
A refined method of quantifying 
deceleration capacity index for heart rate 
variability analysis
Hongyun Liu1,2†, Ping Zhan2, Jinlong Shi1,2†, Guojing Wang1,2, Buqing Wang1 and Weidong Wang1,2*

Introduction
The autonomic nervous system (ANS) plays an essential and important role in main-
taining homeostasis for the body’s internal environment via two opposing branches: the 
sympathetic system and the parasympathetic/vagal system [1, 2]. Autonomic imbalance, 
characterized by a hyperactive sympathetic system and a hypoactive parasympathetic 
system, is associated with various pathological conditions [3, 4]. Heart rate variability 
(HRV), affected by both sympathetic and vagal modulations, is considered a non-inva-
sive manifestation of neurocardiac function that reflects ANS dynamics and heart–brain 
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interactions [2]. Standard time domain, frequency domain and non-linear measures of 
HRV are emerging as descriptors to provide information on the nervous system organi-
zation of homeostatic responses in accordance with the situational requirements, and 
some metrics are used as dynamical biomarkers of cardiac vagal modulation [5].

Phase-rectified signal averaging (PRSA) was introduced to identify subtle short-term 
repeated patterns for characterizing the complex non-linear, non-stationary and quasi-
periodic signals [6]. When applied to heartbeat time series, the deceleration capacity 
(DC) of heart rate quantified by PRSA also reflects parasympathetic/vagal control of 
heart rate [7]. Despite the growing application of DC [8–13], the method is affected by 
one shortcoming: non-vagally mediated abnormal variants of sinus rhythms in heartbeat 
interval time series are used to quantify DC, thus confounding the evaluation of cardiac 
vagal modulation. Previous studies reported that the presence of erratic sinus rhythm, 
sinus alternans, and their variants, influence values of HRV indices including root-mean-
square of successive differences of normal-to-normal interbeat intervals (rMSSD), the 
percentage of normal-to-normal intervals > 50  ms different from the previous interval 
(pNN50), and the amount of variance in normal-to-normal intervals at respiratory fre-
quencies (HF, 0.15–0.4 Hz) [14–16]. This distorted beat-to-beat variability, which does 
not provide a normal assessment of cardiac autonomic function, consequently leading 
to paradoxical interpretation between HRV indices and cardiac health. Furthermore, 
DC and traditional HRV measures that are believed to reflect cardiac vagal modulation 
might have relatively little predictive power for outcomes due to the confounding effects 
of non-vagally mediated abnormal variants of sinus rhythms.

The purpose of this study is to develop and investigate a refined version of PRSA to 
quantify DC, represented as refined deceleration capacity (DCref), by excluding from 
non-vagally mediated abnormal variants of sinus rhythms in heartbeat interval time 
series to counteract the shortcoming. This approach is expected to be more accurate 
than original PRSA in assessing cardiac vagal modulation. Experimental data including 
long-term electrocardiography (ECG) recordings were obtained from healthy and end-
stage renal disease (ESRD) subjects. ESRD is characterized by altered cardiac autonomic 
function, reflecting as vagal modulation damage and sympathetic nerve overactivity 
[17]. The comparison between original deceleration capacity (DCorg) and DCref quanti-
fied from different ECG-regimens in healthy subjects and patients with ESRD is utilized 
to demonstrate the performance of the two approaches over real clinical data.

Materials and methods
The original PRSA method

Traditional analyses used to analyze signals that are recorded from composite systems 
over a prolonged period of time are usually spectral analysis and cross-correlation 
analysis. However, non-stationary and non-linear are major problems of both meth-
ods [6]. When applied to HRV signal, the PRSA technique reduce the signal to a much 
shorter sequence keeping all relevant quasi-periodicities but eliminating non-station-
arities, artifacts, and noise. This offering the possibility to separate characterizations 
of deceleration-related and acceleration-related modulations which might provide 
more differentiated insights into cardiac autonomic regulation processes [6, 7]. DC, 
quantified by PRSA with the solely deceleration-related process in heartbeat interval 
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time series, is a measure of cardiac vagal modulation [7]. The DC quantification for 
HRV signal is essentially based on four steps: (1) definition of anchor points according 
to certain properties of the heartbeat interval time series; (2) definition of surround-
ings with certain length around each anchor point; (3) the PRSA signal is obtained 
by averaging the signals within the segments which are aligned at the anchors; and 
(4) DC is quantified corresponding to a computation of PRSA signal by Haar wavelet 
analysis [6, 7].

Definition of deceleration‑related anchors

DC is computed based on heartbeat interval time series RR = {RRi} derived from ECG 
recordings. In the simple version of the PRSA algorithm, for computation of DC, heart-
beat intervals longer than the preceding interval are identified as deceleration-related 
anchors ( RRiγ , γ = 1, . . . ,M , M is the total number of anchor points).

Heartbeat interval time series is almost always interfered by technical and physiologi-
cal artifacts due to the computational algorithm, ectopic beats and arrhythmic events 
which must not be qualified as anchor points. To overcome this problem, heartbeat 
interval prolongations of more than a certain threshold are excluded. However, heartbeat 
intervals with high-frequency fluctuations that compete with or even exceed the short-
est-term modulatory responsiveness of the vagal system still enters the DC quantifica-
tion process, thus distort high-frequency variability not due to cardiac vagal modulation.

Definition of segments

Segments of heartbeat interval time series with a length of 2L are defined around each 
anchor point RRiγ , γ = 1, . . . ,M . Anchor points close to the beginning or the end of the 
time series, where no full surroundings of length 2L are available, are disregarded. Seg-
ments that surround adjacent anchors can overlap. The heartbeat intervals in segment 
number γ , corresponding to anchor point RRiγ are as following.

Phase rectification and signal averaging

All segments γ , γ = 1, . . . ,M are aligned and centered at their anchor points RRiγ and 
the PRSA signal RR(k) is obtained by averaging over all segments.

In this average, non-periodic components cancel out, and only events that have a fixed 
phase relationship with the anchor points, i.e., all periodicities and quasi-periodicities, 
‘survive’ the procedure. RR(k) represents important features of the original heartbeat 
interval data containing all quasi-periodicities aligned with phase zero in the center (at 
k = 0).

(1)RRi > RRi−1

(2)RRiγ−L, RRiγ−L+1, . . . ,RRiγ , . . . ,RRiγ+L−2, RRiγ+L−1

(3)RR(k) =
1

M

M∑

γ=1

RRiγ+k k = −L,−L+ 1, . . . , 0, . . . , L− 2, L− 1
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Quantification of DC

PRSA signal RR(k) is quantified by Haar wavelet analysis, where the scale of 2 is used to 
calculate DC.

RR(0) is defined as the average of the heartbeat intervals at all anchor points, RR(1) 
and RR(−1) are the averages of the heartbeat intervals immediately following and pre-
ceding the anchor points, etc.

Refined DC quantification

Evidence suggests that erratic rhythm can be a consequence of high sympathetic activa-
tion [18]. It is also speculated that the observed non-vagally mediated HRV also termed 
as heart rate fragmentation including erratic sinus rhythm, sinus alternans, and their 
variants is originated from the breakdown of one or more components of the regula-
tory network controlling heart rate dynamics [18–20]. Moreover, this fragmentation or 
anomalous short-term HRV are marked by abrupt changes in the sign of heart rate decel-
eration/acceleration can be quantified by statistical analysis of inflection points or zero-
crossing points [19]. To address this confounding effects of non-vagally mediated HRV, 
which may distort DC not due to cardiac vagal modulation, we proposed a refined PRSA 
technique to quantify DC by excluding inflection points in heartbeat interval time series.

Definition of inflection points

For given ECG recordings, the time series of heartbeat intervals, {RRi} = {tRi − tRi−1
} , 

where tRi represents the time of occurrence of the ith sinus beat, and the time 
series of the differences between consecutive heartbeat intervals (increments), 
{�RRi} = {RRi − RRi−1} , were derived. The inflection points in the heartbeat interval 
time series, or equivalently, the zero-crossing points in the increment time series are 
defined as shown in Fig. 1.

(4)DCorg=[RR(0)+ RR(1)− RR(−1)− RR(−2)]/4

a

b c

Fig. 1  Illustration of anchor points selection. a Anchor points for a real ECG recording. Deceleration-related 
anchor points selected from heartbeat interval time series according to original PRSA (b) and modified PRSA 
(c) method, respectively
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A tRi represents an inflection point if Eq.  (5) is satisfied, that is, if tRi is an instant of 
inversion of heart rate deceleration/acceleration sign or of change to or from zero.

Quantification of refined DC

After the identification of deceleration-related anchor points and inflection points are 
selected according to Eqs. (1) and (5), respectively (Fig. 1). Segments with the length of 
2L are identified around each deceleration-related anchor. The refined PRSA signal is 
obtained by averaging over all segments, which are aligned and centered at deceleration-
related anchors. The refined DC (DCref) is quantified according to Eq. (5). Consequently, 
omitting the segments centered at inflection points will reduce or eliminate the effects of 
heart rate fragmentation and improve the performance of the PRSA technique to assess 
the cardiac vagal tone modulation.

Experimental data and analysis procedure

We employed two long-term (24-h) ECG ambulatory databases which are made avail-
able via the University of Rochester Telemetric and Holter ECG Warehouse (THEW) 
archives (http://thew-proje​ct.org/datab​ases.htm). In addition to ECG data, automated 
beat annotations are available after reviewing and adjudicating manually in both data-
bases. All human data was obtained retrospectively from completed, Institutional-
Review-Board-approved clinical research studies with subject de-identification. These 
trials complied with the Declaration of Helsinki and all subjects signed informed con-
sent documents.

The Healthy database (THEW identification: E-HOL-03-0202-003) comprises 24-h 
Holter recordings from 202 ostensibly healthy subjects (102 males). Subjects had (1) no 
overt cardiovascular disease or history of cardiovascular disorders; (2) no reported med-
ications, (3) a normal physical examination, (4) a 12-lead ECG showing sinus rhythm 
with normal waveforms (or a normal echocardiogram and normal ECG exercise test-
ing in the presence of any questionable findings ECG changes). The ECG signals were 
recorded at a sampling frequency of 200 Hz. Overall, we analyzed data from 191 healthy 
adult subjects by excluding from 11 subjects with poor ECG quality. The ESRD data-
base (THEW identification: E-HOL-03-0202-016) comprises 48-h Holter recordings 
with a sampling frequency of 1000 Hz from 51 ESRD patients with high risk for cardiac 
arrhythmias and sudden cardiac death (30 males). ESRD subjects confirmed the history 
of hypertension or diabetes requiring treatment enrolled in the study. Exclusion criteria 
included a history of chronic atrial fibrillation, with class I antiarrhythmic, pacemaker, 
implantable cardioverter defibrillator device, cardiac resynchronization therapy device, 
female subject of childbearing potential not using medically prescribed contraceptive 
measures and subject unable to cooperate with the protocol due to dementia, psycho-
logical, or other related reason.

For our analysis, all 24-h Holter recordings were analyzed automatically and annotated 
files were then carefully inspected and corrected by technicians for extracting the RR 
intervals. Furthermore, any RR-interval that exhibited more than 20% change from the 
previous RR-interval were excluded, as they were likely to be related to premature beats, 
artifacts and measurement noise [21]. 2-h and 30-min episodes of heartbeat intervals 

(5)�RRi ×�RRi+1 ≤ 0

http://thew-project.org/databases.htm
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without exercise and naps within daytime (between 8 a.m. and 5 p.m.) were extracted 
from each recording for PRSA analysis. All ECG segments were selected from the same 
period to reduce confounding effects of the circadian rhythm and physical activity. 
Measures of DC for long-term (24-h), 2-h and 30-min ECG recordings were calculated 
based on the original and the proposed PRSA method, respectively.

Statistical analysis

Data were presented as the mean ± standard deviation (SD) for continuous variables. Gauss-
ian distribution and homogeneity of variance tests were applied to determine the distribution 
and homoscedasticity of sample data. Because of the non-normal distribution and hetero-
geneity of variance of some sample data, a Mann–Whitney U test was applied to compare 
DCs between groups (healthy vs. ESRD). Correlation analysis was perfomed between DCorg 
and DCref using Spearman’s correlation test. In order to compare the ability of DCorg indices 
and DCref to differentiate the ESRD patients from the healthy control subjects, receiver oper-
ating characteristic curve (ROC) was constructed from the sensitivity and specificity after 
leave-one-out cross-validation of the continuous variables to assess the goodness of fit of 
each model. The area under the ROC curve (AUCs) gave an estimate of the overall discrimi-
nate ability. All statistical analyses were performed using SPSS version 20 software package 
(SPSS, Chicago, Ill, USA). All the p values were adjusted using the false discovery rate (FDR) 
method and a value of p < 0.05 was considered to indicate statistical significance.

Results
Demographic data and clinical factors of ESRD patients and healthy control subjects 
are presented in Table 1. Figure 2 shows the deceleration-related PRSA signal and DCs 
of 24-h, 2-h and 30-min recordings of heartbeat intervals in a patient with ESRD. The 

Table 1  Demographic data and clinical factors of all study population

NA not available, BMI body mass index, BP_SYS systolic blood pressure, BP_DIA diastolic blood pressure, LVEF left ventricular 
ejection fraction, ESRD end-stage renal disease

Variables Healthy (n = 191) ESRD (n = 51)

Male/female 96/95 30/21

Age (year) 38.0 ± 15.5 60.0 ± 11.9

Height (cm) 168.8 ± 10.4 NA

Weight (kg) 69.6 ± 15.2 NA

BMI (kg/cm2) 20.07 ± 4.44 NA

BP_SYS (mmHg) 116 ± 13 139 ± 22

BP_DIA (mmHg) 75 ± 8 76 ± 13

Diabetes Mellitus, n (%) NA 32 (62.7%)

Hypertension, n (%) NA 48 (94.1%)

LVEF (%) NA 59 ± 16

Glucose (mg/dL) NA 121 ± 49

Calcium (mg/dL) NA 8.9 ± 1.6

Phosphate (mg/dL) NA 5.2 ± 1.4

Albumin (g/dL) NA 4.0 ± 0.4

Hemoglobin (g/dL) NA 13.1 ± 12.3

Creatinine (mg/dL) NA 8.6 ± 2.8
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segment length L for both the original and refined PRSA methods is set to 64. Simi-
lar patterns of the original and refined PRSA curves were observed for both long-term 
(24-h) and short-term (2-h and 30-min) ECG recordings. The heartbeat interval oscilla-
tions in the refined PRSA curves extracted from different length of ECG recordings are 
enhanced, especially around the deceleration-related anchor points. Different levels of 
the heartbeat intervals obtained by the original and refined PRSA methods can also be 
observed. As the length of the analyzed ECG signal is shortened, the difference between 
original and refined PRSA signals is also reduced.

The averages of the normalized spectra obtained with the original and refined PRSA 
signal in the group of 51 patients with ESRD are depicted in Fig.  3. Refined PRSA 
method clearly enhances the power of low frequency (LF, 0.04–0.15 Hz) and attenuates 
the power of high frequency (HF, 0.15–0.4 Hz) components for 24-h, 2-h and 30-min 
ECG recordings, respectively.

DCs calculated based on original and refined PRSA methods with different criteria 
of anchor point selection for the healthy control subjects and the ESRD group are given 
in Table 2. For the healthy group, we compared DCs quantified by original and modified 
PRSA methods. DCref values were significantly higher than DCorg for all 24-h (mean differ-
ence 4.32 ± 1.68, p < 0.001), 2-h (mean difference 4.64 ± 1.97, p < 0.001)and 30-min (mean 
difference 4.72 ± 2.03, p < 0.001) ECG segments. Furthermore, the Pearson’s correlation 

a b

c d

e f

Fig. 2  Representative original and refined PRSA signals of 24-h (a, b), 2-h (c, d) and 30-min (e, f) recordings of 
heartbeat intervals in one patient with end-stage renal disease (ESRD)

a b c

Fig. 3  The averages of the normalized spectra obtained with the original and refined PRSA signal in the 
end-stage renal disease (ESRD) group for 24-h (a), 2-h (b), and 30-min (c) recordings of heartbeat intervals



Page 8 of 13Liu et al. BioMed Eng OnLine          (2018) 17:184 

coefficients between the DCorg and DCref for 24-h, 2-h and 30-min ECG recordings were 
0.980, 0.983 and 0.981 (all p < 0.001), respectively.

ESRD patients substantially had significantly lower DCorg and DCref compared to healthy 
control subjects for the analyzed three lengths of ECG episodes (all p < 0.001). In ROC 
curve analysis, The areas under the curve (AUC) of DCorg and DCref were 0.945 vs. 0.944, 
0.960 vs. 0.969, and 0.967 vs. 0.971 for 24-h, 2-h and 30-min ECG recordings, respectively 
(Table 2 and Fig. 4). The AUC of DCref from long-term (24-h) ECG recordings was com-
parable to that of DCorg while the AUCs of DCref from short-term (2-h and 30-min) ECG 
recordings were slightly higher than those of DCorg. In addition, the maximum of Youden’s 
index of long-term (24-h) DCref was higher than that of short-term (2-h and 30-min) DCorg. 
DCref from 2-h ECG recordings, providing the highest value of Youden’s index, had the best 
discrimination power of all calculated DCs. The best cutoff value of DCref from 2-h ECG 
episodes for distinguishing ESRD from healthy subjects was 8.26 ms, with a sensitivity of 
90.1%, specificity of 94.1%.

Table 2  Measures of  original and  refined deceleration capacity in  healthy and  ESRD 
groups

DCorg original deceleration capacity, DCref refined deceleration capacity, ESRD end-stage renal disease, AUC​ area under 
receiver operating characteristic curve

Variables Healthy (n = 191) ESRD (n = 51) p value AUC​ Youden’s index

24-h

 DCorg (msec) 13.43 ± 5.60 4.36 ± 2.60 < 0.001 0.945 ± 0.017 0.766

 DCref (msec) 17.77 ± 6.79 6.25 ± 3.59 < 0.001 0.944 ± 0.018 0.774

2-h

 DCorg (msec) 11.94 ± 5.28 3.50 ± 1.87 < 0.001 0.960 ± 0.013 0.802

 DCref (msec) 16.61 ± 6.94 4.81 ± 2.39 < 0.001 0.969 ± 0.011 0.842

30-min

 DCorg (msec) 12.40 ± 5.46 3.25 ± 1.94 < 0.001 0.967 ± 0.012 0.825

 DCref (msec) 17.14 ± 7.12 4.53 ± 2.60 < 0.001 0.971 ± 0.011 0.830

a b c

Fig. 4  Analysis of the discrimination power of the healthy and end-stage renal disease (ESRD) groups by 
receiver operating characteristic curve (ROC) analysis. The areas under the curve (AUC) of DCorg and DCref were 
0.945 vs. 0.944, 0.960 vs. 0.969, and 0.967 vs. 0.971 for a 24-h, b 2-h and c 30-min ECG recordings, respectively
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Discussion
In the present study, a refined method was presented for the quantification of decelera-
tion capacity of heart rate. DCs were calculated through proposed refined and original 
PRSA methods from different length of ECG recordings and were tested their predic-
tive value in healthy subjects and patients with ESRD. The present findings demonstrate 
that the refined PRSA technique better reflects the periodic components in heartbeat 
intervals and enhances the HF and LF components for spectral analysis. DCref, with sig-
nificantly higher values compared to DCorg, was significantly lower for ESRD group than 
that with healthy group. This phenomenon was observed for the analysis of 24-h, as well 
as 2-h and 30-min ECG recordings. Furthermore, the DCref quantified from different 
length of ECG episodes outperformed corresponding DCorg in separating healthy sub-
jects from patients with ESRD. Among them, DCref obtained through 2-h ECG record-
ings have the best discrimination ability.

HRV analysis is a non-invasive, simple and effective method for assessing the sympa-
thovagal balance of ANS and is used to predict the risk to many cardiovascular diseases 
and neurological disorders [4, 5, 22, 23]. The analysis of blood pressure variability (BPV) 
has also been used to evaluate cardiovascular autonomic regulatory function [24, 25]. 
However, conventional linear time and frequency analyses are often applied to calculate 
measures of HRV and BPV, even though the regulation of the ANS on cardiac activity 
is considered to be a nonlinear physiological activity [26, 27]. Despite the widespread 
application of HRV, linear approaches to HRV signals may introduce intrinsic compu-
tational errors [28–30]. Moreover, since traditional linear HRV analyses cannot accu-
rately distinguish the vagal and sympathetic activities of the ANS, the interpretation of 
the HRV measures is more complex than generally appreciated, and there is potential 
for incorrect conclusions and for excessive or unfounded extrapolations [5, 21, 23, 27]. 
Therefore, efficient methods for characterizing the complex non-linear, non-stationary 
and quasi-periodic ECG signal remain to be established. In 2006, PRSA method has 
been introduced to make possible an approximate distinction of autonomic control 
effects on sinus node, by selectively assessing the capacity of heart rate to decelerate 
and accelerate, representing an indirect integrated quantification of the activities of the 
autonomic systems. Since the PRSA technique is able to robustly extract and enhance 
periodic quasi-periodic oscillations masked by noise and artifacts from complex signals, 
it has been proven to yield stronger prognostic power than the traditional parameters 
of HRV among post-myocardial infarction patients [7]. The main characteristic of DCref 
in the present study is the use of stricter criteria for the selection of the deceleration-
related anchor points. This allows a smaller number of legal vagally-mediated anchor 
points to participate in the quantification, thereby improving the accuracy of cardiac 
vagal modulation assessment.

Theoretically, DC index could reflect the cardiac vagal modulation on heart rate 
[7, 10, 13, 31, 32]. When applied PRSA to heartbeat intervals for assessing vagal 
tone modulation, the anchor points selected according to Eq.  (1) are expected to 
be vagally mediated and change in a progressive way. However, non-vagally medi-
ated HRV with more frequent changes in heart rate deceleration/acceleration sign 
heart rate changes has a distinct dynamical signature, namely. In the “extreme” case 
of sinus alternans, the sign of heart rate acceleration changes every beat [19]. The 
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presence of these abnormal variants of sinus rhythm limits the utility of original 
PRSA for HRV analysis since an increase in the overall amount of short-term vari-
ability can no longer be solely attributed to enhanced vagal tone modulation. Pan 
et  al. applied sinusoidal signal analysis to anchor point selection to improve the 
PRSA processing, and proved that the modified DC is superior to the conventional 
approach in distinguishing chronic heart failure cases [33]. Sacha et al. showed that 
the lower anchors filtering threshold could decrease the correlation between DC and 
high-frequency fluctuations [34]. However, the influences of anchors filtering with 
different thresholds on the prognostic or discriminative power remain to be eluci-
dated. Piskorski et al. defined heart rate asymmetry by acceleration and deceleration 
runs, which was reduced in post-infarction patients with increased risk of mortality 
[35]. Arsenos et  al. also proposed DCsgn and BBDC, which can discriminate more 
efficiently healthy young and elderly subjects than the original PRSA method [36]. 
However, the interpretation of the features of DC and AC were not linked to spe-
cific physiological regulatory mechanisms in the process of improving the PRSA 
technique. Nasario-Junior et al. introduced a DC adaptation from the perspective of 
synchronization and improved the AUC diagnostic accuracy of DC to assess physi-
cal conditioning [37]. According to the physiological origins and mechanisms of 
HRV, the present study proposed a refined quantitative approach, which excluding 
from non-vagally mediated inflection points to quantify DC for assessing the car-
diac vagal tone modulation. The results of our study showed that the refined PRSA 
method could enhance the power of LF and attenuate the power of LF components 
compared with original PRSA technique. This is consistent with our understanding 
of the refined PRSA method, which allows higher accuracy for detecting the most 
important frequencies, especially the HF components by addressing the confound-
ing effects of heart rate fragmentation. Since HF is usually interpreted as a measure 
of cardiac vagal tone modulation, the refined PRSA may provide a promising method 
for accurate assessment of cardiac vagal tone modulation and integrate probe of the 
cardiac neuroautonomic-electrophysiologic regulatory system.

It has been observed that an imbalance between cardiac vagal and sympathetic 
modulation occurs and that a sympathetic activation is an early event in the patho-
physiology of ESRD [38, 39]. In our study, the significant lower DC values suggest 
that patients with ESRD were in a lower vagal modulating state compared with 
healthy subjects. Since there exist reciprocal changes in the interaction of sympa-
thetic and parasympathetic nervous systems, that is the activation of sympathetic 
nerve is accompanied by the withdrawal of parasympathetic nerve, and vice versa. 
The sympathetic activation in ESRD might be a secondary phenomenon. Vagal 
denervation, which weakened antagonism to sympathetic activity, is most likely to 
induce the abnormal activation of the sympathetic nerve. The phenomenon that 
enhanced LF band and attenuated HF band by the proposed refined PRSA technique 
is consistent with our understanding of antagonistic mechanisms of the sympathetic 
and parasympathetic nervous system. Furthermore, the proposed DCref in the pre-
sent study was able to improve the classification of healthy subjects from ESRD 
patients compared to DCorg. In addition to showing the higher AUC values (except 
for 24-h ECG recordings) among all methods tested, the DCref also showed higher 
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Youden’s index, thus featuring better discrimination power. Most importantly, DCref 
from 2-h ECG recordings had the best discrimination power of all calculated DCs. 
Similar with a recent study [40], our findings also indicate that short-term DCref, 
especially from 2-h ECG recordings may be a more useful and better index for auto-
nomic bedside risk stratification that as complementary to traditional HRV meas-
ures and clinical factors.

Several limitations are present in this study. First, the sample size is small for 
ESRD group. The ESRD patients enrolled after strictly screening through enrollment 
exclusion and criteria was most likely to be in a similar autonomic dysfunction, lead-
ing to the advantage of DCref is not particularly obvious. Second, only three ECG-
regimes, the 24-h, 2-h and 30-min ECG recordings were used to quantify DCs. More 
ECG-regimens should be used to determine the optimal ECG length for DCref quan-
tification, which could be performed in everyday clinical practice. Third, the pro-
posed DCref was verified by separating healthy subjects from ESRD patients. Since 
the original PRSA method was developed as a prognostic tool for risk stratification, 
particularly mortality in post-myocardial infarction patients. Further studies are 
warranted to demonstrate advantages of DCref in autonomic risk stratification.

Conclusions
The refined deceleration capacity index (DCref), which excludes from non-vagally 
mediated inflection points, provides an accurate assessment of cardiac vagal modula-
tion. Furthermore, DCref also provides a better distinction between healthy subjects 
and patients with ESRD compared with DCorg. DCref derived from 2-h ECG record-
ings, which have the best discrimination ability, might be complementary to existing 
autonomic function assessment, risk stratification, and efficacy prediction techniques 
for clinical use.
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