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system, which is implemented for the health checkup of lung lesions involving tens
of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high
accuracy of diagnosis by an automated system can reduce the radiologist’s workload
on scrutinizing the medical images.

Method: We present a deep learning model in order to efficiently detect abnormal

levels or identify normal levels during mass chest screening so as to obtain the proba-
bility confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder
is designed to compute the reconstruction error. We employ four publicly available
radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for
mining the correct disease level of the CXRs that are to be submitted to a computer
aided triaging system. Based on our approach, we vote for the final decision from
multi-classifiers to determine which three levels of the images (i.e. normal, abnormal,
and uncertain cases) that the CXRs fall into.

Results: We only deal with the grade diagnosis for physical examination and propose
multiple new metric indices. Combining predictors for classification by using the area
under a receiver operating characteristic curve, we observe that the final decision

is related to the threshold from reconstruction error and the probability value. Our
method achieves promising results in terms of precision of 98.7 and 94.3% based on
the normal and abnormal cases, respectively.

Conclusion: The results achieved by the proposed framework show superiority in
classifying the disease level with high accuracy. This can potentially save the radiolo-
gists time and effort, so as to allow them to focus on higher-level risk CXRs.

Keywords: Chest screening, Computer aided diagnosis, Deep learning, Autoencoder,
Receiver operating characteristic
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Background

Chest screening is a basic procedure in radiology for lung disease prediction and
diagnosis. However, such diagnosis is very time consuming and subjective. The turna-
round time is of great importance in radiology as it is an important criterion to evalu-
ate radiologists rather than the quality of their reports [1]. Especially in rural areas,
direct care providers rely mainly on teleradiology for their chest X-rays (CXRs) inter-
pretation. The emphasis on turnaround time can result in sub-standard reports, con-
fusion, misdiagnosis, and gaps in communication with primary care physicians. All
of these can severely and negatively impact patients’ care and may have life-changing
consequences for patients. Our work is inspired by the recent progresses in image
classification and segmentation. The former has substantially improved performance,
largely due to the introduction of ImageNet database [2] and the advances in deep
convolutional neural networks (CNNs) that effectively helps to recognize the images
with a large pool of hierarchical representations. The CNNs can be used successfully
in medical image classification and segmentation [3—-6]. Many other techniques on
lung disease detection and classification have been proposed [7-19].

Sufficient performance, no increase in reading time, seamless workflow integration,
regulatory approval, and cost efficiency are the key points to the radiologists [20].
Tataru et al. applied three different neural network models for abnormality detection
in CXR images that are not public released [21]. Our work will focus on classifying
the CXRs as normal or abnormal in order to assist radiologists to move more quickly
and efficiently. We then use the features extracted from deep neural network model
for the classification of abnormalities in the CXRs. That is to say, we will classify the
CXRs at three status levels: obvious abnormal, obvious normal, and uncertainty. Fur-
thermore, a large collection of medical images can be automatically classified to three
main levels, and the uncertainty status level images can be checked carefully by radi-
ologist. A computer-aided triage system can mitigate these issues in several ways.
Firstly, it will allow radiologists to focus their attention immediately on higher-risk
cases. Secondly, it will provide radiologists with more information to help them cor-
rect potential misdiagnoses. The CXRs input to our algorithm will be a digital image
format along with a label stating ‘normal’ or ‘abnormal’

In recent years, many methods were proposed for CXRs classification. There are
many conventional machine learning methods to study the classification of X-ray
chest radiographs [22, 23], such as based on texture and deformation features [24]
or ensemble methods [25]. In addition, with the development of deep learning tech-
nology, many deep learning method are also applied to the field of medical image
analysis. Yao et al. [26] explored the correlation among the 14 pathologic labels based
on global images in Chest X-ray 14 [27] in order to classify CXRs, and rendering it
as a multi label recognition problem. Using a variant of DenseNet [28] as an image
encoder, they adopted the long-short term memory networks (LSTM) [29] so as to
capture dependencies. Kumar et al. [30] investigated that which loss function is more
suitable for training CNNs from scratch and presented a boosted cascaded CNN for
global image classification. CheXNet [31] is the recent effective method for fine-tun-
ing a 121-layer DenseNet on the global chest X-ray images, which has a modified last
fully-connected layer.
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Table 1 Number of positive cases and negative cases used in training and validation sets

Training set Validation set
Positive Negative Positive Negative
418 1318 179 565

In this work, we demonstrate how to automatically classify CXRs at different status
levels. Four publicly available radiology datasets that contain CXR images and reports
namely are exploited as follows: the Openl [17] open source literature, JSRT [32], Shen-
zhen Chest X-ray set [33], and NLM-Montgomery County Chest X-ray set [33]. A com-
mon challenge in medical image analysis is the data bias. When considering the whole
population, diseased cases are much less than healthy cases, which is also the case in the
CXRs datasets used. In our study, normal cases account for 75.9% (1883 images) of the
entire dataset (2480 images), and the abnormal cases account for 24.1% (597 images) of
the entire dataset.

Inspired by the ideas introduced in [34, 35], we employ the already trained models
to obtain the high level features and use them to infer the probability of image level.
Then, we train an autoencoder network with the obtained joint image and generate new
image based on decoder network to obtain the reconstruction error. With the combined
metrics including the probability and reconstruction error based on ROC curve, we can
achieve a score for classifying the image level. Finally, we vote for the decision of the
image level using the ensemble method. We can ultimately generate the better and more
accurate image level. It will greatly reduce the workload of medical experts and assist
them to pay more attention to the suspected higher risk chest X-rays.

The outline of this paper is organized as follows. In “Methods’, we present the pre-
processing of the steps for the acquired CXR images, and features extraction is pre-
sented by transfer learning using a classical deep model. Moreover, the convolutional
sparse denoising autoencoder network to reconstruct the image is proposed and image
classification with CNNs, which are fine-tuned with extracted features. We report the
experimental results and discussions in “Results” and “Discussion’, respectively. Finally,

conclusions and the future work are summarized in “Conclusion”.

Methods

This section discusses the datasets, preprocessing, lung segmentation, feature extrac-
tion, and classification steps. The convolutional sparse denoising autoencoder (CSDAE)
is proposed to get the reconstruction error for classifying CXRs. Moreover, image clas-
sification with CNNs can allow us to obtain the probability in order to classify CXRs.
Finally, the CXRs are classified by combining predictors based on the ROC curves.

Datasets

To ensure the robustness of our method, we test the proposed technique on a total of
2480 images including 1883 negative cases and 597 positive cases from four public data-
sets, namely JSRT, Openl, SZCX, and MC. The data is randomly split into 70% for train-
ing set and 30% validation set. The number of positive cases and negative cases in the
training set and validation set are summarized in Table 1.
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Next, we give detailed description of every datasets as follows.

Japanese Society of Radiological Technology (JSRT)

A standard database that is acquired from the JSRT. The detailed information of JSRT
can be assessed in [32]. This dataset contains 154 cases with confirmed lung nodules
by CT and 93 normal cases without nodules. The images have been digitized to 12-bit
based on 2048 x 2048 pixels and at a resolution of 0.175 mm per pixel. The nodule size

ranges from 5 to 40 mm in diameter.

Openl

Generally, we examine the posteroanterior views through the chest of the subject from
back to front. Hence, we only select the frontal images (numbering 3812) in Openl
dataset that has totally 7470 images including 3658 as lateral images. Only 1433 images
including 49 cases with nodule and tuberculosis, and 1384 normal cases are selected
from the frontal images. The images have following different resolutions (in pixels):
512 x 624, 512 x 420, and 512 x 512.

China set—The Shenzhen set—chest X-ray database (SZCX)

The standard digital image database for Tuberculosis is created by the National Library
of Medicine, Maryland, USA, in collaboration with Shenzhen No. 3 People’s Hospital,
Guangdong Medical College, Shenzhen, China [33]. The Chest X-rays are from out-
patient clinics and had been captured as part of the daily routine using Philips DR Digi-
tal Diagnose systems. There are 336 cases with manifestation of tuberculosis and 326
normal cases. The format of this dataset is PNG where the image size varies for each
X-ray with approximately 3000 x 3000 pixels. This set includes some pediatric images.
As a result, the image sizes in the dataset vary: image width: minimum is 1130 pixels
and maximum is 3001 pixels; for the image height, the minimum is 948 pixels and the
maximum is 3001 pixels. The resolutions range from 1024 x 1024 to around 2480 x 2480
pixels. The dataset is publicly available in: http://archive.nlm.nih.gov/repos/chestImage

s.php.

Montgomery-County chest X-ray database (MC)

The standard digital image database for Tuberculosis is created by the National Library
of Medicine in collaboration with the Department of Health and Human Services, Mont-
gomery County, Maryland, USA [33]. This image set contains data from X-rays collected
under Montgomery County’s Tuberculosis screening program. There are 58 cases with
manifestation of tuberculosis and 80 normal cases. Its format is PNG and the matrix
size is 4020 x 4892 or 4892 x 4020 pixels. The pixel spacing in vertical and horizontal
directions is 0.0875 mm while the number of gray levels is 12 bits. The dataset is publicly
available in: http://archive.nlm.nih.gov/repos/chestImages.php.

Preprocessing

Preprocessing is a preliminary stage in designing computer aided diagnosis (CAD) sys-
tems. Its main goal is to enhance the characteristics of the image that can help to improve
performance in subsequent stages. There are many sources of variance in the CXRs data,
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which may negatively affect the performance of downstream classification tasks using
feature-based methods or neural networks. We first process all images based on histo-
gram equalization in order to increase contrast within each CXRs image. After that, we
label images that have disease as positive cases, and all other normal image as negative
cases. We randomly split the entire dataset into 70% for training and the remaining 30%
for testing. Before inputting the image into the network for extraction of the high-level
features, we crop the region from the original image, and then down-sample every image
to a 512 x 512 matrix of pixels.

Our chest screening system consists of several modules in the processing pipeline
(Fig. 1). The first module aims to perform preprocessing on the chest radiographs. Due
to the high effect of the outside of lung, we segment the region of lung using U-net [36]
and achieve the promising dice and intersection-over-union (IoU) in the second module.
High level features are extracted using transfer learning from pre-trained deep network
model in the third module, which are used for training the classifier so as to give the
confidence of the status level pertaining to the image. The fourth module is to recon-
struct the image with the CSDAE. Finally, the two metric indices are used to determine
the final decision on the level of the image.

The development of such systems has so far been hindered by immense variance of
CXRs images and lack of labeled data. The normal versus abnormal ratio is 3.15:1. To
reduce the impact of the data imbalance, we augment the data by using SMOTE [37],
SMOTE-TK [38], and SMOT-ENN [38] in the feature space. Finally, we normalize the
images based on their mean and standard deviation in the training feature set. In addi-
tion, we implement the data augmentation by a rotation range from 0 to 10, with a width
shift and a height shift of both 0.2 for each training image.

Lung field segmentation

The key step in CAD scheme for lung disease detection in chest radiographs is the seg-
mentation of the lung field whereby many approaches have been proposed. All images in
the utilized datasets contain regions outside lungs that are not relevant to lesion detec-
tion. To diminish the risk that the features present in the images, but are irrelevant to
lesion detection tends to distort the final results, we decide to segment the lung regions
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Fig. 1 Workflow diagram of our proposed method
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of the CXRs. The most classic method is a graph cut based segmentation method that
is mentioned in [39]. It begins with content based image retrieval using a training set
along with its defined masks. The initial specific anatomical model is created using
SIFT-flow for deformable registration of training masks for the patient CXR. Finally, a
graph cuts optimization procedure with a custom energy function is used. These meth-
ods can be broadly classified into four categories: (1) rule-based techniques, (2) pixel
classification technique, (3) deformable model-based techniques, and 4) hybrid tech-
niques [39]. Although these methods yield accurate segmentation based on pixel clas-
sification, they can result in non-desirable shapes, such as in [40, 41]. Recently, there
has been an increasing interest towards the exploration of deep learning methods. There
are many works on image segmentation employing these method such as references [36,
42-44]. The encoder-decoder structure of U-net can capture the delicate boundaries of
objects by exploiting the high resolution feature maps in the decoder path. Hence, we
can employ the U-net to account for the high variability of lung shapes with the JSRT
and MC. Figure 2 shows examples of the final boundaries of the lung areas with high IoU
0.963 and Dice 0.978. After the segmentation of the lung region, the resulting image is
cropped to the size of a minimum bounding box containing all the pixels of the lungs.

loU = 0.9626 Prediction Difference

Processed 1.jpg

Processed 2.jpg loU = 0.9580 Difference

=

Processed 3.jpg loU = 0.9582 Difference

Processed 4.jpg loU = 0.9559 Difference

Fig. 2 Segmentation of lung from public database based on U-net
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Feature extraction

Feature extraction is another critical component in the CAD systems, which has a great
influence on their performance. Recently, deep neural network has gained popular-
ity because of its ability to learn mid and high-level image features. The deep learning
method has been applied in many medical image analysis tasks [10, 45, 46] and remark-
able results have been achieved. Deep learning methods are more powerful when
applied to large training sets. Meanwhile, we can ideally train a CNNs by a large number
of medical datasets and achieve promising performance. However, the large datasets in
the medical field are usually rare and very expensive to obtain. That is to say, we do not
have enough medical data, and deep learning methods are most effective when applied
to networks with large number of training data in order to train the deep neural net-
work. However, we can extract the high level features by using deep learning method
based on non-medical learning [47]. Recently, many papers have been published in the
general computer vision literature using transfer learning, which is an efficient way to
utilize image representations learned with CNNs on large-scale annotated datasets. In
particular, these are the target domains in which limited data exists. Transfer learning
from pre-trained ImageNet can be useful in medical images [7, 35].

In the computer vision domain, large image sets exist (e.g. ImageNet) which enable
better training of popular CNNs. In many image recognition tasks pertaining to the
large scale visual recognition challenge of ImageNet, a few examples of such CNNs are:
Decaf (2014), AlexNet (2012), VGG (2014), Overfeat (2013), Google Inception Net
(2015), and ResNet (2016) [48—54]. The CNNs were able to extract improved representa-
tions from raw data without requirement for domain knowledge. This was done with no
hyper-parameter tuning, which suggests that there are further improvements that can
be made. This is important for the task generally as it can mean that there is potential in
using CNNs or other deep learning strategies as a “black box’; whereby we will be able to
achieve excellent machine learning performance neglecting the need of expert-designed
feature extraction or domain knowledge.

The VGGNet in [50] was trained over a subset of images from ImageNet containing
1000 categories and 1.2 million images. This network is characterized by its simplicity,
as it involves using only 3 x 3 convolutional layers stacked on top of each other with
increasing depth. Reducing volume size is handled by max pooling. Two fully-connected
layers, each with 4096 nodes is then followed by a softmax classifier. For the fully-con-
nected layers, each has 4096 neurons. We extracted the feature from the fully-connected
layer on the pre-trained VGGNet model by the transfer learning to train our classifier.
The dataset can be benefited from more complex GoogLeNet [51], which is arguably the
current state-of-the-art CNN architectures. However, there are still other classical deep
neural networks such as InceptionNet [48] and residual networks [49].

In this paper, we extract the feature using transfer learning from VGGNetl6. After
that, training the traditional classifier is done using a 10-fold cross validation. Besides,
we also design the neural network to fine-tune it from the extracted features.

CSDAE
An autoencoder (AE) neural network is an unsupervised learning algorithm that
applies backpropagation, and setting the target values to be equal to the inputs. In
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other words, it is trying to learn an approximation to the identity function so that the
output can be similar to the input. The AE mostly aims at reducing feature space in
order to distill the essential aspects of the data versus more conventional deep learn-
ing, which expands the feature space significantly in order to capture non-linearity
and subtle interactions within the data. Autoencoder can also be seen as a non-linear
alternative to principal component analysis. This trivial function seems not to be very
exciting at all; however, if we consider some constraints on the AE, one can discover
suitable features for a learning problem in an automatic way. The goal of the AE is
to learn a latent or compressed representation of the input data by minimizing the
reconstruction error between the input at the encoding layer and its reconstruction at
the decoding layer.

The AE comprises two parts: the encoder and decoder. The encoder reduces the
dimensions of input data so that the original image is compressed. The decoder
restores the original image from the compressed data. The autoencoder is a neu-
ral network that learns to encode and decode automatically, which can be shown in
Fig. 3.

Beyond simply learning features by AE, there is a need for reinforcing the sparsity of
weights and increasing its robustness to noise. Ng et al. introduced the sparse autoen-
coder (SAE) [55], which is a variant of the AE. Sparsity is a useful constraint when
the number of hidden units is large. SAE has very few neurons that are active. Sparse
feature learning is a common method for compressed feature extraction in shallow
encoder-decoder-based networks, i.e. in sparse coding [56-59], in AE [60], and in
Restricted Boltzmann Machines (RBM) [61, 62]. There is another variant of AE called
the denoising autoencoder (DAE) [63], which minimizes the error in reconstructing
the input from a stochastically corrupted transformation of the input. The stochas-
tic corruption process involves randomly setting some inputs to zero. The purpose
of this denoising autoencoder is to take a noisy image as input and return a clean
image as output. In our research, we consider CSDAE to train a convolutional sparse
AE, which can reconstruct the input data from a corrupted version by manual addi-
tion with random noise (Table 2). Based on our case, Gaussian noise is added to the
original image. This approach can effectively integrate the advantages in SAE, DAE,
and CNN. This hybrid structure forces our model to learn more abstract and noise-
resistant features, which will help to improve the model’s representation learning per-
formance. We reconstruct the original dataset using the reduced set of features and
compute the means squared error for both of them (Fig. 4).

The identity function seems particularly trivial to be learned. However, by placing con-
straints on the network via limiting the number of hidden units, we can discover inter-
esting structures pertaining to the data. In this paper, we employ convolutional sparse

Autoencoder

- Compressed P
[ ’ » <
) er. Information

Fig. 3 Flow chart of Autoencoder
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Table 2 Network architecture of CSDAE

Layer (type) Output shape Param#
Input_1(InputLayer) (None, 512,512, 1) 0
Conv2d_1(Conv2D) (None, 512,512, 16) 160
Max_pooling2d_1(MaxPooling2D) (None, 256, 256, 16) 0
Conv2d_2(Conv2D) (None, 256, 256, 8) 1160
Max_pooling2d_2(MaxPooling2D) (None, 128, 128, 8) 0
Conv2d_3(Conv2D) (None, 128, 128, 8) 584
Max_pooling2d_3(MaxPooling2D) (None, 64, 64, 8) 0
Conv2d_4(Conv2D) (None, 64, 64, 8) 584
Up_sampling2d_1(UpSampling2D) (None, 128, 128, 8) 0
Conv2d_5(Conv2D) (None, 128, 128, 8) 584
Up_sampling2d_2(UpSampling2D) (None, 256, 256, 8) 0
Conv2d_6(Conv2D) (None, 256, 256, 8) 1168
Up_sampling2d_3(UpSampling2D) (None, 512,512, 16) 0
Conv2d_7(Conv2D) (None, 512,512, 1) 145

model loss model loss
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010 st 014 test
0.08 012
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0.06
g g 008
0.04 ~ 006
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000 SRS - 000 ~ —
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model loss model loss
010
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test test
008
008
" 0% - 006
w w
(=] (=]
= o004 - 0.04
0.02 002
000 —— — 000 T— —
0 20 o ) ) 100 0 2 0 ) 100
epoch epoch
c d
Fig.4 Loss over the epochs on the AE and CSDAE. a AE with noise factor 0.01, b CSDAE with noise factor
0.01, ¢ AE with noise factor 0.05, and d CSDAE with noise factor 0.05

autoencoder in order to reconstruct the original image. The power of CSDAE lies in the
form of reconstruction-oriented training, where the hidden units can conserve the effi-
cient feature to represent the input data. Feature extractors are learned by minimizing
the reconstruction error of the cost function in [1]. The first term in the cost function is

the error term. The second term is a regularization term that is given by

Page 9 of 19
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Lon i i Py
L(X,Y)=§Zx =y oW (1)
i=1

where X and Y represent the training and reconstructed data while A and W are the reg-
ularization parameter and weight, respectively.

In order to obtain a better representation, we consider a rectified linear unit (ReLU)
activation function, and the default hyperparameters settings are as follows: learning
rate=0.0001, and batch size =62. These hyperparameters are chosen as those previously
optimized on ImageNet. We set the L1 regularization parameter as equal to 0.00001 in
order to determine the sparseness value. The Gaussian noise factors are set to0.01 and
0.05.

The key idea of CSDAE is to learn a sparse but robust bank of local features. After that,
we can compute the reconstruction error by performing an input image subtraction of
the reconstructed image from the CSDAE network.

Totally, a 2480 images from the four public databases are used for the experiments,
which are randomly split into 70% training (1736 images) and 30% testing (744 images).
Only 1318 images were used for training the CSDAE.

Image classification with CNN

Even when we balance the dataset by augmenting many diseased samples, it is still dif-
ficult for CNN to learn a good model to distinguish many abnormal cases from normal
cases, which have many variations on their original samples. Therefore, we attain the
features from VGGNetl6 with pre-training on ImageNet to fine-tune our CNNs with
batch-normalization, data-dropout, which is assessed by the cross entropy and focal loss
[64]. Default hyperparameter settings are as follows: learning rate =3e—5, regularization
is L1, batch size =62, and drop out=0.25 or 0.5. These parameters are chosen as opti-
mized on training data. Table 3 illustrates the network architecture. For the focal loss
function, we set lambda=0.1, and gamma=0.1. In addition, we train our network on
the original training data and other three data augmentation.

Table 3 Network architecture of proposed image classification

Layer (type) Output shape Param#
Input_4(InputLayer) (None, 512) 0
Batch_normalization_4(Batch) (None, 512) 2048
Dropout_4(Dropout) (None, 512) 0
Dense_4(Dense) (None, 512) 262,656
Batch_normalization_5(Batch) (None, 512) 2048
Dropout_5(Dropout) (None, 512) 0
Dense_5(Dense) (None, 512) 262,656
Batch_normalization_6(Batch) (None, 512) 2048
Dropout_6(Dropout) (None, 512) 0
Dense_6(Dense) (None, 1) 513
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Combining predictors for classification based on ROC curve

We can attain two metrics from the prediction of CNN and the reconstruction error from
the CSDAE. How to combine multiple predictors into a score is the key to the final deci-
sion. We assume that the predictors (C1, Cy, . . . Cp) are given and the statistical problem is to
estimate 8 = (B, . .., Bp) from data in Eq. (2). We seek estimators that are consistent under
the risk score model [3], since under that model f3(C) is the optimal combination as follows:

fB(C) = C1+ B2Co + -+ BpCp. (2)

Under a particular circumstance we can allow fg(C) to be the “right” combination score
for classification based on C. If the risk score is some monotone increasing function of
f8(C), then we have

Ply=1|C] =g(C1 + f2Ca + --- BpCp) = g(f(C)). (3)

It follows the Neyman-Pearson lemma [65, 66] that rules based on fg(C) > c are opti-
mal. Assuming only the generalized linear model [3], the optimality of f3(C) implies that
the ROC curve for any other function of C cannot be higher at any point than the ROC
curve for fg(C). The area under the ROC curve (AUC) is the most popular ROC sum-
mary index. The optimal ROC curve has maximum AUC so we can use it as the basis
for an objective function of the data to estimate 8. It is easy to show that the AUC of the
empirical ROC curve is the Mann—Whitney U statistic as follows:

Sy S0 I[Lo(Cpi) > Ly(Cpy)]
npnp )

AUC(b) = (4)

where np is the number of positive cases and 7, is the number of negative cases. We pre-
sent the corresponding AUC based estimator of S as

EAUC = argmax (A/LE'(b)). (5)

Results
All experiments are conducted on HP Z840 platform with the Tesla K40c and Quadro
K5200, CPU E5-2650 v3 2.30 GHz, memory 126G, and Ubuntu 16.04 operating system.

In total, 2480 images from the four public databases are used in our experiments,
which are randomly split into 70% training (1736 images) including 1318 negative cases
and 418 positive cases, and 30% testing (744 images) including 565 negative cases and
179 positive cases. The testing data is strictly independent to the training data, which
is not used to tune our algorithm. We employ four commonly used metrics to quanti-
tatively evaluate the performance of our method namely, precision, recall, F1, and AUC
scores.

Through experiments, we are able to show that these factors elevate the classification
accuracy of our CSDAE. They are all indispensable to our model as there are usually a
small drop in accuracy when removing these structures. We design a CSDAE network
by adding different noise factors of 0.01 and 0.05 for all data. Then, the CSDAE network
and the regular AE network are trained and tested on the datasets. The mean and vari-
ance metrics of the MSE are used for evaluation, respectively. The experimental results
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Table 4 Comparisons of the mean and std of MSE between AE and CSDAE

Noise factor  Train data MSE (mean +std) Test data MSE (mean*std) Test noised data

MSE (mean =+ std)
AE 0.01 0.000983 4 0.000304 0.001088 4+ 0.0004 0.00111240.000405
CSDAE 001 0.000829 +0.000282 0.000923 +0.000369 0.000922 +0.000368
AE 0.05 0.001039+0.000334 0.00114640.000427 0.001255+£0.000445
CSDAE  0.05 0.001003 +0.000334 0.00110340.000421 0.00117440.00045

X )
21 ) ) 0 ) A

Fig. 5 Original lung image and the reconstructed lung image from AE: upper row is the original image while
the bottom row is the reconstruction image
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Fig. 6 Original lung image and reconstructed lung image from CSDAE. a Results of CSDAE with noise
factor 0.01: the upper row is the original image, middle row is the image with noise, and bottom row is the
reconstructed image. b Results of CSDAE with noise factor 0.05: the upper row is the original image, middle
row is the image with noise, and bottom row is the reconstructed image

show that our CSDAE network is better than the conventional AE network under differ-
ent noise levels, which illustrate the reliability of our network design. The detailed com-
parisons are shown in Table 4. The training process of AE and CSDAE based on different
noise factors is presented in Fig. 5. The original lung image and the reconstructed lung
image from AE are shown in Fig. 6. Meanwhile, Fig. 7 shows the original lung image and
the reconstructed lung image from CSDAE.

Tables 5 and 6 provide the comparison of different classifiers based on four data-
sets: (1) without data augmentation, (2) smote augmentation (SMOTE), (3) only data
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Table 5 Performance results based on test data using four classifiers: KNN, logistic

regression, SVM, random forest

Classifier Data augmentation Precision Recall F1 AUC
KNN Without augmentation 0.73 0.58 0.64 0.753
087 093 0.9
SMOTE 044 0.84 0.58 0.752
093 0.67 0.78
Positive augmentation 0.57 0.68 0.62 0.758
0.89 0.68 0.87
4x augmentation 0.57 0.84 0.62 0.758
0.89 0.89 0.87
Logistic Without augmentation 0.76 0.54 0.63 0.744
0.87 0.95 091
SMOTE 0.61 0.82 0.64 0.79
0.92 0.76 0.84
Positive augmentation 0.57 0.66 0.61 0.754
0.89 0.84 0.86
4x augmentation 0.63 0.72 0.67 0.792
0.91 0.87 0.89
SVM Without augmentation 0.63 0.73 0.68 0.798
091 0.86 0.89
SMOTE 0.63 0.77 0.69 0.813
092 0.86 0.89
Positive augmentation 0.59 0.64 0.61 0.75
0.88 0.86 087
4x augmentation 0.61 0.71 0.66 0.784
09 0.86 0.88
Random forest Without augmentation 0.69 038 049 0.663
083 0.95 0.88
SMOTE 062 0.5 0.56 0.704
0.85 09 0.88
Positive augmentation 0.54 0.63 0.58 0.73
0.88 083 0.85
4x augmentation 0.59 0.54 0.56 0.71
0.86 0.88 0.87

Page 13 of 19
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Table 6 Comparison of accuracy, recall, F1 score, and AUC of the methods on test data
by the deep network based on four data augmentation methods

Loss function Data augmentation Precision Recall F1 AUC
Cross entropy Without augmentation 0.76 0.72 0.74 0.821
091 093 092
SMOTE 0.58 0.82 0.68 0.813
093 0.81 087
Positive augmentation 0.67 0.75 0.81 0.815
092 0.88 0.90
4x augmentation 0.69 0.77 0.72 0.827
092 0.89 0.91
Focal loss Without augmentation 0.76 0.73 0.74 0.828
0.91 093 092
SMOTE 0.52 0.82 0.64 0.79
0.93 0.76 0.84
Positive augmentation 0.74 0.72 0.73 0817
091 0.92 091
4x augmentation 0.7 0.74 0.72 0.821
09 0.9 091

Table 7 Results of the performance of our network method

Predicted Label
Normal Abnormal
Normal 508 57
True Label
Abnormal 46 133

augmentation for positive data in training data (positive augmentation), and (4) data
augmentation 4 times for training data (4x augmentation). Table 6 shows that the
respective performance by CNN with different loss function and data augmentation
methods. It demonstrates that the focal loss is useful for the imbalanced dataset com-
pared to when using the cross-entropy loss in Table 6. From the result of Table 5, it
shows that CNN classifier has superior performance when compared to the tradi-
tional classifier.

Nonetheless, the network is able to attain high AUC 0.821 with an accuracy 0.7,
recall 0.74 and F1 score of 0.72 on the abnormal data, 0.9, recall 0.9, and F1 score of
0.91 on the normal data for testing data, respectively, with the following confusion
matrix given in Table 7.

We can notice the changes in precision and recall for different threshold values
on reconstruction error from the CSDAE with noise factor 0.01 and 0.05 as shown
in Figs. 7, 8. From Table 4, we see that the MSE of reconstruction error with mean
0.0009, std 0.00037 on the CSDAE with noise factor 0.01, as well as the MSE of recon-
struction error with mean 0.00117 and std 0.00045 with noise factor 0.05. Hence, our
CSDAE is a well- trained autoencoder for the normal case. We can screen the abnor-
mal case from the CSDAE if its reconstruction error is above specific threshold value.
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Fig. 8 Recalls for different thresholds in CSDAE (a) with noise factor 0.01 and (b) noise factor 0.05

Table 8 The results of the performance of our method with max AUC

Predicted Label
Normal Abnormal
Normal 456 109
True Label
Abnormal 58 121

Now, two metrics are given for the final decision, and we can combine these two
metrics to one score using the max area under the ROC curve (AUC).

BAUC = argmax (A/LR” (b)),
0<T < Thean (6)
05<P<1

where T is the threshold, T},e4y is the average construction error of CSDAE, and P is the
predicted probability from our CNNs. The confusion matrix of the performance of our
method with max AUC for testing data is given in Table 8.

Finally, we can compute the three levels pertaining to the image by voting on these
different classifiers. For the testing data, we can obtain 395 normal cases, 88 abnormal
cases, and 261 uncertainty case. Comparing with the ground truth, we can achieve
precision of 98.7% (390/395) on normal cases and 94.3% (83/88) on abnormal cases
for testing data. It is good to separate these images into three different levels with
a total precision of 97.9% based on the normal and abnormal status levels. Achiev-
ing 100% of accuracy in CXR abnormality classification, to the best of our knowl-
edge, does not exist as there is always possibility for false positive rate. We propose
a method that has high detection rate and low false positive. In order to reduce false
positives, this article proposes a variety of indicators and optimizes these indicators
based on maximizing AUC. The results of this paper show that, the accuracy rate in
our sample classified as normal is 98.7%, and the accuracy of classification as abnor-
mality is 94.3%. In this way, we can divide the entire data set into three categories.
This allows senior doctors to focus on high-risk suspected abnormal chest radio-

graphs, mid-level physicians focus on uncertain categories, and lower-level medical
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experts can pay more attention to the suspected normal samples. Eventually, these
experts can spend more time focusing on the high-risk chest radiographs. On the one
hand, this greatly reduces the workload of the expert team, and correcting potential
misdiagnosis. On the other hand, it can enable patients to receive timely medical
treatment as a result of the time-to-diagnosis that is saved.

Discussion

Many methods have been proposed to perform CXRs classification task, such as [21, 34].
Shin et al. [34, 35] used a CNN to detect specific diseases in CXRs images and achieved
precision of 0.776 and recall of 0.76 based on the normal case, and then precision 0.556,
recall 0.577 based on the nodule. Tataru et al. [21] attempted to classify a chest X-ray
as normal versus abnormal in order to assist primary care physicians and radiologists
to move more quickly and efficiently rather than render radiology obsolete with accu-
racy of 0.8 and F1 score of 0.66. However, our method yields an accuracy of 0.7, recall
of 0.74, and F1 score of 0.72 on the abnormal data, while it achieves an accuracy of 0.9,
recall of 0.9, and F1 score of 0.91 on the normal data. Yet, we cannot entirely compare
these methods because of the different classification tasks and the databases. We only
deal with the grade diagnosis for physical examination. The contribution of this paper is
based on the fact that it proposes multiple new metric indices. Combining predictors for
classification using area under the ROC curve is the proposed solution for this task. We
find that, the final decision is related to the threshold from reconstruction error and the

probability value.

Conclusion

In this paper, we present an effective framework that learns and detects diseases from
the patients’ CXRs based on the four public datasets. Furthermore, we introduce an
approach to classify image levels by summarizing the hyper classifiers outputs and
reconstruction error. Different metrics are used in this paper to classify the image lev-
els. We combine the multiple classifiers using AUC in order to guarantee high confi-
dence. Not only can this computer aided triaging system classify and detect disease in
images, but also it can even compute the different image levels with promising results.
Compared to existing methods, our method yields high accuracy, recall, and F1 score for
the abnormal and normal datasets. Note that, in this research, our preliminary results
cannot justify our proposed method to be fully adopted for an entirely automated chest
screen system in clinical practice. However, this technique can partially help in the clas-
sification of normal versus abnormal CXRs and provide the physicians and radiologists
with valuable information to significantly decrease time-to-diagnosis. To increase the
performance of our method, we plan to build a big dataset for training intermediary
deep network from clinical data in our future work. In addition, implementing an end-
to-end learning model can be promising and may achieve high performance via opti-
mally determined parameters.
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