the training window from a block of 
trials (block i) is used to train the signal transformation, which is tested during the development window. 
The training component involved unsupervised dimensionality reduction using the data from the training 
window, extracting the time–frequency representation of these periods, and then learning features that best 
separate the states. During state decoding (right), each trial from the current block (block i + 1) is collected in 
real-time and transformed using the trained signal transformation from the previous block to obtain a state 
signal (bottom right plot). During testing, the features from the training are used to detect attention state 
over time, from which we extract the timing feature of interest. The timing feature targeted for training was 
extracted from the state signal for use as the NFB cue
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Dimensionality reduction

The dimensionality reduction is necessary due to the high dimensionality of the dataset (306 
sensors). The amount of training data required for the feature extraction is proportional to 
the dimensionality of the data. Reducing dimensionality implies that fewer trials are needed 
to train the signal transformation. We applied principal component analysis (PCA) to the 
raw MEG sensor measurements. PCA transforms multivariate data into a set of orthogonal-
ized components (“PCA space”) ordered by their contribution to the signal power.

To reduce the dimensionality of the m = 306 dimensional MEG data with T  time 
samples 

, we arrange the first orthogonal k PCA components as columns of a matrix Pk ∈ R
k×m . 

We then form the k × T  dimensional 

,where due the properties of the PCA the matrix Pk minimizes the ℓ2-norm reconstruc-
tion error between the projected data PkPT

k X and X ,X − PkP
T
k X

2 among all projections 
PkP

T
k  to k dimensional spaces. In Fig. 6, we show the explained variance as a function of 

the number of components. We chose k = 30 , which resulted in PkY  explaining over 
80% of the variance of X.

Frequency bands as features of interest

Brain activity oscillations at different frequency bands have been linked to specific func-
tions, such as attention and control mechanisms. The alpha-band (8–13 Hz) has been 
implicated in the inhibition of cortical regions and it has been shown to be sensitive to 
the attentional load [30–33]. The beta-band (13–30 Hz) is linked to top-down attention 
control and maintenance of function [34–36]. The gamma-band (> 30 Hz) is involved in 
a wide variety of conscious cognitive functions including sensory processing, attention, 
and executive control functions [35, 37, 38]. To extract the signals in these frequency 
bands we convolved Y (t) , the MEG sensor measurements in the training samples T, with 
complex Morlet wavelet ψ

(

t, fc
)

.

X = [x1, . . . , xT ] ∈ R
m×T

Y = PT
k X

Fig. 6 Amount of variance of data explained by a given number of PCA components
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 i. 

 where ψ
(

t, fc
)

 is defined as:
 ii. 

In the above formula, t is time,  fc is the center frequency, and σ is the bandwidth of the 
wavelet kernel. The four center frequencies are in the middle of the four frequency bands 
(8–13 Hz, 13–30 Hz, 30–60 Hz, and 60–90 Hz) of interest. Finally, Z is collapsed into a 
two-dimensional matrix Z ∈ R

120×T.

Partial least squares regression (PLS)

To identify the components that best separate the attentional states we applied partial 
least squares regression (PLS) to the wavelet filtered data (Z). PLS regression [39] is a 
method similar to PCA. PLS regression operates on labeled data ( y ), which, in the case 
of sb-NFB, is the targeted cognitive state for NFB training. The PLS algorithm is trained 
on labeled data from the training period of the previous block of trials. PLS algorithm 
can be represented as 

The resulting matrix W is used to project Z to a low 10-dimensional space ZPLS , which 
will then be used to train the support vector machine (SVM):

 iii. 

The state signals

Linear support vector machine (SVM) can be described as a separating hyperplane with 
binary solutions on both sides (i.e., solutions equal to + 1 or − 1) whose main objective 
is to find a hyperplane which would minimize margin error. Linear SVMs have been 
used in fMRI neurofeedback studies [40]. Generally, linear SVMs are implemented to 
decode a behavioral state from the activity in a collection of voxels. Using this method, 
we decoded the targeted brain state from the collection of low dimensional PLS compo-
nents. The linear SVM algorithm is trained using the PLS components during the “train-
ing” window. We used LibSVM [40] with a linear kernel and cost equal to one ( C = 1 ) to 

Z =
∣

∣Y (t) ∗ ψ
(

t̄, fc
)∣

∣ ∈ R
30×4×T , t ∈ T , fc ∈ R

ψ
(

t̄, fc
)

=
1

√
2πσ 2

e
− t2

2σ2 e−2iπ fct .

ZPLS = WTZ ∈ R
10×T
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compute the hyperplane fw,b : ZPLS → {±1}|ZPLS ∈ R
10 parametrized by w, b that best 

separated the attention to the left or right visual hemifields fields. The hyperplane fw,b is 
learned during the “training” window and then evaluated in the development window to 
evaluate performance. Finally, Platt calibration, which fits a logistic regression model to 
the SVM scores, was used to transform the outputs of the SVM model into a probabilis-
tic quantity, which we will call the state signal:ρ(fw,b = 1|ZPLS) = 1

1+exp (Afw,b(ZPLS)+B)

,where the parameters A and B are optimized using gradient descent to minimize the 
cross-entropy error [41].

The state decoding component

To obtain the state signal, during the testing phase, through the following steps:
Where the data-dependent P,W and fw,b were learned during the training phase and 

the data-independent wavelet kernels ψ
(

t, fc
)

 remain the same as above.
The signal transformation algorithm trained in the training component is run 

across the time course of the trial resulting in a time course which encodes the brain 
state, referred to as the state signal (ρ) . The state signal is normalized to a z-score 
zt =

(

ρ − µρ

)/

σρ , where µρ is the mean of the corresponding state signal and σρ is its 
standard deviation. We used zρ > 2 to indicate when the subject is in the targeted brain 
state.

For the feedback cue in switching spatial attention (SAST), we used a red thermom-
eter, described “Experimental protocol” and “The feedback cue” sections. The first block 
of trials was used to compute the initial set of switch times, and thus during the feedback 
thermometer was not presented. In all the following blocks of trials, the distribution of 
switch times from the previous block was used to compute the switch time in the cur-
rent block, see “Experimental protocol” and “The feedback cue” sections. The feedback 
bar was not updated for catch trials.
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Appendix
The stimulus of the NFB Task consisted of two random-dot kinematograms (RDK) com-
posed of 50% red and 50% green dots (density 2 dots/deg2; dot diameter 0.13°; speed 3°/s, 
luminance 50 cd/m2, background luminance 25 cd/m2) presented in two virtual circular 
apertures (6° in diameter) shown simultaneously in the LVF and RVF at equal eccen-
tricity (8°) from a cross-hair central fixation mark (0.5° in width and height, luminance 
85 cd/m2) displayed at the center of the screen. In both apertures, 90% of the dots, signal 
dots, moved in a consistent diagonal direction while the reminder dots (10%), noise dots, 
moved in random directions within the apertures. The red and green signal dots moved 
orthogonally to each other. In this study, subjects were asked to attend to the motion of 
the green dots.

The white fixation mark was presented constantly throughout a trial and participants 
were instructed to maintain fixation on it throughout the duration of the trial. After 
500–1000 ms, an arrow (0.5° in width and height; luminance 85 cd/m2) was superim-
posed on the fixation cross, pointing either to the left or right hemifield. The direction 
of the arrow indicated the aperture to be attended to throughout the “attend” window. 
Concomitant with the arrow presentation, a red or green disc (1° in diameter) was shown 
superimposed on the RDK pattern in the non-attended aperture. The disc appeared at 
10% opacity to reduce saliency, and thus not capture attention. The disc’s location within 
the aperture and its color (red or green) changed at random times (ranging between 300 
and 600 ms) throughout the attend and switch windows of the stimulus display.
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In the attended aperture, participants were instructed to pay attention to the direc-
tion of motion of the green dots. As soon as they perceived a change in direction of the 
attended dots, they had to switch attention to the aperture in the opposite visual field 
(“switch” window). In 20% of the trials (catch trials), there was no change of direction of 
the attended dots. In these trials, participants were instructed to not switch their atten-
tion and wait until the dots disappeared and the trial ended (1500–3000 ms). The catch 
trials served to control whether participants switched attention even when no cue to 
switch was present. In the trials that required a switch of attention to the non-attended 
aperture, participants were instructed to as soon as possible to the color of the disc after 
switching (e.g., the responses were entered with the right hand by pressing a designated 
button on the MEG compatible button box; “press 1 if the disc is red and 2 if the disc is 
green”; “response” window).
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