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Introduction
The development of a device capable to restore full motor functionalities of the human 
hand in amputees is still a challenge [1–3]. Despite the existence of several dexterous 
and biomimetic prostheses, their control is still un-natural, un-intuitive and limited to 
few degrees of freedom [1].

A fascinating solution would be interfacing directly with the peripheral nerves [3, 4]. 
Indeed, the neural pathways between the brain and the remnant peripheral nerves have 
been proven to be anatomically [5] and functionally [6] intact, even many years after 
amputation.
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Recently, intraneural and epineural electrodes [7–10] have been used for stimulat-
ing the peripheral nerves of patients with amputation in order to restore the sense of 
touch during the control of prostheses. Conversely, the use of these interfaces for a 
natural and physiological control of the prosthesis is still very preliminary.

In particular, Dhillon and Horch [11] recorded, through LIFE electrodes implanted 
in the median and ulnar nerves of subjects with amputation, signals that were corre-
lated with the intended movement of the users. In similar experimental conditions, 
Micera et al. [12, 13] proved the feasibility of the decoding of different grasps from 
nerve recordings. Wendelken et al. [7], finally, developed a proportional control of 
the fingers position of a virtual prosthesis, using the movement intention decoded 
through a Kalman filter from the motor neural activity acquired by Utah arrays 
implanted in two transradial amputees.

All these works, though, did not strictly characterize the performance of the pros-
thesis controlled with such signals, or the signals themselves. In fact, the relation-
ship between the intended grasping force, or the movement velocity of the fingers, 
and peripheral nerve recordings has not been yet characterized. This would allow 
the development of decoding strategies leading to an intuitive and effortless prosthe-
sis control [1]. Another limitation in developing a robust (in terms of cross-subject 
reliability) method to drive a robotic hand by neural signals is the lack of a data-
set including recordings of peripheral nerve electrical activity correlated to differ-
ent hand grasp/finger movements [3]. Creating such dataset from healthy humans, 
whose validity could be extended also to the case of amputees, would boost efficient 
neuroprosthetic developments.

Microneurography is a minimally invasive technique that records nerve signals 
through needles inserted percutaneously. It has been extensively used to charac-
terize afferent signals [14]. We hypothesized that it could be also a valuable tool to 
investigate motoneuron behavior, and to propose in the future novel decoding strat-
egies to employ in prosthesis control driven by nerve recordings acquired through 
implanted intraneural electrodes. Therefore, we performed ultrasound-guided 
microneurography [14–16] to record the putative firing activity of motoneurons, 
generated during voluntary finger movements.

This allowed us to gather information about the features of motor neural signals, 
and use them to decode the velocity and force of movements. Moreover, in order to 
assess the translatability of results obtained with chronically implanted intraneural 
electrodes to results achieved with microneurography, a hybrid computational elec-
tromagnetic-biophysics [17] model of recording of intraneural electrodes (TIMEs 
[18]) in the median nerve was developed and then used, to verify whether the fea-
tures of acute (microneurography) and chronic (implanted neural interface) record-
ing device are similar.

Finally, starting from the seminal works of Fuglevand and colleagues [19], whose 
modeling studies provided many insights about peripheral motor control [20–
23], we used a spiking neuron network model of the spinal circuits to evaluate the 
influence of the lack of sensory feedback (as in amputees) on the neural features 
used in the decoding procedure.
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Methods
The procedure applied to record from human median nerve was approved by the ethi-
cal committee of the Campus Bio-Medico University. All the experiments reported in 
this work were conducted in accordance with the approved guidelines and all the sub-
jects signed the informed consent. Six healthy volunteers (four males, two females) 
underwent the procedure.

Experimental procedure

Microneurography and nerve ultrasound

Each volunteer was comfortably positioned on a chair with the right arm placed on a 
support over a table. Then, a neurologist identified the median nerve site using nerve 
ultrasound imaging (the echograph was an Esaote MyLab 70XVG, equipped with a 
14–18  MHz probe) and guided the insertion of the microneurographic active elec-
trode (FHC UNP40GAS, diameter 250 μm, length 40 mm), through the skin above the 
elbow, into the nerve itself (Fig. 1a). The correct and final placement for the electrode 
was individuated when the microneurogram (MNG, i.e. the signal acquired through 
microneurography) satisfied two criteria:

1.	 Inclusion criterium: high correlation with active fingers’ movements executed by the 
participant (prerogative of efferent but also proprioceptive fibers)

2.	 Exclusion criterium: negligible activity when (a) a mechanical stimulus was applied 
over belly or tendons of the hand muscles innervated by the median nerve, (b) the 
fingers were passively moved, (c) a mechanical stimulus was applied on the hand skin.

These conditions exclude the acquisition from proprioceptive (2a–b), tactile (2c), 
and autonomic fibers (1) [16], which would produce a non-negligible signal, if their 
activity was present in the MNG. Another electrode, inserted percutaneously 2  cm 
away in the proximal direction, was used as reference. During the research of the best 
placement of the electrode for recording, the envelope of the microneurographic sig-
nal was showed in real-time while a thresholded version of the MNG was sent to a 
speaker. The differential microneurographic signal was referred to a ground repre-
sented by a metal strip placed over the biceps (Fig. 1a, left), amplified by a factor 105 
and filtered in the band 300–3000 Hz [14] by a GRASS p511.

Hand‑related tasks

Subjects were then asked to perform unloaded finger flexions/grasps at three differ-
ent velocities (17°, 26° and 47°/s) and grasps at four force levels (corresponding to 1, 
2, 4, and 6 kPa) over a pressure sensor (respectively isokinetic and isotonic task), three 
times each. Between two repetitions, subjects rested for 2 s. The force repetitions had 
a duration of 11 s while the velocity repetitions between 4 and 10 s (according to the 
velocity). The timing of the task was given by a graphical user interface (GUI), and 
the subjects were asked to follow it. Since our force and velocity trials lasted at most 
156  s = 12 repetitions of 11  s with 2  s pauses (this is for force tasks which had the 
highest duration), the protocol was most probably not under fatigue [20].
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The required movements and a sequence of pictures explaining both tasks are respec-
tively in Fig. 1b and Additional file 1: Table S1.

Acquisition of muscle activity

The activities of finger flexor, abductor/flexor/opponens pollicis, flexor pollicis longus, 
index and middle finger lombricals were recorded by means of superficial electromy-
ography (sEMG) simultaneously with microneurogram (Fig. 1c, d). These signals were 
recorded in a differential configuration with two Wet Ag/AgCl electrodes (SpesMedica) 
placed over the belly of the muscles and referred to the aforementioned metal strip. 
These signals were amplified by a factor 104 and filtered in the band 100–1000 Hz by a 

Fig. 1  Efferent microneurography experimental setup. a The microneurography electrodes inserted by the 
neurologist (left) and the echographic image of the active one (right). b Example of execution of isotonic and 
isokinetic tasks. c, d The sEMG and MNG recorded from Subj. 3 (left, cylindrical grasp, isotonic task) and Subj. 1 
(right, middle finger interphalangeal joint flexion, isokinetic task): normalized sEMG of flexor digitorum (red), 
abductor/flexor/opponens pollicis (orange), flexor pollicis longus (violet), second and third finger lombricals 
(green), normalized MNG (blue). e Normalized envelope of the neural and muscular activities during a 
cylindrical grasp (isotonic task) and a middle finger interphalangeal joint flexion (isokinetic task). Data are 
extracted from Subject 1. f Correlation between microneurographic and muscular recordings, over all the 
participants and tasks. Data are expressed as mean ± SEM. Number of repetitions is equal to 73, 58, 61, 60, 76, 
57 respectively for Subj. 1, Subj. 2, …, Subj. 6, extracted from isotonic and isokinetic tasks
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GRASS qp511. The most correlated muscle sEMG of every subject had a Pearson’s index 
on average of 0.6 with the microneurogram (p < 0.01, Fig. 1e, f ).

Data recording

Microneurography and sEMG signals were recorded at a sampling rate of 10,000  Hz 
with a 16-bits data acquisition board (National Instruments PCI-6251), installed on a 
personal computer (PC) running a custom program written in Labview 2012 that han-
dled the recording and the real-time processing assisting the neurologist in seeking the 
fibers. The pressure sensor was custom-made [24] and constituted by an airtight sphere-
catheter system connected to a Programmable Interface Controller at its turn connected 
to the PC by a serial port. The recording of its data was performed at a sampling rate of 
10 Hz and controlled by the aforementioned custom program. The sensor readout was 
shown in the GUI.

Off‑line data characterization

Spike sorting

The microneurographic recordings were first denoised with a non-causal third order 
Butterworth pass-band filter (700–2000  Hz) [25]. Then, artifacts were identified as 
events of the rectified voltage potential exceeding a manually tuned threshold. A blank-
ing window of 4 ms was used around these occurrences. In order to extract single cell 
activities, the MNG waveforms were wavelet denoised and then sorted as in Citi et al. 
[26]. Neuron firing rate (FR) was estimated by an 100 ms-width-boxcar kernel smooth-
ing [27], which basically counts the number of spikes occurred in a 100 ms window and 
normalizes it on the time interval. We identified 81 neurons from the neural recordings 
of all the subjects. Examples of raster plots computed after spike sorting, (from Subj. 3 
and Subj. 1) along with the spike waveforms (from Subj. 3) are displayed in Fig. 2.

a b

c

Fig. 2  Spike sorting. a, b Raster plot showing the occurrence of the sorted spikes from the neural activity in 
Fig. 1c, d. c Examples of the waveforms of the identified spikes for Subj. 3, shown in a 
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Motoneurons behavioral analysis

The movement/grasp repetitions in which (i) the subjects had executed the task cor-
rectly and (ii) the MNG presented a SNR higher than 1 were included, in the motoneu-
rons behavioral analysis.

The SNR was defined as it follows:

where ACT​i and RESTi are intervals of 100 ms in which the signal is fragmented, and N 
is the number of intervals. An isotonic task repetition was considered well performed if 
the subject had applied the requested pressure over the grasped sensor (10% tolerance). 
Besides, we counted an isokinetic task repetition as successfully concluded when the 
subject’s movement followed the timing imposed by the GUI (10% tolerance). This was 
checked by comparing the occurrence of the maximum of the forearm muscles sEMG 
and the moment in which the GUI asked for a velocity change (i.e. transition between 
flexion and extension of the movement/grasp). For the isotonic and isokinetic task anal-
ysis, we considered for each subject, only the sEMG of the muscle that was the most 
correlated with the MNG (highest Pearson’s index) in both the exercises. The most cor-
related muscle for each subject can be seen in Fig. 1f.

Decoding

We tested if velocity and force of finger voluntary movements could be predicted, by 
means of an algorithm that relied on the use of the features of motoneuron discharge, we 
extracted from our neural recordings.

In the continuation we explain how this algorithm was developed. Force and velocity 
levels were first identified as “rest” or “activity” according to two features (Feat. 2 and 3, 
Table 1) defined on the trespassing of two thresholds on the signal (one for rest and one 
for activity). In the “activity” state, our classifier predicted the activity level (from 1 to 4 
in the case of force, from 1 to 3 in the case of velocity) according to the least Euclidean 
distance between a feature, i.e. Feat 1, and Feat 1 centroids of the different classes. Such 
centroids were computed on a training set folded by a leave-one-out strategy. Feat. 1 was 

(1)SNR =

∑N
i=1 max(ACTi)

N
∑N

i=1 max(RESTi)

N

;

Table 1  Features set exploited in the cases of velocity and force custom decoder

The choice of the exponential of the AFR in the case of force decoding was driven by the fact that the FR-force relation 
(Eq. 9) approximates a logarithmic profile. ti represents the time instant. AFR = (FRs average). tmin represents the minimum 
firing rate identified before subjects’ activity. Tu1, Tl1 are thresholds chosen to identify the intervals in which the neuronal 
activity is high (as during the execution of motions) or low (as during rest). In particular they are used by the decoder to 
identify the time points in which giving a prediction output

Forces Velocities

Feature 1 Feat1(ti) = −1+ 1

(AFR(ti )−1.5)2
Feat1(ti) =

AFR(ti )−AFR(tmin)
tmin−ti

Feature 2
{

1,∧Feat1(ti) ≥ Tu1

0,∧Feat1(ti) < Tu1

{

1,∧Feat1(ti) ≥ Tu1

0,∧Feat1(ti) < Tu1

Feature 3
{

1,∧Feat1(ti) ≤ Tl1

0,∧Feat1(ti) > Tl1

{

1,∧Feat1(ti) ≤ Tl1

0,∧Feat1(ti) > Tl1
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defined specifically for each decoding problem. In particular, a function of the motoneu-
ron average firing rate (AFR), approximating the invers of Eq. 9 (“Results”), was used to 
detect forces (Table 1). The slope of AFR (“Results”) was instead used to detect veloci-
ties (Table 1). These features were introduced to create a linear relationship between the 
motoneuron discharge and the parameters of movement, as a consequence of our obser-
vations of cell behaviors (“Results”). Features and classifier output were computed every 
1 ms.

Successively, the results obtained with the decoding strategy proposed in this study for 
velocity and force recognition were compared with techniques already proposed in the 
literature, as it was done in [26]. In particular, first, we compared the recognition perfor-
mance of our classifier with a linear discriminant analysis (LDA), by feeding both with 
our features (defined above). Then, the LDA classification was applied on two different 
sets of features, derived respectively by single-unit or multi-unit activities, as in [26]. The 
single-unit features consist in the firing rates of the sorted neurons, while the multi-unit 
features consist in the envelope of the MNG signal, and in the AFR. The LDA classifier 
was trained by using a leave-one-out strategy.

To test all the afore mentioned decoders, the movement/grasp in which the MNG pre-
sented the highest SNR average among repetitions (computed as described in Motoneu-
rons behavioral analysis) was selected.

The classification accuracy was computed as follows: 

Model of the reflex pathway

Motoneuron activity is peripherally modulated by proprioceptive feedback [28]. To 
assess the transferability of our findings to amputees (i.e. to subjects without proprio-
ceptive feedback), we analyzed to which extent our characterization of motoneuron 
activity holds in absence of proprioceptive feedbacks during voluntary hand movements, 
by means of a simplified spiking neuron model of a local neuromuscular circuit (Fig. 3). 
The model was calibrated on our experimental findings (“Results”).

Single motoneuron dynamics

We simulated neural activities as an Izhikevich regular spiking neuron model [29] (see 
Additional file  1: Methods for details). We simulated five neurons for simplicity, but 
results are compatible with experimental observations for a number of neurons ranging 
from two to twenty.

Generation of muscle force

Starting from previous modeling studies [19–22], in our model each spike elicited a 
reaction F in the muscle with a bi-exponential time course:

(2)
∑

classes
number of correctly predicted events

number of events

number of classes

(3)Fspike(t) = Aspike

∑

t∗<t

(

et∗−t/τ2 − et∗−t/τ1
)
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where t* are the spike times occurred before t, and τ1 and τ2 are chosen so to have a rise 
time of 60 ms and an half-relaxation time of 80 ms [22]. The amplitude Aspike is not fixed 
but is larger for spikes fired by stronger motor units. More in detail, since motor units 
are recruited in order of contractile strength [30, 31], it results that if they are n at time 
t and then become n + m at time t + 1, each of the new m active units elicits a stronger 
force than the strongest of the “old” n active ones. In other words, force grows superlin-
early with the number of fired spikes, i.e. with the overall firing rate. Starting from these 
considerations, the superlinear relationship between the amplitude of the global force 
exerted by the muscles and the overall motoneuron firing rate was defined as:

Inputs

The input to each neuron was the same [32] and constituted by the sum of three compo-
nents: the central drive (Istim), the feedback current (Ifeedback) and the noise.

The noise was generated from a Poisson distribution with the same time varying mean for 
all the cells [33].

We hypothesized the central nervous system (CNS) input to motoneurons to be propor-
tional to the desired muscle force as in previous literature [19, 22].

In the case of the isotonic task, Istim was given by a square wave with a 4 s period with 
proportional amplitude to the desired force. In the case of the isokinetic task the input was 
given by a sawtooth wave. This drive was determined as it follows. In a basic approximation, 
when the muscle stretches of a length x, the force it exerts respects Hooke’s law ( F = −kx ), 
hence, in order to achieve a constant velocity, the same force must be applied in the oppo-
site direction. Since input and generated force correlate linearly [19, 22], for each constant 
value of velocity v we have:

(4)Ftot(t) = Atot

(

∑

t∗<t

5
∑

i=1

FRi

(

t∗
)

(

e(t
∗
−t)/τ2 − e(t

∗
−t)/τ1

)

)k

(5)Istim(t) = αF(t) = αkx(t) = βvt, onset < t < x/v;

Noise 1

Noise 4

Noise 2

Noise 3

Noise 5

Force

Equa�on (10)

Equa�on (7)
Total 

ring rate

Feedback

Common 
drive

Central 
Input

VelocityEqua�on (11)

Fig. 3  Scheme of the network implemented in the computational model. Illustrative representation of the 
network model that simulates an ensemble of five motoneurons as slowly adapting Izhikevich neurons. The 
input to each of them is given by the sum of three components: a central input proportional to the desired 
force with the force feedback (Eq. 7), the velocity feedback (Eq. 8), and a neuron-specific Poisson noise. The 
total firing rate generates the force (Eq. 4), which in turn leads to the feedback and to the movement and its 
associated feedback
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where x is the length of the path which is the same for all speeds. As a consequence, the 
peak input is the same for all speeds:

Finally, the stimulus current was convoluted with a 20 ms Gaussian window to avoid non-
physiological, excessively sharp transitions.

We implemented two types of feedbacks acting on motoneuron activity: a movement 
feedback (MF) dependent on fingers movement and a force feedback (FF) depending on 
muscle force, to emulate those brought to motoneurons by Ia, II, Ib afferent fibers [34, 35]. 
Coherently with previous literature we set MF excitatory and FF inhibitory [28].

The relationship between force and feedback was defined starting from [35]:

where Fcoeff is the feedback amplitude, � is the delay, W  is the integration window and α 
a memory factor.

The movement feedback depended on velocity and position [34] as in the following 
equation:

where XVcoeff  represents the feedback amplitude, v(t) and x(t) are velocity and position 
respectively, corresponding to experimental measurements.

We hypothesized that movement feedbacks were negligible during the isotonic task, 
being the fingers quasi-steady. The influence of tactile fibers in Ifeedback was null since 
in motion planning exercises their activity is integrated by supraspinal areas [36] (i.e. 
in Istim). Indeed, two sources of tactile feedback are provided during object grasps [36]: 
(i) tangential feedback, which is used as information about slip of the object and (ii) 
orthogonal feedback, which provides information about the amount of force exerted on 
the object. (i) Is involved in peripheral neural networks while (ii) acts at brain level. We 
hypothesized that (i) was null in our experiment since no slips were present and that the 
contribution of (ii) could be included in the central drive.

Calibration for both force (see above) and input parameters is reported in Additional 
file 1: Methods.

Hybrid FEM‑NEURON model of the human median nerve recording

In order to transfer the observations from microneurography data to the chronic con-
dition, we compared the microneurography data with the data recorded by long-term 
implantable devices, as TIME electrodes, by exploiting a computational model. A hybrid 
Finite Element Method (FEM)-NEURON model of the human median nerve was devel-
oped to compare the recordings obtained by microneurography and TIME electrodes 
(Fig. 4). The anatomical structures were modeled according to histological data [37]. The 

(6)max(Istim) = max(βvt) =
βvx

v
= βx;

(7)IFF (t +�) = Fcoeff

t ′=W
∑

t ′=0

(

1+ α

(

t ′

W
−

1

2

))

∗ Ftot
(

t − t ′
)

;

(8)IMF (t +�) = XVcoeff

t ′=W
∑

t ′=0

(

1+ α

(

t ′

W
−

1

2

))

∗ v
(

t − t ′
)

∗ x
(

t − t ′
)

;
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optimal boundary dimensions (the bound is shaped as a cylinder) were estimated using 
convergence calculation [17] and applied to the model (140 mm of diameter and 90 mm 
of height). Extruded anatomies formed three tissues: epineurium, perineurium and 
endoneurium. The values of electrical conductivity inside of these tissues were based on 
findings from multiple studies [17, 38, 39]. The extraneural environment was assumed to 
be 1% saline at 38 °C [39]. The nerve was implanted with a microneurographic needle or 
a TIME electrode. The tungsten microelectrode was replicated as a cylinder (40 mm of 
length) with a cone-like ending (250 μm of diameter). The TIME electrode was built as a 
rectangular structure (800 μm of length, 200 μm of width and 24 μm of thickness) where 
four circled active sites (80 μm of radius) were placed on each side of the structure.

The nerve was randomly populated with myelinated fibers whose activity was individ-
ually controlled by a spike train based on a Poisson process with a range of mean firing 
rate of 2.5–25 Hz [36].

Neurons were modeled on the base of McIntyre–Richardson–Grill fiber model 
[40]. The distribution of fiber diameters was generated according to data published 
by Vallbo et al. [41], and Johansson et al. [36] on sensory fascicles. The model of a 
sensory fascicle was easier to validate than a motor one, since the spiking activity 
of a population of mechanoreceptors in response to a specific picking task is well 
known [36]. Also, simulating recordings from sensory or motor fibers wouldn’t have 
affected the outcome of the present study, since the scope was to compare in the 
same recording condition, two different recording devices. Since the precise position 

Fig. 4  Hybrid FEM-NEURON model development. The steps executed to develop the model are summarized: 
nerve anatomy is segmented, and then extruded to obtain the 3D realistic model of the nerve. The electrodes 
are merged inside, and the inverse model computed. In NEURON, the activities of the involved fibers are 
computed and then merged together with FEM-solutions, to reconstruct the activity, which would be 
captured from the metal microelectrode
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of fibers in a nerve fascicle cannot be determined, we clustered the axons in two 
subgroups (rapidly-adapting and slowly-adapting fibers as the skin mechanorecep-
tors) and we simulated four different placements of them [37].

The single fiber contribution on the recorded signal was calculated by averaging 
the spike shape over the surface of the recording electrode active sites. These sin-
gle spike shapes were then used to recreate the spike train of the cell according to 
its specific activity (Additional file 1). The entire population signal was finally con-
structed by summing every independent spike train.

This whole geometry was built, meshed and solved in COMSOL 5.0.2 Multiphysics. 
The validation of the model is described in Additional file 1: Methods and Fig. S1.

In order to compare data acquired by means of microneurography and TIME elec-
trodes, 10 simulations per electrode, per value of spike train mean firing rate, were 
run. 10 values of mean firing rate were selected in the interval 2.5–25 Hz sampled 
with a step of 2.5 Hz.

Data analysis and statistics

Data were exported and analyzed in Matlab R2014b (Natick USA). All data were 
reported as mean values ± SD or SEM when indicated. The normality of the data distri-
butions was verified by means of a Lilliefors test, while their homoscedasticity by means 
of a Bartlett test. ANOVA or Kruskal–Wallis tests were executed on the distributions 
according to the results of those tests (i.e. ANOVA in case of normal and homoscedastic 
data). Two-tailed tests were run unless alternatively specified in the text. Tukey–Kramer 
correction was applied in the case of multiple-class comparisons. The number of sam-
ples and the statistical tests used for all the presented results are reported in the captions 
of figures. Post-hoc power analyses were conducted by means of G*Power 3.1 tool, on 
the experimental data samples. We verified that for all the statistical tests we performed, 
a power higher than 90% was determined with the sample sizes we collected. The size of 
the simulated data samples was determined a priori and set to a value whose increase 
did not change the results of the statistical tests.

Results
Neural features observed during isotonic task

In Fig. 5a an example (from Subj. 2) of the neural firing pattern observed during the iso-
tonic task is shown: the cell firing presented a steep rise (reaching phase), correspondent 
to the moment in which the participants were squeezing the sensor to reach the required 
force, followed by a stable discharge level (holding phase), when the subjects were main-
taining the desired pressure. In both phases, the neural activity showed a quasi-linear 
increment with the lower values of applied force. Instead, for higher levels of force, firing 
rates progressively reached saturation.

We fit this behavior (Fig. 5b, c), with the following function:

where f and FR are respectively the observed force and firing rate of the motoneurons, 
both normalized to their maximum value. A, B and C determine the saturation value 

(9)FR
(

f
)

=
B

C + e−f /D
− A;
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( BC − A ), while D is the characteristic force for the saturation process. These parameters 
are dimensionless because force and firing rate are normalized. The best fitting param-
eters for Subj. 2 are in Additional file  1: Table  S2. The saturation level is higher and 
achieved earlier during force reaching than during holding (Additional file 1: Table S2).

a

d

b

c

e

Fig. 5  Neural activity correlates with grasping force. a Normalized average of all the single-unit firing rates, 
flexor digitorum sEMG, and pressure sensor readout. All the values are expressed as mean ± SEM. b Relation 
between the force exerted during the grasps and the motoneuron firing rate. The maximum of the two 
parameters is computed, corresponding to the reaching phase of the grasp. The fitting function described 
by Eq. (9) is in red (R2 = 0.74). c Force-FR relationship. The two parameters are computed as average over the 
interval in which the sensor readout is stationary (holding phase). Pressure sensor readout and motoneuron 
firings are normalized to their maximum. The fitting function described by Eq. (9) is in red (R2 = 0.6). In 
b, c data are bootstrapped. Signals in (a–c) are extracted from Subject 2. d Barplot representing the FRs 
normalized to their maximum in the grasps, with respect to the variation of the exerted force, for all the 
subjects, during reaching phase. Colored circles represent the subjects. Data are represented as mean ± SD. 
In red the fitting function (R2 = 0.97) expressed by Eq. (9). e Barplot describing the relationship between force 
and motoneuron firing rate for all the grasps and subjects during holding phase. Colored circles represent the 
subjects. Data are represented as mean ± SD. The overall behavior of motoneurons is described by Eq. (9), in 
red (R2 = 0.93). Data in (d, e) are the average of 30, 34, 26, 31, 33, 21 trials (selected as in “Methods”) × 13, 14, 
11, 13, 16, 14 sorted neurons respectively for Subj. 1, Subj. 2, …, Subj. 6
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The recorded firing pattern (a peak followed by a plateau) during isotonic task was 
very similar across subjects and trials, no matters neither the grasp type, nor the force 
exerted by the subject. Indeed, the firing rate observed across the whole group of sub-
jects and grasps (Fig. 5d, e) could be modeled with Eq. (9) with high fitting performance 
for both reaching (R2 = 0.97) and holding (R2 = 0.93) phases. This performance was given 
by the fitting parameters in Additional file 1: Table S2.

Neural features observed during isokinetic task

While recorded firing rate peak levels presented a strong correlation with force, we 
found that such correlation was not present between the firing rate and the velocity of 
voluntary finger flexions/hand grasps (isokinetic task). In this case, instead, firing rate 
presented the same peak value independently of movement velocity (ANOVA test, 
p > 0.1), as shown in Fig. 6a, b. The motion velocity was linearly correlated with the nor-
malized “firing rate slope” (defined between the FR maximum and the beginning of the 
movements that was triggered by the GUI) (R2 = 0.66, Fig. 6c). These observations were 
consistent for all the movements and subjects (statistics in Fig. 6d, e).

These results were obtained by the analysis of the recorded neural activity during 
which the subjects were executing a flexion. We observed that the discharging activity 
during fingers extension was not negligible, as expected in such task [28].

Decoding of force and velocity

Four levels of force plus rest were discriminated with an accuracy of 52.4% with respect 
to 25% chance level, while three levels of velocity plus rest were discriminated with 37% 
accuracy, versus 20% chance level (Fig. 7a, b).

The performance of our force decoder was significantly higher (Kruskal–Wallis test, 
p < 0.05) than the velocity one (Fig. 7c). Figure 7d, e show the features used by the classi-
fier and its predictions.

We found that our classifier performed better (Kruskal–Wallis test, p < 0.05) than the 
LDA on the features based on motoneuron behavior, but that the discrimination perfor-
mance was not significantly impacted by the use of standard features or the features we 
purposely defined (Fig. 7f ). Finally, the use of multi-unit activity produced better accu-
racy (Kruskal–Wallis test, p < 0.05) than when single-unit firing rate was exploited to 
predict subjects’ intention (Fig. 7f ).

Influence of proprioceptive feedbacks on neural features

The spiking model reproduced qualitatively the natural dynamics of motoneurons 
observed during the isotonic task (an initial peak, followed by a stable level of firing: 
compare Figs. 5a and 8a, blue). In the model, both the muscle force and the single neu-
ron firing rate increased linearly with the central input (Fig. 8b, c, blue lines). The model 
reproduced the saturating relation between force and peak/plateau firing rate found 
in experimental recordings and described by Eq.  (9) (R2 = 0.98 for peak and R2 = 0.98 
for plateau, Fig. 8d, e, blue). Notably, the qualitative agreement with experimental data 
was maintained even if the FF was removed (Fig. 8a, b light blue lines). The relationship 
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between force and firing rate was accurately reproduced by a purely feed forward net-
work mimicking the amputees’ condition (R2 = 0.96 and R2 = 0.99, in Fig. 8d, e), i.e. by 
the sole properties of the motoneurons (adapting spiking cells). As expected, though, 
we found the saturating effects to be stronger (saturation value 0.34/0.63 respectively for 
with/without FF) and closer to experimental findings (saturation value 0.22) in presence 
of force feedback.

a

d

b

c

e

Fig. 6  Discharging motoneurons properties during isokinetic task. a Normalized average of all the single-unit 
firing rates, finger flexor sEMG and motion velocity. Data are shown in mean ± SEM. b Barplot of normalized 
FRs against velocity. FRs are normalized to their maximum. Data are represented as mean ± SD. c Relation 
between the slope of the normalized mean firing rate and the required velocity of motion. A linear fitting 
(R2 = 0.66) is proposed (red line). Data in c are bootstrapped. In a–c signal portion is extracted from Subject 1. 
d, e Equivalent graphs to (b, c) but with results from all the subjects and movements they executed. Colored 
circles represent subjects. Linear fitting performance of data in (d) is R2 = 0.93. Data in d, e are the average 
of 39, 21, 20, 11, 34, 28 trials (selected as in “Methods”) × 13, 14, 11, 13, 16, 14 sorted neurons respectively for 
Subj. 1, Subj. 2, …, Subj. 6. p-values are determined by one-tailed (in b, d) and two-tailed (c, e) ANOVA tests. 
** means p < 0.01, while lines on the graph p > 0.1. Statistical analyses are performed on non-bootstrapped 
data
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The very same model (with not null MF) was able to reproduce the motoneurons 
dynamics during isokinetic task. We observed a steady increase in firing during the 
movement, followed by a sharp decrease (Fig. 9a, blue line), independency of the moto-
neurons maximum firing rate on the motion velocity (Fig. 9b, ANOVA test, p > 0.1) and 
linear relationship between velocity and firing rate slope (Fig.  9c, blue markers/line 
R2 = 0.88). Again, the crucial result for translation towards the neuroprosthetic applica-
tions is that all previous findings held in a configuration mimicking the amputees’ condi-
tion in which neither FF nor MF are present (Fig. 9).

Similar features observed in microneurography and TIME recordings, as indicated 

by the hybrid modeling

The number of spike clusters that were identified in the case of microneurography and 
TIME recordings was not different (p > 0.1, ANOVA tests, Fig. 10a). This was the case also 
when comparing the firing rate of the isolated neurons (p > 0.1, ANOVA tests, Fig. 10b). 

f

c

d

a b

e

Fig. 7  Decoding. a, b Confusion matrices of the requested versus decoded action (rest included) 
representing the performance of the different decoders when predicting forces (left) and velocities (right). 
They were obtained by the sum of the single normalized matrices computed for each subject separately. 
f1,2,3,4 = force 1,2,3,4, v1,2,3 = velocity 1,2,3. c Overall performance of all the subjects for custom force and 
velocity decoding applied to isotonic and isokinetic tasks. Chance level is shown in red. d, e Requested 
action, computed features, and action decoded using our algorithm, for isotonic (top) and isokinetic (bottom) 
tasks extracted respectively from Subj. 1 and 6. f Normalized performance of the used decoders applied to 
all subjects for isotonic and isokinetic tasks. CC custom classifier (i.e. the classifier we developed), CF custom 
features (i.e. the features extracted by our motoneuron behavior analysis), SU single-unit, MU multi-unit. In 
c–f colored circles represent results from the different subjects. Force and velocity decoders are trained and 
tested on sets of 12 and 9 repetitions per subject, respectively. Kruskal–Wallis tests are executed on data in c, f 
and Tukey–Kramer correction is also performed on data in f. ** means p < 0.05
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Finally, we found that the clusters in the two cases were composed of spikes of similar 
shape (since identified as identical templates by the spike sorting algorithm, Fig. 10c).

Discussion
The use of peripheral nerve interfaces is undergoing a huge transition from basic 
research with animals to clinical applications (compare the number of human experi-
ments in the reviews from Navarro et  al. [4] and Ciancio et  al. [2]). Peripheral neural 
interfaces are currently mainly used for sensory feedback restoration [7–10], while their 
use for prosthesis movement control is still debated [2]. Recently, Utah arrays have been 
proven to be a viable device to allow the control of a virtual prosthesis [7]. However, the 
extraction from peripheral nerves recordings of different information (e.g. fingers force 
and velocity during grasps/movements) necessary for the intuitive control of the pros-
thesis has not been yet completely characterized.

Here, we described a protocol, which starting from microneurographic recordings of 
the peripheral efferent neural signals allowed to use these signals to potentially design 
decoding algorithms for the control of hand prostheses.

a

b c d e

Fig. 8  Isotonic task modeling. a Motoneuron firing rate normalized to its maximum and feedback 
normalized to its maximum in simulated response to increasing supraspinal input with no feedback and force 
feedback (strength = 0.4). Color code is the same for all panels. b Average normalized force as a function 
of the central input. Solid lines indicate linear fits obtained in the two cases for inputs > 2. The titles report 
quality of the linear fitting (R2). c Average (and standard deviation) of the single unit responses as a function 
of central input for the two feedbacks. The standard deviation for the five units is so close to the average 
that lines cannot be discriminated. d Peak of normalized firing rate as function of resulting force in models. 
Markers indicate different trials for no feedback (squares), and force feedback (diamonds). Solid lines indicate 
fits obtained in the two cases with Eq. (9). Title reports fit quality. e Average normalized response for the 
simulated feedbacks as a function of the normalized force. Solid lines indicate obtained fits in the two cases 
with Eq. (9). Title reports fit quality for the two cases
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Unlike previous works that attempted to record efferent signals by microneurography 
[42–44], we characterized the relationship between neural activity and movement fea-
tures relevant for hand prosthesis applications. In particular, in isotonic force tasks in 
which the subject was asked to exert and hold a specific level of force over an object, 
we showed that both overshoot and plateau level of the firing rate were sublinearly cor-
related with the exerted level of force. This happened not only during force holding, in 
agreement with previous results [45] but also during force application. Moreover, we 
recorded, for the first time to the best of our knowledge, efferent firing rate during isoki-
netic movements of single fingers. In this case, peak firing rate was independent from 
velocity, which affected only the time-to-peak. This is due to the fact that the motoneu-
ron firing rate correlates with the force generated by the correspondent motor units, 
as demonstrated by previous studies [45] and confirmed by our spinal networks model 
(Fig. 9a).

We proved then that specific features of neural activity recorded by microneurography 
could be used to decode the velocity of motion and force of grasping, performing bet-
ter than standard approaches. Our results are direct evidence that more information, 
exploitable for the direct control of neuroprosthetic devices, is available in peripheral 
nerve recordings with respect to what previously exploited for neural signal decoding 
[7, 11, 12]. In fact, starting from a single-channel recording, we achieved a novel neural-
based decoding of movement parameters such as force and velocity. We found that force 

a

b c

Fig. 9  Isokinetic task modeling. a From top to bottom the following simulation results are shown: (i) central 
input for three different speeds, (ii) normalized motoneuron firing rate in case of no feedbacks, force feedback 
only, movement feedback only and both feedbacks, (iii) feedback in the four cases. b Peak of simulated firing 
rate for five different speeds for the four cases. Lines over bars indicate lack of significant differences (ANOVA 
test, p > 0.1) between sets. Data are expressed as mean ± SD. Mean is on 10 repetitions. c Slope of firing rate 
increases following onset of stimulus as a function of motion velocity in the four cases. Dashed line indicates 
linear fit and title reports fit quality
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prediction was more efficient than velocity one. We also found that the cumulative activ-
ity of neurons is more efficient in the prediction of the force (or velocity) than single-
units. In this light, this work made already an important step toward the development 
of decoding strategies based on peripheral efferent nerve recordings, which could con-
tribute to improve in the future the controllability of bidirectional prosthetic devices [8].

Translating this result to the control of artificial limbs would represent an important 
breakthrough for the neuroprosthetic field, but we needed to ensure that this translation 
is possible, in terms of difference of data in amputees w.r.t. healthy subjects, and in terms 
of recording ability of the chronic devices w.r.t. acute microneurography. Hence, start-
ing from our experimental data, we developed and calibrated computational models of 
the recording electrode-nerve interface and proprioceptive reflex pathway spiking neu-
rons, which enabled us to assess whether our results could be translated to amputees for 
whom recording procedures are different and there is no muscular feedback.

Overall, the simulation results for both isotonic and isokinetic tasks showed that, dur-
ing voluntary hand movements, the firing features of motoneurons we exploited in the 
decoding procedure are mostly conditioned by the driving input from CNS and by the 
motoneuron intrinsic properties such as adaptation rather than by the feedback brought 
by proprioceptive fibers. This has been recently confirmed also experimentally by [46]. 
More importantly, results showed that the lack of proprioceptive fibers does not alter 
qualitatively the dynamics on which our decoding procedure was based. On a parallel 

µ

a b

c

Fig. 10  Microneurography and TIME electrodes recordings comparison. a Number of clusters identified 
after spike sorting applied to recordings obtained through TIME and microneurographic needle (top) and 
results of ANOVA test applied to them (bottom). b Average firing rate of the identified neurons in (a) (top) 
and ANOVA test (bottom). Data in a, b are expressed in mean ± SD and are representative of 10 simulations 
per electrode per value of spike train mean firing rate. 10 values of mean firing rate were selected in the 
interval 2.5–25 Hz sampled with a step of 2.5 Hz. c Examples of sorted spikes from a train characterized by the 
average firing frequency of 10 Hz
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track, FEM-NEURON simulations proved that processing signals acquired by means of 
different intraneural electrodes, they being needles or TIMEs, produces outcomes that 
do not differ in the features we took into account in the decoding procedure. We con-
clude that processing microneurographic and TIME electrode signals would produce 
similar features to give as input for movement of force prediction algorithms.

These results are important for neuroprosthetic applications, since they indicate the 
possibility of translating decoding procedures based on acute recordings on healthy sub-
jects to chronic recordings on amputees. They support the use of microneurography on 
healthy subjects to test algorithms of control for neuro-driven prostheses before use on 
patients undergoing an implant with chronic and stable peripheral nerve interfaces (e.g. 
intraneural electrodes). Finally, they make it possible for the creation of a big dataset of 
neural recordings correlated with hand movements, to solve the problem of inter-person 
unreliability of present decoding algorithms, representing a great obstacle towards clini-
cal applications of neuro-driven prostheses [3].

Limitations and perspectives

As we selected neural signals significantly and specifically correlated with movements 
(see “Methods”) we hypothesize that most of the recorded neurons are motoneurons. 
However, because of the anatomy of the nerve, the acquisition of a small group of pro-
prioceptive fibers cannot be totally excluded [47]. However, this is unlikely because of 
the low neurons firing rate (Additional file 1: Fig. S2), which is not consistent with the 
characteristics of proprioceptive fibers [34, 35].

Also, the performance of the decoder was not optimal, even if sufficiently higher than 
the chance level. This may have been due to the quality of the recordings included in the 
study since our restriction on data was that signals had to have a signal to noise ratio just 
higher than 1. Microneurography electrodes with active sites of different electric prop-
erties or geometry or with multiple active sites, could be developed to make light in the 
future on what would be the best electrode design to guarantee more reliable and higher 
signal to noise ratio recordings.

Additionally, indeed, only one MNG channel could be acquired per time. We speculate 
that the decoding results obtained with the current procedure could be enhanced, if it 
would be possible to perform simultaneous recordings from different fascicles, i.e. with a 
multi-channel microneurography electrode.

A limitation of our proprioceptive pathway spiking neuron model is that we simulated 
the amputee neural network exactly as the one of a healthy person with the exception 
of the lack of sensory feedback to motoneurons. The case of amputees that have instead 
residual fibers that are damaged and hence fire in a not physiological way is not taken 
into account. In future versions of the model we will modify the model to consider data 
from efferent signals in amputees. Moreover, Eqs. 7 and 8 represent a reasonable phe-
nomenological relationship describing the influence of force and movement feedback in 
the global input to motoneurons. A complete model of proprioception should include 
a model of the spiking activity of the proprioceptive fibers and of the associated sen-
sors. This, however, goes beyond the scope of this paper, even more so as we do not 
have experimental recordings of spiking activity from proprioceptive fibers to define the 
parameters of such a model.
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The very reason for creating a protocol to develop decoding models for neuropros-
theses in healthy patients is that amputee volunteers for temporary and experimental 
implant of invasive peripheral interfaces are relatively rare and distant in time. Also their 
recordings are variable, and not stable presently [14, 16]. We are fully aware that com-
plete validation of the protocol can be achieved only testing the decoding algorithm in 
patients, and this will be the scope of our work in the next future.

Conclusions
In this work we described the method to record, and characterized the efferent 
recordings acquired by means of microneurography during voluntary isokinetic and 
isotonic hand tasks. This enabled us to gain a unique tool and datasets for explora-
tion of the efferent motoneuron behavior. We preliminarily explored how the use of 
this knowledge allows the development of simple decoding algorithms that neverthe-
less outperform standard pattern recognition approaches. By means of computational 
models, we demonstrated that the efferent recording features would hold also in the 
case of signal acquisition from implantable TIME intraneural electrodes in amputees. 
The present work offers as such a proof of concept for the use of microneurography as 
a tool to design efficient neural decoders that could be then adapted for future clinical 
applications in amputees.

Additional file

Additional file 1. Supporting material for the main text. Text, figures and tables are provided to give further details 
about the computational models and the procedure to characterize the motoneuron firing behavior.
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