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Background
Falls are a major safety concern, especially in older people. Approximately 28–35 % of 
people aged of 65 and above fall at least once every year [4, 10, 36]. In the US, 70 % of all 
emergency department visits by people over the age of 75 years were related to falls [39]. 
The consequences of falls are often devastating. Physical injuries caused by falls, such 
as hip fracture and head injuries, are often associated with high mortality and morbid-
ity among older people [37]. Besides, older people are likely to develop “fear of repeated 
falls” after a fall-related incident. This often leads to the loss of mobility and independ-
ence [45]. For these and many more reasons, developing an effective fall prevention 
strategy is imperative to mitigate the harm of falls, especially in older people.

Fall detection, whose main idea is to detect the occurrence of a fall event automatically 
[16, 33, 46], has been proposed to be an effective fall prevention strategy. Fall detection 
can be generally classified as post-fall mobility detection and pre-impact detection. Post-
fall mobility detection is expected to initiate timely medical assistance for fall victims, 
and thus avoid unnecessary losses caused by ‘long-lie’ [29, 46]. However, this type of fall 
detection has an inherent limitation. Falls can be only detected after impacts, so injuries 
directly caused by fall impacts cannot be prevented.

Unlike post-fall mobility detection, pre-impact fall detection is able to overcome the 
limitations mentioned above. Pre-impact fall detection refers to the technique that 
allows falls to be detected before the body hits against the ground (i.e., the body-ground 
impact). Thus, it can not only help initiate timely medical assistance for fall victims, but 
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also have the potential to help activate on-demand fall protection systems to prevent 
the physical injuries caused by the body-ground impact. Though on-demand fall protec-
tion systems are still in the exploratory phase and not commercially available, the idea of 
integrating pre-impact fall detection and on-demand fall protection systems have been 
well accepted as a promising solution to preventing falls in older people [28]. In fact, 
some researchers have attempted to integrate pre-impact fall detection algorithms with 
on-demand fall protection systems. For example, Tamura et al. [43] designed a system 
that integrated the fall detection algorithm with a wearable airbag system which can be 
inflated to protect fallers from the body-ground impact. Similarly, Shi et  al. [41] pro-
posed an inflatable hip proctor that can be triggered by an inertial-sensor-based fall 
detection system.

Given the above-mentioned reasons for that pre-impact fall detection is superior to 
post-fall mobility detection, current research has become more focused on develop-
ing automatic pre-impact fall detection systems. This paper aimed to give a systemati-
cal review on pre-impact fall detection. In this review, we would focus on the following 
aspects of the existing pre-impact fall detection research: fall detection apparatus, fall 
detection indicators, fall detection algorithms, and types of falls for fall detection evalu-
ation. In addition, the performance of the existing pre-impact fall detection solutions 
were also reviewed and reported in terms of their sensitivity, specificity, and detection/
lead time.

Review procedure
The search of articles was based on the following database: Google Scholar, IEEE Xplore, 
PubMed, Web of Science and Science Direct. To avoid unnecessary omission, the 
searching criteria was deliberately broadened. We included the keywords of “fall detec-
tion”, “fall detector”, “fall event detection”, “fall recognition”, “fall protection”, “fall preven-
tion”, “detect falls”, and “detecting falls”. This initial search yielded an initial collection 
of 683 papers. After that, screening was carried out to manually identify the studies on 
pre-impact fall detection only. Further actions were carried out to examine the citations 
of resulted papers to identify the relevant studies. We excluded papers that gave insuffi-
cient information, such as the conference abstract. In addition, one study on pre-impact 
detection and protection of motorcyclist falls [6] was also excluded as it is irrelevant to 
falls in older people.

A total of 23 studies on pre-impact fall detection were identified, including 19 journal 
articles and 4 full papers from conference proceedings. These studies were reviewed in 
details chronically. The review results were summarized in Table 1.

Fall detection apparatus
The apparatus used in the existing pre-impact fall detection can be generally classified 
into the context aware systems and wearable sensors [15]. Five studies were based on the 
context aware technology. Among them, four studies used the motion capture system 
[12, 13, 26, 47], and one was based on the radio frequency signal analysis [17].

In the fall detection studies using the motion capture system, kinematic fall detection 
indicators were determined by reflective markers placed at anatomic landmarks of the 
human body. The trajectories of these reflective markers were tracked by motion capture 
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cameras mounted in fixed locations. The biomechanical convention to calculate the 
body kinematic measures based on the motion capture system has been well established. 
Therefore, the major advantage of using the motion capture system for fall detection 
is that fall detection indicators can be accurately determined. However, it is practically 
impossible to implement the motion capture system in real life applications. Therefore, 
the motion capture system can be only used for fall detection model development and 
evaluation.

Kianoush et al. [17] introduced a novel context-aware technology to detect falls in pre-
impact phase. Their technology was based on tracking the fluctuation of wireless radio-
frequency (RF) signals. They found that fall events would cause abnormal perturbations 
on the RF signal which can be discerned by a hidden Markov model. The wireless RF sig-
nal was ubiquitous, and no attachable markers or wearable sensors were required. These 
features made this fall detection technology nonintrusive.

A limitation of the context-aware based fall detection is that it is restricted by space 
in the application. The motion capture system always has limited capture volume. 
Kianoush’s RF based technology also required wireless network deployment within 
the fall detection area. In addition, both the motion capture system and the RF based 
technology are expensive. Thus, related research and applications were still restricted 
to experimental settings. Lower cost context-aware technologies for fall detection have 
been introduced recently, such as the vision-based technology [19], camera image pro-
cessing technology [27], acoustic based technology [20], and Microsoft Kinect [42]. 
However, to our knowledge, no one has used these technologies in pre-impact fall detec-
tion. This can definitely be a direction for future research.

The majority of existing pre-impact fall detection systems (17 out of 21) are wearable-
sensor-based. Due to the advancement in microelectronics and wireless communication 
technology, wearable micro-electro-mechanical systems (MEMS), such as accelerom-
eters and gyroscopes, become small, light-weight and low-cost [35]. They are capable 
of capturing body movement unobtrusively and allow kinematic measurements to be 
monitored over extended space and time. This makes them suitable for pre-impact fall 
detection.

A few studies implemented fall detection by using a single type of wearable sensors. 
For example, fall detection solutions from Bourke et al. [8]; Lindemann et al. [21]; Shan 
and Yuan [40] and Tong et al. [44] relied on accelerometers only, while in Nyan et al. [32] 
and Bourke and Lyons [9], gyroscopes were the only measuring device for fall detection. 
The use of a single type of sensors can significantly reduce complexity and computa-
tional demand of the fall detection system. However, it also has adverse effects on fall 
detection. For instance, it has been argued that acceleration signals alone might not be 
able to detect falls accurately due to that such signals cannot effectively and efficiently 
differentiate falls from fall-like activities (e.g., successful balance recovery from external 
perturbations, and jumping) [14, 34].

Compared to using a single type of wearable sensors, integrated inertial measure-
ment units (IMUs), which typically consist of a tri-axial accelerometer and a tri-axial 
gyroscope, have become more popular in pre-impact fall detection applications. There 
might be three reasons behind this trend. First, the recent development in MEMS tech-
nology facilitated the development of low-cost, small-sized IMU chips with low energy 
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consumption. This makes the implementation of wearable IMUs much easier than 
before. Second, the IMUs can provide more data than a single type of sensors and allow 
using multiple fall detection indicators, which could improve the fall detection accuracy. 
Third, integrated IMUs allow the sensor fusion algorithm, such as the Kalman Filter 
[49] or extended Kalman Filter [38], to be used to correct errors in both accelerometer 
and gyroscope data, and thus could result in more accurate estimation of fall detection 
indicators.

There is an emerging trend of using wearable sensors in fall detection research [15]. 
The wearable sensors have some advantages over the context-aware systems. First, the 
wearable sensors can be used to detect falls in extended space. Second, wearable sensors 
have much lower cost than context-aware systems. Third, wearable sensors are easier to 
implement than the context aware systems. In particular, wearable sensors often have 
wireless communication features which allow them to communicate easily with smart 
phones or other internet-enabled devices, and do not require additional infrastructure 
installation.

However, there are still some limitations in wearable-sensor-based fall detection. 
First, people under the fall detection surveillance are required to wear the sensors all the 
time. This might result in low user compliance because people sometimes might forget 
to wear them. Second, the data stability are lower than the context-ware system. This 
can be affected by many factors like insufficient battery power, and the alarm transmis-
sion might be affected by data lost in wireless communication. Third, some fall detection 
indicators cannot be measured directly by the wearable sensors, and have to be obtained 
on an estimation basis. For instance, body segment velocity variables have to be esti-
mated by the integration of acceleration signals from accelerometers. There are inevita-
bly some errors resulted from such estimation procedure.

In a recent study, Liu and Lockhart [23] proposed an integrative ambulatory measure-
ment framework that combined the motion capture data and IMU data to detect falls in 
the pre-impact phase. This was the first attempt to incorporate both the context-aware 
based system and wearable sensors simultaneously in pre-impact fall detection. In this 
framework, the data from the motion capture system was used as a reference to facilitate 
the development of an individual-calibrated fall discriminant function. Data from wear-
able IMUs was used as the input of this function to search the optimal thresholds that 
can distinguish falls from activities of daily living (ADLs). The evaluation results showed 
that the fall detection performance was enhanced with such an integrative system [22].

Fall detection indictors
Fall detection indicators refer to the variables selected to discriminate falls from non-fall 
activities in fall detection algorithms. Among the reviewed articles, all except Kianoush 
et  al. [17] defined fall detection indicators by using human body kinematics. The kin-
ematic measures used to define fall detection indicators are typically classified into two 
categories: segment translational measures and segment rotational measures. Among 
the translational measures, trunk velocity [7, 9, 12, 13]; Lee et al. [18, 47, 48] and trunk 
accelerations [1, 26, 40, 41, 43, 44, 49] were the most widely used fall detection indica-
tors. Head acceleration [13, 21] and upper arm velocity [13] were also used to define fall 
detection indicators. Fall detection indicators defined by rotational measures included 
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angular rate of the sternum [33], angular rate of the waist [32, 41, 43] and trunk [22, 23], 
and segment orientation of the trunk [22, 23] and thigh [31, 32]. Most existing studies 
used a single kinematic measure to define the fall detection indicator. Only a few moni-
tored more than one kinematic measures in their fall detection applications [12, 32, 47]. 
In particular, Wu [47] and Nyan et  al. [32] both implemented ‘AND’ logic to link the 
selected kinematic measures, where falls were considered to be detected only when all 
the selected kinematic measures were beyond predefined thresholds. Hu and Qu [12] 
used a linear combination of trunk vertical velocity and shank frontal velocity as the fall 
detection indicator. The linear combination was considered as the simplest format of 
combination that made the fall detection implementation easy. Their results showed that 
such combination improved fall detection performance as compared to that using a sin-
gle kinematic measure.

The selection of fall detection indicators was closely related to where to place fall 
detection sensors. The most commonly chosen body site was the waist area. Seven dif-
ferent research groups attached the wearable sensors on either the anterior or poste-
rior side of the waist area to monitor the lower trunk kinematics. The chest (or upper 
trunk) area was another popular choice. Four research groups attached the sensor to the 
chest. The upper and lower trunk became preferred body sites for fall detection sensors, 
most probably because these two body areas are close to the whole-body center of mass. 
Researchers also considered the head [21], underarm [33] and thigh [32] for fall detector 
placement.

Some fall detection indicators cannot be measured directly by the wearable sensors. 
Instead, they were estimated from the sensor output. For example, the accelerometers 
can only measure the acceleration with the effect of gravity, which needs to be calibrated 
with the sensor orientation information to obtain the free acceleration. Besides, body 
segment velocity and orientation can only be calculated by integration of acceleration 
data (from accelerometer) and angular rate data (from gyroscope), respectively. For such 
integration procedure, there is always the drift problem due to the error accumulation 
in the integral results. Many approaches have been proposed to solve the drift problem, 
such as Kalman filters [25], the advanced integration methodology [3], and the optimi-
zation approach [11]. However, these methods have only been tested for normal activi-
ties. To our knowledge, no studies have attempted to use the aforementioned methods 
to estimate body kinematics during acute activities like falls. Future studies need to be 
carried out in this direction.

Fall detection algorithms
Threshold-based algorithms appeared to be the simplest algorithm utilized in pre-impact 
fall detection research. With the application of threshold-based algorithms, a fall is con-
sidered to be detected if the selected fall detection indicators are beyond a pre-defined 
threshold. Otherwise, the activity is classified as a non-fall activity. Threshold-based 
algorithms are computationally efficient which allows them to be easily implemented in 
real-time applications. However, setting an appropriate threshold was always difficult. 
Typically, a higher threshold would result in fewer false alarms but more misdetection of 
falls; whereas a lower threshold would lead to less misdetection but more false alarms. 
Almost all the current threshold-based techniques face this dilemma. Some researchers 
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defined the threshold by using the maximum readings of fall detection indicators during 
non-fall activities [7]. However, the selected non-fall activities in the experimental set-
tings cannot be inclusive of all possible non-fall activities, and thus the threshold deter-
mined in this way may not sufficiently address the problem.

Machine learning algorithms, including support vector machine [1], hidden Markov 
model [41]; hidden Markov model [17, 44] and artificial neural networks [38], were 
also used in pre-impact fall detection research. A training period was required in the 
machine learning algorithms. In the training period, the data collected during non-fall 
activities were usually used to facilitate the feature extraction and activities classifica-
tion. Machine learning algorithms are more computationally intensive compared to the 
threshold-based algorithms, and thus might lead to longer detection time.

Recently, Hu and Qu [12, 13] have presented a novel fall detection algorithm that 
was based on the statistical process control chart. In this model, statistical process con-
trol chart that was specified by upper and lower control limits was used to monitor 
fall detection indicator time series. The control limits were individual-specific as they 
were based on the data collected from each individual. Similar as the threshold-based 
approach, a fall was considered to be detected if the monitored fall detection indicator 
went beyond the range defined by the upper and lower control limits. Otherwise, the 
activity was considered to be normal. The limitation of this study, however, was that only 
slip-induced falls were tested.

Types of falls for fall detection evaluation
Most studies used simulated falls, where the participants were asked to fall voluntarily. 
Forward, backward and sideway falls were the most common simulated falls. Falls dur-
ing sit-to-stand transition [31, 32], and falls during stair negotiation [40] were also simu-
lated in the laboratory for fall detection research. Most of fall accidents in real life are 
unexpected and involuntary in nature. Movement patterns during simulated falls must 
be different from the realistic unexpected falls. Thus, using simulated falls may result in 
over-rated fall detection evaluation results. Bagalà et al. [2] reported that the fall detec-
tion sensitivity with real-life fall data were much lower than that using simulated fall 
data. This was partially due to that the threshold calibrated on simulated fall signals 
might not be suitable for real-life fall scenarios.

Instead of simulated falls, some researchers used involuntary falls for fall detection 
evaluation [1, 12, 13, 22, 23, 26]. For example, realistic slip-induced falls were used in 
Hu and Qu [12, 13]. However, this study was limited by only one type of fall. It is worth 
noting that Aziz [1]; Sabatini et al. [38]; Lee et al. [18] used both voluntary falls (e.g. sit-
to-stand fall and fall from fainting) and involuntary falls (e.g. falls from slips, trips and 
hit/bump). Their results can be better generalized into real-life situations than the other 
studies. The direction of future work in terms of selecting proper types of falls for fall 
detection evaluation is to establish a database about the involuntary falls in real life for 
fall detection development and evaluation.

It is also important to note that fall data were typically collected from younger adults 
instead of older adults in fall detection research due to safety and ethics concern. How-
ever, older adults have different postural control characteristics when being exposed to 
external perturbations initiating falls [24], and may hit the ground sooner than younger 
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adults during falls [47]. Therefore, the model evaluation results based on younger adults 
was in general overestimated.

Fall detection performance
The performance of pre-impact fall detection is mainly assessed from two perspectives: 
accuracy and efficiency. The fall detection accuracy was typically measured by sensitiv-
ity and specificity. Sensitivity is determined by the ratio of the number of successfully 
detected falls over the total number of falls. Specificity is determined by the ratio of the 
number of successfully detected non-fall activities over the total number of non-fall 
activities.

The sensitivities reported in the reviewed studies ranged from 80 to100 %. The sen-
sitivity (=80 %) in Sabatini et al. [38] was the lowest. The rest studies can achieve sen-
sitivity above 90  %. A few studies reported 100  % sensitivities, including Lindemann 
et al. [21], Nyan et al. [33], Bourke et al. [8], Wu and Xue [48], Shi et al. [41], Shan and 
Yuan [40], Tong et al. [44] and Liu and Lockhart [22, 23]. The specificities reported in 
the reviewed articles were from 85.6–100 %. The lowest specificity was reported in Aziz 
et al. [1]. A few studies reported 100 % specificities, including Bourke et al. [7, 8]; Nyan 
et al. [31, 32]; Shi et al. [41]; Shan and Yuan [40] and Sabatini et al. [38].

Note that it is not reasonable to conclude the best fall detection models just based 
on the reported sensitivity and specificity, as the fall data for evaluation are quite dif-
ferent across studies. In particular, the number of participants and the number of falls 
and other activities in model evaluation varied in different studies. These factors did 
affect the reported accuracy. Some studies, like Lindemann et al. [21] and Kianoush [17] 
involved only one or two participants, and reported relatively high fall detection accu-
racy. Besides, as mentioned earlier, the types of fall selected in the model evaluation also 
affect the reported fall detection accuracy. For the sake of comparison among different 
fall detection models, it is important to unify the standard such as the number of falls 
and other activities involved and the selection of fall types in the model evaluation.

Lead time and/or detection time are typically used to assess the efficiency of fall detec-
tion. Lead time was defined by the time interval between when the fall was detected and 
fall impact, and accounts for the time for protective measures to be activated to protect 
the fall victims from fall impacts. Thus, the longer the lead time is, the better the fall 
detection performance is. The reported lead time were from 40 to 750 ms. Shi et al. [41] 
proposed airbag technology for preventing fall impacts. The inflation time of the air-
bag was reported to be approximately 130 ms. In order to be effective in avoiding a fall 
impact, the lead time of fall detection should be longer than 130 ms.

Detection time was the time difference between the fall initiation and fall detection. 
This parameter is also used to indicate how rapid the fall detection system responds to a 
fall. A better fall detection performance is associated with a smaller detection time. Liu 
and Lockhart [22, 23] and Martelli et al. [26] reported a mean detection time of 255 ms 
and 351 ms, respectively. Hu and Qu [13] reported a mean detection time range between 
620 and 710 ms. As the time interval between heel-strike and fall impact can be esti-
mated to be around 900  ms [5, 30], these fall detection models can provide sufficient 
time for triggering fall protection device.



Page 14 of 16Hu and Qu  BioMed Eng OnLine  (2016) 15:61 

Conclusion and future work
Research on pre-impact fall detection has been developed rapidly in recent years. This 
paper aims to have a systematic review on this topic. We reviewed some key aspects in 
the existing pre-impact fall detection research, including the fall detection apparatus, fall 
detection indicators, fall detection algorithms and types of falls for fall detection evalua-
tion. We also reported the performance of the existing fall detection models.

There are some limitations in the current pre-impact fall detection research. First, the 
pre-impact fall detection is still limited by current technology. The context-aware sys-
tems often have high computational demand. In addition, such systems are expensive, 
difficult to implement, and restricted by space. The wearable sensors are limited by their 
sensor noise, especially when the fall detection indicators need to be estimated from the 
raw sensor output. Some wearable sensors are still bulky and intrusive that might lead 
to low user compliance. Second, the selection of appropriate fall detection indicators is 
essential for achieving desirable fall detection performance; however, there is no much 
empirical and theoretical evidence for the most appropriate fall detection indicators. 
Third, the current pre-impact fall detection research is limited by their external validity. 
The falls used for evaluating the fall detection model are often simulated. It is difficult to 
generalize the experimental results obtained from a simulated fall to the fall accidents 
that actually happen in real life. Realistic involuntary falls should be used in fall detec-
tion model development and evaluation.

Future work should be carried out to address these limitations. First, a low-cost con-
text-aware system with an extended capture volume and robust classification algorithm, 
or a small-sized wireless IMU system with advanced sensor fusion algorithm (which lead 
to less error in the sensor output) and low-energy consumption should be developed in 
the near future. Second, the optimal body site for sensor placement needs to be further 
investigated. Future work should be carried out to assess fall detection performance with 
different fall detection sensor placement schemes. Lastly, to ensure the external validity, 
it is imperative to setup a database for realistic falls and ADLs.
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