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Background
Bioinformatics, together with machine learning, can extend the scope of medical or 
biological practices. Biological and medical diagnoses and treatments sometimes 
need appropriate instruments. Machine-assisted medical diagnosis focuses on auto-
matic disease inference from observed symptoms. However, physical laws are limited. 
Therefore, advanced inference technologies must be developed to complement device 

Abstract 

Biological and medical diagnoses depend on high‑quality measurements. A wearable 
device based on Internet of Things (IoT) must be unobtrusive to the human body to 
encourage users to accept continuous monitoring. However, unobtrusive IoT devices 
are usually of low quality and unreliable because of the limitation of technology pro‑
gress that has slowed down at high peak. Therefore, advanced inference techniques 
must be developed to address the limitations of IoT devices. This review proposes that 
IoT technology in biological and medical applications should be based on a new data 
assimilation process that fuses multiple data scales from several sources to provide 
diagnoses. Moreover, the required technologies are ready to support the desired 
disease diagnosis levels, such as hypothesis test, multiple evidence fusion, machine 
learning, data assimilation, and systems biology. Furthermore, cross‑disciplinary inte‑
gration has emerged with advancements in IoT. For example, the multiscale modeling 
of systems biology from proteins and cells to organs integrates current developments 
in biology, medicine, mathematics, engineering, artificial intelligence, and semicon‑
ductor technologies. Based on the monitoring objectives of IoT devices, researchers 
have gradually developed ambulant, wearable, noninvasive, unobtrusive, low‑cost, and 
pervasive monitoring devices with data assimilation methods that can overcome the 
limitations of devices in terms of quality measurement. In the future, the novel fea‑
tures of data assimilation in systems biology and ubiquitous sensory development can 
describe patients’ physical conditions based on few but long‑term measurements.
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sensing, Bayesian network, Machine learning

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi 
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

REVIEW

Tang et al. BioMed Eng OnLine 2018, 17(Suppl 2):147
https://doi.org/10.1186/s12938‑018‑0574‑5 BioMedical Engineering

OnLine

*Correspondence:   
whho@kmu.edu.tw; 
yjjchen@nkust.edu.tw 
2 Department of Healthcare 
Administration and Medical 
Informatics, Kaohsiung 
Medical University, 
Kaohsiung, Taiwan
4 Department of Logistics 
Management, National 
Kaohsiung University 
of Science and Technology, 
Kaohsiung, Taiwan
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-018-0574-5&domain=pdf


Page 36 of 47Tang et al. BioMed Eng OnLine 2018, 17(Suppl 2):147

measurements. In contrast to human experts without knowledge of specific diagnostic 
criteria, statistical inference avoids type I and II errors. However, the assistive role of 
a machine must be consistent, and the final diagnostic decision must be ordered by a 
physician. As a consequence, full automation provides insufficient benefits in practical 
applications.

Current clinical diagnoses often provide decisions by comparing physiological data 
with several heuristically defined thresholds; for example, “infarction is true if ST-waves 
elevation exceeds 60%”. However, this scheme is only good for a human expert but not 
for a dummy machine. A trained doctor can consolidate all necessary data and replace 
relevant numbers with intuitive information to finalize his diagnosis, but a machine can-
not perform such replacements. Computerized diagnosis aims to replace human intui-
tion with various comprehensive algorithms and complicated criteria. Nevertheless, 
replacement has yet to be achieved. Thus, ideal computerized assistance should assess 
the statistical significance of conclusions and extend the scope of human experts to per-
form time-consuming and large-quantity investigations, as well as not mimic human 
processes. Technological advancements have improved backward and forward infer-
ences to provide novel evidence for quality judgment by human experts [1]. New sta-
tistical inference methods help doctors observe details that were previously difficult to 
observe because of high sampling costs in body reaction, such as in blood, radiative, or 
invasive tests. Moreover, existing technologies have been continuously developed to 
support high levels of disease diagnoses, such as hypothesis testing, multiple evidence 
fusion, machine learning, data assimilation, and systems biology.

A highly efficient tool is necessary to combine data from various sources. Data assimi-
lation refers to the quantitative methods which combine observations of variables with 
system behaviors to estimate internal states and key parameters. In scientific applica-
tions, data assimilation is similar to solving an inverse problem with ill-posed condition 
complex solutions. Although the concept is based on geosciences, data assimilation is 
a well-developed discipline in various fields, including ocean forecasting [2], paleocli-
matology [3], and gene networking [4]. Moreover, data assimilation has been applied to 
initiate large weather projects, such as the Regional Ocean Modeling System [5].

Current medical research trends include personalized medicine [6] and patient-spe-
cific modeling [7]. Influential applications have emerged because of the prominence of 
Internet of Things (IoT) and progress of cross-disciplinary integration. For example, the 
multiscale modeling of systems biology from proteins, cells, organs, and individuals inte-
grates the contemporary development of biology, medicine, mathematics, engineering, 
artificial intelligence, and semiconductor technologies. IoT is a computing concept envi-
sioned as the physical objects connected to the Internet with the ability to identify them-
selves to other devices [8–10]. Researchers have gradually designed ambulant, wearable, 
noninvasive, unobtrusive, low-cost, and pervasive monitoring devices based on IoT-
related monitoring devices. Moreover, with the successful integration of cross-discipli-
nary research, personalized medicine has become considerably realistic. Additional data 
from ambulant devices should be provided to obtain novel evidence. Vital signs are criti-
cal to diagnosis, but some signs are difficult to obtain [11]. Ideal transducers should be 
based on temporal and spatial patterns and physical signals, such as acoustic, electrical, 
and optical measurements [12, 13]. New generations of automatic diagnostic systems 
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should allow personalized treatments. In the future, novel data assimilation methods for 
systems biology and ubiquitous sensory can reveal a patient’s physical responses, which 
are modeled as a series of inverse inferences in each scale of system models [4, 14, 15].

Two problems are encountered in cross-disciplinary research. First, not all wear-
able devices can easily collect useful vital signs. Second, accurate treatments suggestion 
becomes challenging from mutually conflict information even if the first problem can 
be solved. Backward inferences can be achieved through Bayesian techniques, because 
inverse problems attributed to multiscale modeling are ill-posed. Hidden states, cause-
effect relations, missing measurement values, and control consequences are obtained by 
solving inverse problems. Thus, a potential treatment can be derived when all internal 
states are clarified [16, 17].

Similar to those portrayed in science fiction movies, instruments have been developed 
to observe a human body from multiple perspectives, including cell and organ shapes 
and the interaction timing of objects, such as a car technician running a computerized 
diagnosis on the timing of an engine ignition sequence. Using this tool, doctors can 
easily perform an immediate diagnosis. Before this scope was invented, mathematical 
inference was necessary to overcome measurement inaccuracy. Hence, inverse prob-
lems should be solved with advanced data assimilation techniques to provide new data 
evidence.

In the left panel of Fig. 1, the estimation of the unmeasured signals is inaccurate when 
one measuring device is used. The true signal should be in a solid line, and the estimated 
signal become the dashed line, because the estimation algorithm is insufficient. In this 
case, the consequence of estimation is equivalent to that of interpolation. Using data 
assimilation algorithm (right panel of Fig. 1), the estimation becomes accurate and adds 
new information to Device 1 by introducing Device 2. For example, a blood test cannot 
be performed frequently, but non-invasive galvanic potential can help improve the esti-
mation of other measurements. In Fig. 2, new evidence can be derived through obser-
vations of common causes. Through known system models, one observable can derive 
hidden parameters and then derive other unobservable. For example, from ECG we can 
estimate infarction locations and then we can estimate troponin concentration without 
physical measurement.

Identifying the relationship between causes and effects is important in assimila-
tion. For example, the relationship could be a linear combination of several causative 

Fig. 1 Data assimilation based on multiple evidence can enhance measurement accuracy
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factors or autoregressive functions in several change rates. Such relationships are 
described on three levels: interaction, constraint, and mechanism-based models [18]. 
We consider the mechanism-based model, referred to as the relation system model, 
that serves as the key to performing correct forward and reverse inferences. When 
integrated with cross-disciplinary knowledge, IoT-based multiscale data assimilation 
based (Fig. 3) can achieve the goals of personalized medicine. The accuracy of estima-
tion can be mutually compensated between different scales.

Data assimilation is implicated in personalized medicine when genome and pro-
teome data cannot be read at home. To our knowledge, efficient and unobtrusive IoT 
devices that are accessible and can process multisource decision-making for data 
assimilation have yet to be developed. However, commercially available prototypes 
have been designed. Cardiovascular system-related data, such as heart rate (HR) reg-
ularity and blood pressure (BP), can be recorded, monitored, and analyzed in a cloud 
control center with advanced mobile devices, such as mobile phones, smart watches, 
patient monitoring devices, or personal digital assistants [19]. Moreover, the diagno-
sis of cardiac arrhythmias, such as atrial fibrillation, can be easily made with such 
devices; subsequently, early disease management shall be applied, and the undesirable 
complications of diseases, such as stroke, may be prevented [20]. For a patient with an 
intracardiac electronic device, such as a pacemaker or a defibrillator, a home remote 
care system can be applied to upload cardiac electrophysiological information and 
body fluid status. An increase in tissue impedance, which may indicate fluid retention 
and heart failure, can be detected early, and doctors can be immediately informed 
via the system. Moreover, early diuretic administration and intervention can amelio-
rate heart failure, avoid hospitalization and respiratory failure, and minimize the eco-
nomic burden on governments [21, 22]. Furthermore, implantable continuous glucose 
monitoring devices are available commercially. Glucose sensors can wirelessly com-
municate with an external receiver, such as a smartphone, and offer a high-bandwidth 
data source for a health provider; and these sensors are applicable to new diabetes-
related health information technology applications [23–25].

Fig. 2 Concept of data assimilation
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Data collection devices for bioinformatics
Sensory devices are key enablers of a new data assimilation paradigm. To obtain ambu-
lant, wearable, noninvasive, unobtrusive, low-cost, and pervasive monitoring devices, 
researchers have extensively investigated various measurements with single devices and 
integrating numerous devices. Advancements in hardware technology and mathematical 
analysis have continuously expanded the field of sensory devices.

The importance of pervasive computing and IoT technology has been promoted in 
healthcare applications [26, 27]. The role of wearable devices in the paradigm of p-health, 
namely, participation, prevention, prediction, preemptive, pervasive, and personalized, 
has been highlighted [28]. With various technologies essential for patient monitoring, 
wireless devices and microchips contribute to the success of future applications [12, 29, 
30]. In order to monitor chronic diseases and perform preventive care, pervasive com-
puting is necessary for pursuing the acceptance of patients [13, 31]. A support vector 
machine has been proposed that combines measurements from health professionals 
with continuous data acquired from wearable devices to predict patient deterioration 

Fig. 3 Multiscale data assimilation based on Internet of Things devices



Page 40 of 47Tang et al. BioMed Eng OnLine 2018, 17(Suppl 2):147

that may readmit to Intensive Care Units (ICU) [32]. Personalized data and healthcare 
information, along with cloud computing, have been transmitted and processed over the 
cloud [33].

Among the requirements of a wearable monitoring device for common vital signs, 
such as electrocardiogram (ECG), ballistocardiogram (BCG), HR, respiration rate (RR), 
BP, blood oxygen saturation  (SpO2), core/surface body temperature, posture, and physi-
cal activities, unobtrusiveness is probably the most important property for continuous 
monitoring [34]. Several methods can be unobtrusive to patients [34], including capac-
itance-coupled sensing for ECG, electroencephalogram, (EEG) and electromyogram 
(EMG); photoplethysmographic (PPG) sensing for  SpO2, HR, RR, and BP; pulse wave 
propagation sensing for BP; piezoelectric sensing for respiration, heart sound, and BCG; 
inductive plethysmogram and optical fibers into textiles for respiration; and radar sens-
ing for lung or heart motions. With the physical capability of individual sensors, multiple 
sensors can be deployed to acquire the same vital sign. In this case, an effective algo-
rithm in data fusion can resolve the limitations of wearable devices [34].

Sound is apparently the easiest parameter to obtain among commonly measured phys-
iology data [35]. However, this parameter also suffers from contamination by cross-talk, 
noise, and artifacts. Lung motion involves low- and high-frequency vibrations. Moreo-
ver, the air resonance caused by high-frequency components creates an audible sound 
and can be analyzed to determine the ectopic functioning of lungs. Time–frequency 
analysis has been performed to extract the wheeze inside normal and abnormal breath 
sounds [35, 36]. Pneumonia has been automatically detected in breath sounds via short-
time Fourier transform and machine intelligence [37]. Abnormal respiration sounds have 
been detected by tracking instantaneous frequencies, which can be similarly obtained 
by previous approaches, and envelop, which can be obtained from ensemble empirical 
mode decomposition [38]. Sound signals from the heart are complicated. Aortic and 
pulmonary components of the second heart sound have been separated by establishing a 
nonlinear model of the observed chirp signals [39].

Like sound, light, photographic signals are easily obtainable. For example, PPG is used 
to derive heart and lung activities using reflection from incident lights; that is, PPG is 
applied to obtain the heart and respiratory rates independently, and the respiratory rate 
is subsequently recalibrated with the relationship between the two rates [40]. The accu-
racy of estimation is commonly cross-verified with these two parameters. In another 
proposed method [41], rough PPG signals are calibrated with ECG signals.

Electrical signals are important in noninvasive and unobtrusive sensing methods. 
However, most low-cost devices suffer from noise problems. Various measuring agents, 
such as current, impedance [42], and capacitance, suffer from low signal-to-noise (S/N) 
ratio. Heart-correlated impedance changes in the legs are measured for pulse rate, and a 
comparative result has been obtained under well-controlled conditions [43]. The bath-
room weighing scale concept has been applied and an unobtrusive impedance monitor 
has been developed for cardiovascular health [44]. Moreover, an ECG sensor in wireless 
hardware has been utilized for long-term wear [45]; as well as current heart monitoring 
systems [46]. Furthermore, impedance and capacitance have been proposed as poten-
tial candidates for long-term wear where measuring electrical potential is unreliable and 
active motion artifacts have been compensated during surface capacitance measurement 
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[47]. With the prevalence of wearable devices, commercialization has pressured this cat-
egory of sensors to viability.

Certain organ motions, such as heartbeats or lung aspirations, are easily detected by 
Doppler radars. However, measuring BP without a cuff is still under development. For 
example, BP is estimated with pulse wave velocity and transit time, which are considered 
vital signs [48]. Similarly, BCG and plastic optical fiber technology have collected cor-
responding pulse waves with unobtrusive cardiovascular monitoring systems [49, 50].

Among available wearable devices, a continuous blood sugar monitor is probably the 
most wanted functionality; nevertheless, the following unfavorable gaps have yet to be 
overcome. Personalized wearable devices have been proposed [51], but blood sugar 
measurement remains challenging [24]. Current technologies for non-invasive glu-
cose monitoring have been reviewed, and results have revealed current drawbacks and 
potential alternatives [52]. Therefore, breath gas contents and microwave skin reflection 
have been recommended as alternatives for blood glucose estimation [53, 54]. Moreo-
ver, Bayesian methods have been applied to overcome the inaccuracy of plasma glucose 
measurement from interstitial observations [55].

Data from various devices are irrelevant without a sophisticated medical decision 
system. A computerized program has been established based on diagnostic assistance 
[56, 57]. Advanced statistics and medical knowledge have been accumulated through-
out technological development [58, 59]. Similar statistics has been shared with systems 
biology [60]. Medical decision systems at two instances have been reviewed, and several 
support systems for major clinical decisions have been designed [61, 62]. A model has 
been implemented based on a diagnostic system to statistically analyze the composition 
profile of lipoprotein subclasses from clinical chemistry data, which helps predict meta-
bolic disorders and cardiovascular risk [63].

Fusion of multisource evidence in systems biology
Advanced statistical techniques are necessary to fuse data from multiple sources. A data 
fusion-based risk assessment framework for human health was proposed in accordance 
with Dempster–Shafer theory and systems biology principles to achieve excellent evi-
dence fusion [64]. The same evidence fusion theory has been applied to design and fuse 
multisensory evidence for engine fault diagnosis [65]. A framework with multiscale pro-
cesses and multiple model choices, such as ordinary or partial differential equations, has 
been recommended for biological applications [66].

Prediction functions well with the correct system model. Among the most common 
and traditional models are linear regression and linear time series types. However, linear 
and time-invariant systems are part of a small portion of the actual world phenomena. 
Moreover, most systems change with time, and outputs are not linearly proportional to 
inputs. Some systems can be easily discussed with a simple transformation. For instance, 
neural network transformation has been implemented to bypass nonlinear problems and 
perform effective inferences based on extracted features [67, 68]. Models and methods 
in discovering biomarkers have been reviewed to predict clinical outcomes in the cardio-
vascular field [69]. Mathematical modeling has been applied to predict atherosclerosis 
[70].
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Systems biology can be easily merged with data assimilation in bioinformatics. For 
example, the same hierarchical Bayesian estimator with data assimilation has been used 
to rank several biochemical system models on the basis of hidden parameters [71]. The 
properties and solutions of inverse problems have been reviewed in terms of systems 
biology in relation to mathematical modeling and experiments [18]. In systems biol-
ogy, cell functions should be elucidated in terms of system dynamics [72]. Therefore, the 
goals of systems biology are consistent with those of data assimilation. A Kalman filter, 
which is a specific data assimilation method, has been used to recursively estimate hid-
den parameters in a biological system [73]. The roles of systems biology in predictive and 
preventative medicine have been highlighted [74, 75]. In the proposed concept of sys-
tems medicine, medical genomics is merged with healthcare applications [76]. Moreo-
ver, personalized medicine should be based on systems biology [77, 78]. With advances 
in scientific knowledge, personalized medicine with patient-specific modeling has been 
achieved. Research progresses on patient-specific modeling have been reviewed, and 
results have revealed that simulation should address challenges in the dynamics of sys-
tems biology instead of solely on 3D image presentation [7].

Bayesian statistics has been improved to support statistical inference in systems biol-
ogy. Inference methods have been proposed for medical prediction [79]. Computation 
issues in biology have been determined, and the importance of statistical inference has 
been explained [60]. A Bayesian network has been constructed without comprehensive 
observations [80]. Moreover, Bayesian methods, such as biological sequence, microar-
ray, and protein interaction analysis, have been applied to bioinformatics [81]. Future 
applications, such as statistical inference based on the system information of differen-
tial equations, have been proposed through Bayesian methods in bioinformatics [81]. A 
tutorial on Bayesian network basics in the health domain has been provided [82]. Com-
plementary to computations per se, a multiscale design at protein, cellular, tissue, and 
organ levels has been recommended [83].

In advanced Bayesian applications, a partially collapsed Gibbs sampler is used in ECG 
signals to delineate P- and T-waves, which are difficult to locate without using maximum 
posterior probability [16]. The precision of the parameters in a Bayesian network will not 
significantly alter the correctness of diagnosis [84]. Moreover, a Bayesian network deci-
sion model has been proposed to diagnose dementia-related diseases [85]. Furthermore, 
a hierarchical Bayesian method has been employed to estimate the posterior distribution 
of transmural ECG imaging without acquiring accurate geometric parameters [17].

Data assimilation in biology and medicine
Unobservable data can be readily estimated by Bayesian methods, forward system equa-
tions, and few observations, even without detailed parameters, which are then gradu-
ally estimated through assimilation. Moreover, the technique applies sparsely observed 
information to estimate system internal states by acquiring assumptions based on system 
behaviors typically governed by a set of predefined spatio-temporal equations. Assimila-
tion application can significantly reduce the requirement of measurement [16, 17].

Although well-developed diagnostic decision support systems have been established 
for general usage, accumulated experiences are helpful for more elaborate applications 
upon establishing the forward path of system dynamics. New algorithms are necessary 
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for fusing data when observations are collected from different models of system dynam-
ics [32]. Scientific knowledge and applications are important in the success of related 
developments because system dynamics modeling is crucial in data assimilation. How-
ever, a simple linear regression between causes and effects is insufficient for biological 
and medicinal applications.

Chemical measurements produce the minimum amount of measured data for a 
required level of accuracy because laboratory experiments are costly and time-consum-
ing [63]. Chemical data assimilation has been reviewed by introducing a computational 
model in marine biogeochemistry, which combines observed data and system behav-
ior models [86]. Moreover, a Bayesian method and prior knowledge in parameters have 
been applied to estimate bacterial growth rate using minimum required measurement 
data in bacterial counting [87].

In data assimilation, automatic diagnosis is performed to achieve disease inference 
and measurement data completion via a forward system with inferred disease states. The 
fundamental Bayesian statistics used in data assimilation, including ensemble Kalman 
filtering, Markov chain Monte Carlo sampling, and hierarchical Bayesian modeling, have 
been described [88]. Furthermore, stochastic processes in data assimilation that infer 
high-quality data measurements using frequent low-quality observations and rare accu-
rate observations have been reviewed [89].

Data assimilation mostly focuses on sequential problems; hence, a tractable algo-
rithm is essential for computational feasibility. A relevant sampling of the Monte Carlo 
method or particle filters have been applied to approximate Bayesian updating within 
the large space of posterior probabilities [90]. Sequential data assimilation algorithm has 
been performed based on limited observations for continuous monitoring of soil mois-
ture and temperature [91]. State-space and parameter estimations have been conducted 
simultaneously using an ensemble Kalman filter [92].

Data assimilation has been applied to resolve various issues in medical applications. 
A tissue contractility problem has been investigated to predict infarctions by using a 
sequential data assimilation approach based on a biomechanical heart model established 
from magnetic resonance imaging data [93, 94]. The myocardial mechanical property 
has been estimated on the basis of end-diastolic displacement measurements via a data 
assimilation framework [14]. Moreover, cardiac contraction and relaxation have been 
determined via a variational data assimilation approach based on a new dynamic model 
using cine-magnetic resonance imaging (MRI) sequences [15].

In bioinformatics, Bayesian and Markov approaches have been used extensively, but 
applications that estimate sequentially changing dynamics have yet to be fully devel-
oped. Regarding the genomic sequencing problem, semidefinite programming and 
kernel methods have been used to fuse various types of experimental data using similari-
ties between pairs of genes and proteins [95]. State-space data assimilation with a high 
moment ensemble particle filter in a sequentially changed gene regulatory network has 
been performed to estimate hidden state variables, which are inferred from time-course 
observation data from several information sources [4].

The purposes of medical data assimilation and medical decision support system are 
different. Data assimilation may create millions of systems for different patients and 
can be applied to collect personal data, establish models, and obtain new evidence. 
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Moreover, it seldom applies the logic that most people act in such manner that others 
may follow the same way.

Conclusions and future development
This review illustrates that IoT technology in biological and medical applications has 
remarkably influenced next-generation healthcare. However, advanced data process-
ing technologies and cross-disciplinary integration must be developed to complement 
the physical limitations of portable devices. Relevant technologies are mostly ready 
to support the desired level of disease diagnosis, such as hypothesis testing, multiple 
evidence fusion, machine learning, data assimilation, and systems biology. The multi-
scale modeling of systems biology at protein, cellular, and organ levels has integrated 
the contemporary development of biology, medicine, mathematics, engineering, arti-
ficial intelligence, and semiconductor technologies.

New data assimilation processes enable the fusion of multiple data scales from mul-
tiple sources and is, therefore, sufficient to provide the desired precision for diag-
nosis or medical decisions. Based on monitoring objectives related to IoT devices, 
researchers have designed ambulant, wearable, noninvasive, unobtrusive, low-cost, 
and pervasive monitoring devices on the assumption that data assimilation methods 
can address the limitations of such devices in terms of quality measurement.

In future studies, novel data assimilation approaches in systems biology and ubiqui-
tous sensory studies can help elucidate a patient’s physical conditions with few, non-
intrusive, and long-term measurements.
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