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Background
In the last decade, a novel optical measuring technique called camera-based photop-
lethysmography (cbPPG) has gained a lot of attention. The technique permits the remote 
extraction of cardio-respiratory signals using conventional video cameras [1, 2]. Similar 
to the classical photoplethysmography (PPG), the signals are mainly modulated by blood 
volume changes in the cutaneous microvasculature [3]. However, cbPPG has the benefit 
of allowing a spatial assessment of the microcirculatory perfusion which provides a new 
diagnostic value [4].

For a broad and convenient application of cbPPG, a region of interest (ROI) has to be 
detected and tracked automatically at suitable skin regions in the video recordings. The 
efficiency of ROI selection eventually determines the quality and validity of the extracted 
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plethysmograms and is, therefore, a crucial step. Facial regions are a good candidate 
since they are most often accessible and because the cutaneous perfusion is relatively 
high there [5]. In the past, the vast majority of works used face or facial landmark detec-
tion combined with subsequent redetection or tracking of selected features to (pre-)
define ROIs in the context of cbPPG (e.g. [6–10]). However, such approaches rely on 
the visibility of certain anatomical areas and might fail if the face is partly occluded or 
rotated. Even if they succeed, a selected ROI could still be blocked, for example by hair. 
These problems may not be relevant in controlled environments, like the laboratory, but 
have to be considered in clinical or public settings [11, 12].

One way to reduce the dependence on facial features is to include the time compo-
nent in the selection process (e.g. [8, 13–16]). For that purpose, the image or a prede-
fined ROI is blurred or divided into small sub-ROIs. The extracted signals from those 
pixels/sub-ROIs are then assessed for further use in terms of variations related to the 
cardiac cycle. A lot of those approaches nevertheless involve an initial ROI definition. 
Furthermore, they all rely on a distinct manifestation of the cardiac pulsation, which is 
most likely dominant for young and healthy subjects, but certainly diminished in older 
and vascular diseased subjects, and consequently, hard to determine when using small 
image regions [2, 3]. Another way to select facial ROIs is to utilize skin classifiers which 
detect proper areas based on the skin’s appearance in various color spaces. Most of those 
works, however, still combine the classifiers with face or facial landmark detection (e.g. 
[17–19]). There are only a few exceptions that either not exploit the found skin regions 
or focus, again, on the time component (signal processing) to obtain valid cbPPG signals 
and vital parameters [20–22].

Recently, Moço et al. [23, 24] revealed how ballistocardiographic (BCG) effects degrade 
the wanted blood volume signal in cbPPG. The group showed that for the face, these 
effects are mainly present if the light source is not orthogonally directed towards the 
skin surface and the ROI is not homogeneously illuminated. For this reason, the selec-
tion of spatially homogeneous ROIs is essential to achieve pure cbPPG signals. Previous 
approaches, which in some way considered the ROI’s homogeneity, employed intensity 
thresholds, exploited regional means and standard deviations or clustered areas based 
on the lightness component [9, 25, 26]. For the eventual application, all those methods 
depend on an initial face detection.

In this paper, we propose a novel and fully automated ROI selection method that 
utilizes level set segmentation to minimize the influence of BCG artifacts. The method 
(i) does not rely on the detection of anatomical features, (ii) chooses and tracks vis-
ible skin regions which are homogeneously illuminated, and (iii) solely operates on the 
image plane without being reliant on the presence of temporal variations related to the 
cardiac cycle. We demonstrate the applicability of our method for the face area of 41 
patients which were recorded during surgery using a multi-camera setup. The perfor-
mance was evaluated with respect to the quality of extracted cbPPG signals and cor-
rectly detected heart rates (HRs). To the best of our knowledge, only Rubīns et al. [27, 
28] applied cbPPG so far in an intraoperative environment analyzing the inner hand 
area.
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Methods
Data and setup

Our study was conducted at the Department of Anesthesiology and Intensive Care 
Medicine (University Hospital Carl Gustav Carus) in Dresden. It was authorized by 
the Institutional Review Board at TU Dresden (IRB00001473, EK168052013) and was 
in accordance with the Helsinki Declaration. We included 41 elderly patients in the 
cbPPG analyses of whom each had to give written consent. All clinically relevant infor-
mation about the volunteers such as their medical history was logged. We recorded the 
patients for approximately 30 min while they underwent surgery on the torso or extrem-
ities. Important events during the surgical procedure and interventions by anesthetists 
were also tracked. Table 1 summarizes the most important characteristics of the patient 
group. As depicted, almost half of the participants had a relevant degree of vascular dis-
ease (e.g. stenosis, varicosis, thrombosis, hypovolemia, artery occlusive disease). Conse-
quently, the strength of the blood volume pulse in the microvasculature might have been 
affected limiting the extraction of valid cbPPG signals.

For video recording, we used a mobile measuring system that was already applied 
successfully in another clinical study [11, 12]. The system consists of a medical PC 
(ACL OR-PC 19) and a sensing component which are both mounted on a movable 
constructional framework (see Fig. 1). The sensing component encompasses two cam-
eras (IDS Imaging Development Systems GmbH), a monochrome camera (UI-3370CP-
NIR-GL) and an RGB camera (UI-3370CP-C-HQ), and a near-infrared (NIR) light 
source with four LED spots (Kingbright BL106-15-29). In combination with an addi-
tional NIR bandpass filter (MidOpt BP850) at the monochrome camera, the light 
source permitted a controlled measurement in the non-visible range (880  nm). We 
equipped both cameras with lenses by Schneider-Kreuznach (Cinegon 16/1.8) and 
set them up to a color depth of 12  Bit, a frame rate of 100  fps, and a resolution of 

Table 1 Important characteristics of the patient group

a The categories stem from the ANDOKlive protocol. For the NYHA (New York Heart Association) classification, they describe 
the relevance of assistance based on the degree of heart failure

Characteristic Value

Age (in years) 65.2 ± 12.0

Female/ male (number) 17/24

Body mass index (in kg/m2) 26.1 ± 4.6

NYHA (number)a

 0—not examined 4

 1—no problems 35

 2—irrelevant problems 0

 3—relevant problems 2

Vascular system (number)a

 0—not examined 0

 1—no problems 20

 2—irrelevant problems 2

 3—relevant problems 19

Duration surgery (in min) 157.3 ± 99.9

Duration video recording (in min) 32.0 ± 7.2



Page 4 of 19Trumpp et al. BioMed Eng OnLine  (2018) 17:33 

320× 420 pixels. Before each recording, the sensing component was aligned at a dis-
tance between 0.5 and 1 m over the head of the patient who was in a supine position 
(see Fig. 1). Due to general anesthesia, the subject was unconscious during the meas-
urement. The illumination for the RGB video was defined by the surgical light above 
the table and by the room’s fluorescent lamps. For reference purposes, we also syn-
chronously stored physiological signals from the patient monitor (e.g. photoplethys-
mogram) on our medical PC.

For our analyses, we aimed at using facial areas as ROI. However, the following obsta-
cles in the intraoperative setting challenged the ROI selection process:

  • Face was often partly occluded by surgical drape
  • Patient was moved by clinical staff
  • Measuring stand was relocated
  • Staff reached into recording area
  • Operation table was readjusted in height
  • Illumination varied due to moving staff
  • Patient moved due to surgical procedure.

In the next section, we describe the developed method that is able to tackle those 
problems.

Image processing

The ROI selection algorithm, which is presented here, is an enhanced and more complex 
version of an approach that we successfully applied to recordings (only single camera) of 
patients in an intensive care unit [12]. The new algorithm allows to process the RGB and 
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Fig. 1 CbPPG setup during surgery. (1) Construction with adjustable arm for the sensing system. (2) Sensing 
system (enlarged on the right) including NIR illumination, NIR camera, and RGB camera. (3) Recording PC. (4) 
Patient (face directed towards the cameras). (5) Surgeons and clinical staff
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NIR video stream simultaneously. For that purpose, the two streams were synchronized 
leading to a frame-wise assignment in which the time component of both streams can 
be expressed by the same frame number k. An image pair to a certain instant k is then 
representable by the four channels IR(x), IG(x), IB(x), IN (x) (red, green, blue, NIR) with 
x = (x, y) being the spatial component.

Skin cassification

In our setup, common face detection algorithms, as used in [6, 7, 9], eventually failed 
due to the limited visibility of required features. To detect suitable regions that poten-
tially provide physiological information, we employed a skin classifier by Jones and Rehg 
[29] on the (first) RGB image. The classifier has to be built once and is then generally 
applicable. First, two RGB histograms, one for the class skin and one for ¬skin were 
constructed using over 13,000 labeled skin and non-skin color pictures that were made 
available by the authors. Second, the conditional probability density functions p(c|skin) 
and p(c|¬skin) were calculated by normalizing the histograms on the total number of 
counts. Eventually, the classifier could be derived from the Bayesian decision rule [30]. A 
pixel was classified as skin if [29]

where c is the pixel’s RGB value and θ a threshold which determines the ratio between 
the true positive and false positive classification rate. We found θ = 5 to be a good trade-
off. Before skin detection, we adjusted the image intensity1 because we discovered this 
step to boost the classifier’s performance.

Segmentation

Since the classifier operates on a pixel level and does not take any local distributions into 
account, the outcome is usually insufficient and may not leave homogeneously illumi-
nated skin regions (see Fig. 2a). To deal with this problem, we applied a segmentation 
approach by Brox et al. [31] which utilizes level set methods.

Level set methods for  segmentation Level set methods allow to describe an evolving 
segmentation contour C in an implicit manner using a function �(x, t) [32]. For a two-
phase segmentation, there is an inside region �1 and an outside region �2. Let �1 be an 
optimal ROI and �2 non-suitable skin areas and the background (whole image region 
� = �1 ∪�2). As �1 might consist of numerous subregions that are not connected, an 
explicit description is challenging. This task is much easier when � is employed to implic-
itly describe the image plane (see Fig.  2): � > 0 ⇒ �1, � < 0 ⇒ �2, � = 0 ⇒ C (’⇒’ 
denotes ’implies’). The actual segmentation process is an optimization problem in which 
a selected energy functional is minimized. The minimization can be realized by a gradi-
ent descent and represents the propagation of the contour from an initialization point 
�(x, t0) to an optimum �(x, tE). In our case, the gradient descent reads [31]

(1)
p(c|skin)

p(c|¬skin)
≥ θ

1 By applying MATLAB’s function imadjust(), the intensity values of each channel were mapped so that the whole 
range (0–4095) was used.
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where H is the Heaviside function (H = 0.5 for � = 0, H = 0 for � < 0 and H = 1 
for � > 0), F(x) the feature vector with M elements, and pij the conditional probabil-
ity density functions for the regions �i (i = {1, 2}). The first term in the equation allows 
to separate �1 and �2 based on the distribution of the feature values in those regions. 
The second term is the curvature term which controls the contour’s smoothness with 
ν = 0.001|�|0.7 being the weighting factor [33].

Adaption and contribution Level set methods are powerful techniques that are beyond 
the scope of basic image processing [32]. Previous works often performed ROI selection 
by applying conventional image processing ideas, i.e. face detection and feature point 
tracking. Here, we exploit the benefits of level set segmentation to additionally consider 
novel findings regarding the cbPPG signal’s origin. Therefore, we defined homogeneity as 
essential selection criterion since the respective regions are less impacted by BCG effects 
[23, 24]. To achieve homogeneously illuminated ROIs, we included the image intensity 
values in the vector F. Furthermore, a texture measure J (x) was chosen to also avoid inho-
mogeneities in the skin’s surface topology which cause artifacts in case of motion [34]. We 
determined J by calculating the local standard deviations for each color channel in neigh-

(2)
∂�

∂t
= H ′(�)

[ M∑

j=1

log
p1j(Fj)

p2j(Fj)
︸ ︷︷ ︸

homogeneity term

+ ν · div
∇�

|∇�|
︸ ︷︷ ︸

curvature term

]

t0 tEt0 < t < tEa b c

x y x y x y

Fig. 2 Example for a segmentation process using level set methods. a Initialization point. b Point during seg-
mentation. c Point when process has converged. The inside region �1 and the outside region �2 are implicitly 
described and changed by �. The contour � = 0 is depicted separately in the images below the graphs. 
Please note that t represents the segmentation time for an image and does not refer to the time component 
in the videos. The eye section was blurred if it was visible
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borhoods of 5× 5 pixels. The vector could then be formulated as F := (IR, IG , IB, JRGB) 
where JRGB is the mean of the single texture images JR, JG , and JB. During the segmenta-
tion process, pixels are assigned to �i based on the probability that the pixel’s intensity 
and texture values are similar enough to belong there. This probability was obtained using 
a Gaussian function [33]

in which µij and σij are the mean and standard deviation of the values in Fj(x) given that 
x ∈ �i. One of the most crucial steps in our ROI selection algorithm is the initializa-
tion of the segmentation. In order to obtain homogeneous skin regions, we set the out-
come of the skin classification �RGB

SKN to �1(t0). The result �RGB
ROI := �1(tE) represents our 

final ROI for the RGB image. Figure 2 depicts an example of a respective segmentation 
process.

Registration

A skin region, which appears homogeneous in the RGB image, might appear differently 
in the NIR image where LED spot lights were used. Therefore, we attempted to employ 
level set segmentation separately for the NIR image to find its most homogeneous skin 
regions. However, with IN being monochrome, the skin classifier was not applicable for 
initialization. The result from the RGB image could also not simply be assigned to the 
corresponding NIR image since the respective cameras had a different viewing angle in 
our setup (see Fig. 1). We decided to apply an intensity-based block-matching method 
to transfer �RGB

ROI . Briefly, the green channel IG (less noisy than R and B channel) was 
divided into overlapping blocks of 5× 5 pixels at the ROI. For each block β , the best 
matching block in IN was then determined within a search area (dx, dy) around the block 
location of IG . The mean squared error (MSE) was chosen as the matching criterion [35]. 
Due to the different lighting conditions in the RGB and NIR video (see “Data and setup” 
section), we always mean adjusted the blocks that were compared. Therefore, the MSE 
reads

where µG and µN are the block means. A priori knowledge about the cameras’ position-
ing allowed us to limit the search area to dx = [−60, 0] and dy = [0, 10] pixels. The out-
come of the registration �N

REG was set as the initialization state �1(t0) for the eventual 
segmentation process in which the feature vector read F := (IN , JN ). The final ROI �N

ROI 
was then defined by �1(tE).

Implementation and framework

The implementation of the presented method was realized in MATLAB R2016a. For the 
level set approach, we followed the suggestions by Osher and Fedkiw [32]. We shortly 
mention important aspects in that context but would like to refer the reader to their 
book for a detailed description. The partial differential Equation in (2) was solved 

(3)pij =
1

√

2πσ 2
ij

exp

(

−
(Fj − µij)

2

2σ 2
ij

)

(4)MSE =

∫

x∈β

[(IG − µG

)
− (IN (x + dx, y+ dy)− µN )]

2 dx
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numerically (forward Euler method) by an iterative procedure. The level set function � 
was initialized employing a signed distance function (see Fig. 2a) and reinitialized after 
each iteration step. The derivative of the Heaviside function H ′ was replaced by a smooth 
delta function.

Figure 3b depicts the basic flow chart of our ROI selection method. An essential part 
is the ROI detector of which the program structure is shown in Fig. 3a. The detector’s 
principle components were already explained in the previous sections yielding two ROIs 
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Fig. 3 Program structure of the presented ROI detection and tracking algorithm. a ROI detector which 
(initially) detects the skin, finds the ROI and registers and adapts the result for the NIR image. b Simplified 
flowchart of the whole program (detection and tracking) which runs separately for the RGB and NIR video. 
For some transitions between the program blocks, the data types are given (I: image, Ĩ : adjusted image, �...

...: 
image region, k: frame number). * pause after ROI reselection
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for a given image pair (e.g. for k = 1). For the segmentation components, we used 300 
(RGB image) and 100 iteration steps (NIR image) to obtain �RGB

ROI  and �N
ROI, respectively. 

These counts were determined empirically by selecting a broad variety of images and 
examining how many steps are at least necessary to reach a stabilized segmentation 
contour. The largest occurring step counts were rounded up and chosen for the whole 
data set. After detection, the ROIs were tracked separately in the RGB and NIR video 
streams. For that purpose, we also applied level set segmentation where the process 
for a frame was initialized by the ROI of the preceding frame: �1(t0, k) := �ROI (k − 1) 
and �ROI (k) := �1(tE , k). Since possible changes between two consecutive frames are 
generally minor, only 50 iteration steps were necessary for convergence. In fact, when 
the contour remained nearly unchanged between two steps (regional size difference 
�|�1| < 50 pixels), the segmentation was stopped early. The key idea behind the track-
ing approach was to rather track the intensity/ texture with their homogeneity inside 
the skin region than anatomical features. In this way, abrupt changes in the light inten-
sity could be avoided within the ROI. However, certain artifacts, such as the temporary 
occlusion of the recording area by the staff, caused problems during tracking. Either the 
ROI was quickly assigned to non-suitable areas or disappeared completely because skin 
was no longer visible. The latter problem could be easily detected and was treated by 
executing the ROI detector repeatedly until skin regions were found again. To tackle the 
first problem, we always checked the mean intensity in the ROI for the last 10 s. If its 
standard deviation exceeded 50 units, our requirement of having stable ROI conditions 
was considered to be violated and the ROI detector was executed. As redetection might 
also lead to major intensity variations over time, after reselection, we paused the artifact 
monitoring for 10 s (see Fig. 3b).

Signal processing

After image processing, the cbPPG signals were extracted by averaging the ROIs’ pixel 
values for each frame and color channel. As a result, we obtained four signals (R, G, 
B, NIR) for each patient throughout the recording. The signals were divided into con-
secutive 10  s segments amounting to an average of 192.2± 43.5 segments per subject 
and channel. Since ROIs could not always be selected (see previous section), the cbPPG 
signals occasionally held empty entries. Any segment that contained such entries was 
disregarded for the following steps. Each signal segment was removed from its linear 
trend and further filtered using an FIR highpass (order: 250, cutoff frequency: 0.5 Hz). 
Next, the signals were zero-padded to 213 points, and the Fast Fourier transform was 
performed. Hence, we were able to determine a segment-wise HR by detecting the maxi-
mum peak in the related amplitude spectrum |X(f )| within the range of 30 and 200 bpm. 
The same procedure was applied to calculate the reference HRs fref  out of correspond-
ing 10 s segments in the PPG monitor signal. In order to assess the quality of the cbPPG 
signals, we computed the signal-to-noise ratio (SNR) by adapting a formula of de Haan 
and Jeanne [36]

(5)SNR = 10 · log10





� 200 bpm
f=30 bpm �

�
f
�
|X(f )|2 df

� 200 bpm
f=30 bpm

�
1−�

�
f
��
|X(f )|2 df
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where � is defined as

The SNR considers the signal amplitudes around the true HR fref  and its first harmonic 
in a ± 5 bpm band as the wanted component and the remaining amplitudes between 30 
and 200 bpm as the noise component.

Evaluation and statistics

For each patient and color channel, signal processing provided between 103 and 368 
HR and SNR values (dependent on recording time and artifacts) which were taken into 
account for evaluation. To analyze the two measures across all subjects, we built an indi-
vidual HR detection rate (HDR) and a median SNR from those segment-related values. 
The HDR was determined as the relative number (in %) of HRs that deviated less than 
5 bpm from the reference HRs. The segments which were excluded beforehand, due to 
missing ROIs, were treated as inputs where the HR was falsely detected.

Our overall goal was to show how well the proposed ROI selection method performs 
in an intraoperative environment. We did not focus on further transformation tech-
niques (e.g. source separation) to achieve the best possible HDR. Therefore, we assessed 
the results separately for each color channel. However, we regarded the NIR channel 
to be of special interest since a dedicated illumination setup was applied. For this rea-
son, we tested whether the combination of the channel with the best performing chan-
nel (here green) yields a significantly better HDR outcome than only using the green 
channel. We also evaluated the combinations G&B and G&R for reference purposes. The 
HDR values of a combination resulted from the assumption that for a segment, always 
the correct HR (if available) can be selected between the two considered channels. The 
significance of the improvements was analyzed by employing a Wilcoxon sign rank test 
(one-tailed) as follows: G to G&B, G to G&R, and G to G&NIR.

Results
ROI selection

For all 41 patients, appropriate ROIs were automatically detected and tracked in both, 
the RGB and NIR video. As mentioned before, in some rare cases, the ROI was not 
determinable. For the RGB and the NIR videos, the average numbers of segments, which 
were affected by the absence of single ROIs, were generally low reaching a maximum 
of 8 and 31, respectively (see Fig. 4a). A further quality attribute of our method is how 
often the ROI detector had to be re-executed. Regarding the median value, in only 6 seg-
ments of the RGB videos and 2 segments of the NIR videos, the ROI was redetected over 
the duration of the recording (see Fig. 4b). In the “Implementation and framework” sec-
tion, it was described that the ROI stability was considered compromised if the standard 
deviation of the mean ROI intensity exceeded 50. Figure 4c visualizes the respective seg-
ment counts proving an overall low ROI fluctuation.

Figure 5 shows the selected ROIs of six patients at different states in the videos. The 
examples represent the strength of our approach being robust against illumination 

(6)�(f ) =







1 if |fref − f | ≤ 5 bpm
1 if |2fref − f | ≤ 5 bpm .
0 otherwise
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changes, limitations in the face’s visibility, and against variations in scale and rotation. 
All ROIs contain homogeneously illuminated skin regions which demonstrate our 
method to reject relatively darker regions and regions that were not orthogonally aligned 
towards the camera (see Fig.  5a, c). Moreover, an ROI can consist of several uncon-
nected regions and may have holes serving the purpose of homogeneity (see Fig. 5a, c, 
d). In Additional file 1 of this article, a video is linked which visualizes the described per-
formance for an example. The advantage of using a separate segmentation step for the 
NIR image in the ROI detector is comprehensible when looking at Fig. 5a–c. The lighting 
situation in the NIR video was considerably different from the one in the RGB video. 
Therefore, a simple ROI registration based on the head’s pose would not have been suf-
ficient since homogeneous areas were required.

We also tested the real-time capability of our method. Solely the ROI detector needed 
longer processing times of about 10 s (MATLAB, i5-4590 @ 3.3 GHz on a single core). 
The tracking could be performed in real-time (< 10  ms). In this study, we did not 
focus on creating an online method. Nevertheless, prospective works could speed up 
the algorithm to that end by implementing it in C++ and taking advantage of parallel 
computing.

HR detection and SNR

Figure 6a depicts the results of the HDR for the four color channels. Across all patients, 
the green channel provided the best outcome when applying our method (median of 
95.6%). The NIR channel yielded a moderate detection rate (median of 76.2%) while the 
red and the blue channel are rather poor candidates to correctly detect the HR (median 
of 62.3 and 39.9%). The variation among the patients was the lowest for the green chan-
nel leaving only a small number of subjects with lower HDR values. Figure 6b shows the 
results of the SNR. As can be derived from the plot, the HDR is related to the quality of 
the cbPPG signals where the green channel also generates the best outcome (median of 
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3.9 dB) followed by the NIR, red, and blue channel in order of performance (median of 
− 2.5, − 4.1, and − 6.4 dB). However, in contrast to the HDR, the variation among the 
individual SNR values proved to be higher for the better performing channels.

In the previous section, we explained our attempt to explore what contribution the 
blue, the red, and particularly the NIR channel might make within our method. The 
results reveal all considered channel combinations to yield significantly higher HR 
detection rates than the green channel alone (see Fig. 7). As presumed, the combination 
with the NIR channel involved the largest improvement in the median HDR (95.6 versus 
97.3%). Furthermore, except of a few outliers, all patients showed rates above 88% in the 
G&NIR group while in the other groups, a relatively large number of subjects lay under 

a

b

c

d

e

f

Fig. 5 Selected ROIs for six different patients. The first two columns show the ROIs (only contour) for the RGB 
and NIR image at the beginning of the recording, the last two columns at a later point. If there was minor 
or no movement, the results in column 1 and 2 are similar to those in 3 and 4. Please note that in case the 
patient was identifiable, the eye section in the depicted images was blurred
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80%. In 29 of the 41 patients, the NIR channel was able to provide at least once and up to 
22 times a correct HR (average of 4.6 segments) when all the other channels failed.

Discussion
ROI selection

Skin classifiers are an easy way to locate potential ROIs. For classification, most works 
in cbPPG applied absolute thresholds in the components of various color spaces, most 
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often of the YCbCr space [17–21, 37]. We tested this classifier in our framework. The 
given thresholds led to a general overrepresentation of the skin areas, and we found it 
hard to adjust to changing conditions on a large scale of data. The used Bayesian classi-
fier was trained with pictures that comprised numerous skin tones captured in different 
environment and illumination situations. Although it was barely employed for cbPPG so 
far [12, 38], we found it to be robust and its outcome to be well-controllable (θ adjust-
ment). We tested that higher θ values (low false positive but also low true positive rate) 
lead to better ROIs since the classifier is only used to initialize the segmentation method 
which is able to compensate an underrepresentation of the skin (see Fig. 2). Level set 
segmentation is an iterative process where the evolving contour has to reach a stable 
state. For the RGB images, stabilization was usually not an issue because the information 
of three color channels allowed a clearer separation. For the NIR images, more problems 
occurred. In rare cases, the contour increased or decreased uncontrollably. Additional 
knowledge about potential skin areas, e.g. by using p(c|skin) in F, could solve those prob-
lems. However, it would require a reliable mapping of the RGB data on the NIR images.

Homogeneity is an important criterion in ROI selection. Rodríguez and Castro [25] 
applied a simple intensity threshold to exclude darker areas like the eyebrows. Yang et al. 
[9] built a roughness measure in sub-ROIs which was employed to select the smooth-
est regions. Bousefsaf et al. [26] used the lightness component of the CIE L*u*v space 
to create five regional clusters of which the best were eventually combined. Yet, none of 
these methods allowed a continuous (time and space) pixel-wise selection as it could be 
accomplished by level set segmentation.

Besides homogeneity, another advantage of our approach is that it neither depends on 
anatomical features nor on the manifestation of the cardiac pulse. There are only a few 
works which fall into this category. Wang et al. [20, 21] exclusively applied a skin clas-
sifier (see above) for ROI detection. Potential insufficiencies in the outcome, however, 
were disregarded as the group focused on signal processing. Similar to our procedure, 
Stricker et  al. [39] employed skin classification in combination with a segmentation 
method, namely GrabCut [40]. Due to the resemblance, we decided to test the method 
for a number of images in our setting (see Fig. 8). We followed the description of the 
authors in which the result of the skin detector was first morphologically closed and 
then used for initialization in GrabCut. In comparison to our method, the GrabCut-
based approach showed a systematic lack of performance as high-contrast non-skin and 
more heterogeneous skin areas were selected.

HR detection and SNR

The SNR assesses the cbPPG signals’ quality based on the HR. The response charac-
teristic of the different wavelengths coincides with the outcome of prior investiga-
tions regarding the quality of photoplethysmograms [41]. As a higher quality involves 
a stronger manifestation of the cardiac pulse, the chances of correctly detecting the HR 
also increase (see similarities in Fig. 6a, b). Nevertheless, the SNR measure has limita-
tions since the stated relation not always holds and a high HDR can be associated with 
a low SNR (see high variance in SNR plots). In general, the proposed method is able to 
select ROIs which provide cbPPG signals (green channel) that largely show a distinct 
pulsation and are scarcely degraded by artifacts. To a small degree, false HR detections 
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are attributed to cases where no ROIs were found. The majority of false detections can 
be explained by situations when the ROI detector was re-executed. Our tracking idea was 
to retain the regions’ homogeneity and avoid abrupt light changes. However, the reselec-
tion of the ROI does not consider prior intensity values and may lead to an edge in the 
cbPPG signal hindering a valid HR extraction.

The NIR channel played a special role in our investigation since a separate camera and 
light source was used. Estepp et al. [42] already demonstrated that a multi-camera set-
ting can enhance the HDR. In our setting, the dedicated NIR illumination yielded stable 
conditions in moments where the ambient light was low or strongly altered (see Figs. 5b 
and 9). Therefore, the NIR channel also made the highest contribution to maximizing 
the HDR (see Fig.  7). However, the problem of accurately mapping the ROI from the 
RGB to the NIR image remains. The application of cameras with a native alignment 
between the RGB and NIR channels (e.g. [43]) resolves this drawback.

Moço et al. [23, 24] revealed how homogeneously illuminated regions provide purer 
cbPPG signals that are less corrupted by BCG artifacts. Our method is able to select 
such regions. Furthermore, it is an alternative to the group’s methods, which also dealt 
with those artifacts but had to be calibrated beforehand.

We would like to emphasize again that we aimed at demonstrating the high perfor-
mance of our ROI selection approach and not necessarily at reaching a maximum HDR. 
However, if certain applications require a reliable HR detector, appropriate signal pro-
cessing steps can be subsequently executed. We tested that solely a simple principal 
component analysis on the R, G, B channel signals leads to detection rates over 99%.

Bayes skin classification Level set segmentation GrabCut

darker
region

eye
region

hair

tape, eye region

non-skin
region

hair

Fig. 8 Comparison of the proposed method to a GrabCut-based approach. Three examples (RGB video) are 
depicted in the state of the initial ROI detection. The first column shows the result of the skin classifier. Similar 
as in our method, it was used as initialization for GrabCut although morphological closing was performed 
beforehand (see [39]). The last two columns show the final ROIs (only contour) in which the red arrows high-
light the lack of performance of GrabCut. Please note that in case the patient was identifiable, the eye section 
in the depicted images was blurred. Due to eyebrows, eyelashes, and shadowing effects, the region around 
the eyes usually appears darker than the surrounding area
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Intraoperative setting

To the best of our knowledge, we are the first to apply cbPPG during surgery with the 
patients being under general anesthesia. Rubīns et al. [27, 28] investigated the effect of 
vasodilation in the course of regional anesthesia using cbPPG, once in the NIR light 
range and once in the green range. Both times, they considered the inner region of a 
fixed hand (no movement) and built amplitude maps, which did not demand a prior 
ROI selection but presumed the presence of cardiac pulsations in signals from spatial 
subregions.

Conclusions
In this paper, we presented a fully automated ROI selection method for cbPPG. It over-
comes the drawbacks of past approaches and, therefore, allowed us to employ cbPPG in 
vascular diseased patients in an intraoperative environment. The method neither relies 
on the visibility of anatomical features nor on the manifestation of the cardiac pulsa-
tion. Homogeneity in intensity and texture are the determining criteria for choosing and 
tracking ROIs. As a result, distinct and mostly undistorted photoplethysmograms could 
be obtained. Our method is easily transferable to other applications where other body 
sites are involved. Moreover, it can be run for multi-camera systems as long as one RGB 
camera is part of the setting. Eventually, the method enables prospective studies to focus 
on the benefit of using cbPPG during surgery. The spatial assessment of the cutaneous 
microcirculation might help the anesthetists to better react to cardiovascular events and 
adjust the respective medication.
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