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Abstract
Background: It is widely accepted that venous valves play an important role in reducing the
pressure applied to the veins under dynamic load conditions, such as the act of standing up. This
understanding is, however, qualitative and not quantitative. The purpose of this paper is to quantify
the pressure shielding effect and its variation with a number of system parameters.

Methods: A one-dimensional mathematical model of a collapsible tube, with the facility to
introduce valves at any position, was used. The model has been exercised to compute transient
pressure and flow distributions along the vein under the action of an imposed gravity field (standing
up).

Results: A quantitative evaluation of the effect of a valve, or valves, on the shielding of the vein
from peak transient pressure effects was undertaken. The model used reported that a valve
decreased the dynamic pressures applied to a vein when gravity is applied by a considerable
amount.

Conclusion: The model has the potential to increase understanding of dynamic physical effects in
venous physiology, and ultimately might be used as part of an interventional planning tool.

Background
The motivation behind this study was a desire to under-
stand the physiological effects of compression cuff ther-
apy for prevention of deep vein thrombosis. It is generally
accepted [1-4], that deep vein thrombosis is associated
with flow stasis, particularly in and around the venous
valves and their sinuses. From a survey of the literature, it
rapidly became apparent that the role and quantitative
performance of venous valves, even in the normal physio-
logical state is poorly understood. Texts on venous physi-
ology always identify the role of the valves as the control
of reverse flow [4-7]; most often in the context of muscle

pump action to maintain flow in the direction of the heart
and sometimes in the context of postural changes and of
exercise. The purpose of this paper is to explore the effects
of gravity on the pressure and flow distribution in a sim-
ple representation of a vein in the leg, and in particular to
quantify the role of the valves in pressure shielding under
the action of standing. The effects of a range of parameters
on the shielding performance of the valves are examined.
It is demonstrated that the effects depend not only on the
distribution, location and performance of the valves
themselves, but also on the geometric and mechanical
characteristics of the veins. It is anticipated that this infor-
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mation will be of direct interest to the vascular surgeon
because it provides an indication of the likely effect of
interventions, including removal or repair of valves as
well as insertion of bypass grafts, on peak pressure distri-
butions in the peripheral vasculature.

A person who stands, inactive, for a period of time will be
subjected to the full hydrostatic pressure gradient in the
venous system and the pressure in the veins in the foot
will reach something of the order of 100 mmHg [8,9,7].
This is confirmed by Pollack [10] and by Arnoldi [11]. The
presence of a valve or valves cannot shield against this
static pressure – which will be associated with the physio-
logical phenomenon of blood pooling, and related to
oedema through the Starling equation [7], but it can alle-
viate the transient maximum that will occur as posture is
changed. In the absence of valves, a simple analysis would
suggest that the transient pressure peak experienced in the
vein might be double the final standing pressure. Neglect-
ing inertial and viscoelastic effects in the vessel wall, the
stress in the wall of the vein is proportional to the instan-
taneous applied pressure, and it is postulated that incom-
petent valves do not provide adequate transient pressure
shielding and thus might be strongly implicated in the
formation of varicosities [9,12,13]. A primary quantitative
measure of valve, or rather system, performance is given
by its effectiveness in reducing the pressure peaks associ-
ated with the transient response. A second measure might
be one of the effectiveness of a postural change, and the
associated action of gravity on valve opening and closure
characteristics and thus on the 'wash out' of the sinuses
and displacement of stationary pockets of blood.
Although a full three-dimensional analysis is required to
address this question in detail, the one-dimensional
model presented in this paper is used to examine whether
the properties of the system are such that there might be
sufficient backflow to close the valve for realistic
geometries.

Materials and Methods
The methodology adopted in this study involves the con-
struction and analysis of a numerical model that is able to
capture the spatial and temporal pressure distributions in
a collapsible tube that includes valves. The vein is repre-
sented as an analogous electrical circuit as illustrated in
Figure 1. For simplicity, and because the focus of this
study is to capture the characteristic effect of the valves,
the vein is represented as a straight collapsible tube. The
chosen geometrical configuration is representative of a
vein from the lower extremities. The resistive component
represents the viscous resistance of the blood, the induc-
tive component the inertia of the blood, and the capaci-
tive component the elasticity (and thus storage capacity)
of the vein. A perfect valve is assumed to allow no back-
flow, and can be represented as a diode (in the analogous

electric circuit a diode allows current to flow in one direc-
tion and blocks it from flowing in the opposite direction).
A real valve will permit some backflow, associated partly
with the swept volume of the valve leaflets during the clo-
sure phase, and this is represented by allowing a finite vol-
ume of blood to pass through the valve before closure. A
'leaky' valve is assumed to allow a fixed rate of leakage,
although this could readily be modified to make the leak-
age proportional to the pressure drop across the valve seg-
ment.

A series of ordinary differential equations are written to
represent the electrical system. The nonlinear elastic prop-
erties of the vein, including those associated with collapse,
are represented by a tube law [14-17]. The main purpose
of the tube law is to capture the vein's flexibility at small
negative pressures as collapse is initiated, whilst maintain-
ing the properties of a stiffening response for higher neg-
ative or positive pressures. A penalty of this formulation is
that it does not reduce to the standard linear approxima-
tion at small positive pressures, and for the current work,
a modification has been implemented to remedy this defi-
ciency. A number of numerical techniques are available
for solution of the derived equations [18]. The one
adopted for the current study is a Lax Wendroff formula-
tion, which is accurate to second order in time and space.
For completeness, the governing equations and the
numerical discretisation are listed in Appendix 1. This for-
mulation has been adopted in other studies of the cardio-
vascular system [19], although Brook [16,20], has
identified conditions under which numerical instabilities
might be manifest. Numerical testing has indicated that
the system is stable under the pertinent conditions for the
current study.

One of the important properties of the system that will
have significant influence on the results is the boundary
conditions applied at the proximal and distal ends of the
vein segment. For the purposes of the current study, a con-
stant atmospheric pressure boundary condition has been
applied at the proximal end and a constant flow boundary
condition at the distal end. It is recognised that the pre-
scribed boundary conditions might represent a gross sim-

Schematic representation of tube modelFigure 1
Schematic representation of tube model. The resistive 
component represents the viscous resistance of the blood, 
the inductive component the inertia of the blood, and the 
capacitive component the elasticity of the vein. A perfect 
valve is represented by a diode.
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plification of physiological flow in the venous segments
of interest. The important feature of the proximal pressure
boundary condition is that it allows unimpeded reverse
flow into the vein segment as gravity acts. It would be pos-
sible to apply a negative pressure representative of that in
the thoracic cavity, but as a constant offset this would not
significantly affect the results. A transient thoracic pres-
sure representative of respiration could also be applied,
but primary focus in this paper is on relatively short term
events associated with a near-instantaneous application of
gravity. The relatively low frequency respiratory cycle
would not significantly modify the results. It has further
been assumed that there is a constant flow into the 'bot-
tom' (distal end) of the vein, based on average steady state
drainage into the femoral vein. It is unlikely that there will
be significant backflow through the distal end during
gravity application, due to the higher resistance of the
smaller vessels. More sophisticated descriptions of tran-
sient flow waveforms measured under a range of condi-
tions can be found in the literature. Of most direct interest
is the study reported by Raju S et al [21], who describe
flow conditions under ambulatory conditions but not
under first application of the gravity field, whilst Neglen
and Raju [22] also focus on the measurement of ambula-
tory pressures in individuals with signs of chronic venous
deficiency. Willeput R et al [23] and Abu-Yousef M [24]
focus on rest and respiratory conditions. Again, it is sug-
gested that the frequencies associated with these temporal
variations are relatively low compared with those associ-
ated with the phenomenon addressed in this paper. Fur-
thermore, the starting condition for the analysis is a steady
flow through the system (equal to the distal end flow),
with no gravity applied.

This paper focuses on the transient pressure and flow dis-
tributions in a vein segment, with and without valves,
under a near-instantaneous application of gravity. The
system is considered passive, and effects of the muscle
pump are not included: similarly other relatively low fre-
quency external load factors are neglected. A body force is
applied, in the opposite direction to flow, representing
the action of gravity under a change of posture from hori-
zontal to vertical: this force is sigmoidal in time, so that
there is smooth transition from zero to the full gravity
force, which is then held constant.

Results and Discussion
Baseline condition, no valve
A series of numerical tests were performed, to ensure that
the model performed properly and returned accurate
results for simple conditions, including for example using
a linear tube law, for which analytical comparisons were
available, and for other conditions for which numerical
results have been published [17,19]. Once these tests were
passed, a first baseline analysis was performed using the

following parameters: vein diameter 1.19 cm [25], vein
thickness-to-diameter ratio 0.2 [26], vein length 1 m, wall
stiffness 1 MPa [27], blood viscosity 0.004 Pa.s, blood
density 1000 kg/m3, distal (inlet) flow 15.1 ml/s [25],
proximal (outlet) pressure 0 mmHg (0 Pa), near instanta-
neous body-force application (gravity increased from zero
to 9.8 m/s2 over 0.01 milliseconds). These values are given
in convenient units: all analyses were performed in SI
units. The initial condition, prior to the application of
gravity, was a steady flow in the opposite direction to that
in which gravity would be applied (i.e from distal to prox-
imal end of the tube).

Discretisation-independence tests were performed to
ensure that the results did not depend either on the
number of elements used to represent the geometry of the
vessel or on the simulation time-step. Results for the base-
line condition and for several parameter variations are
reported in Table 1. One of the most important results is
the 'dynamic pressure ratio'. This is defined as the ratio of
the peak dynamic pressure to the unavoidable static pres-
sure that will be reached when the system has stabilised.
Also reported in Table 1 are the magnitudes of the first
and second pressure peaks recorded as the system oscil-
lates (to give an indication of how quickly the overall peak
is reached), the time for which the valve remains closed
during the first oscillatory phase, and measures of the
peak positive and negative area changes as the vein
expands and collapses.

Figure 2 presents the computed pressure against time at
the distal end of the vessel. The system is oscillatory (the
only damping in this system is that due to the viscosity of
the blood – it is recognised that the real system will have
additional damping due to the viscoelastic properties of
the vessel wall, and probably more importantly of the sur-
rounding tissues), but after a period of approximately 12
s the pressure at the distal end remains within 2% of the
steady state value at 74.5 mmHg (9936.3 Pa), consistent
with the hydrostatic force applied plus the (small) pres-
sure drop associated with the superimposed steady flow.
The overshoot associated with the dynamic system pro-
duces a peak pressure of 136.5 mmHg (18151 Pa), repre-
senting a dynamic pressure ratio of 1.83 (a simple first
principles analysis without damping would suggest a ratio
of 2.00 [28], so this result is plausible).

Figure 3 illustrates the pressure and flow against time at a
point halfway along the vein. The pressure exhibits similar
characteristics to that at the distal end, oscillating about its
hydrostatic condition of one-half of the distal end value.
The flow starts from the initial condition, oscillates in
response to the sudden application of gravity, and returns
to the steady condition after approximately 12 s. It is
noted that there is very significant reverse flow (≈30 ml/s)
Page 3 of 10
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occurring approximately 80 ms after gravity is applied.
The reverse flow acts to fill the more distal sections of the
vein as it distends under the increased (gravitational)
pressure. As demonstrated later, this reverse flow would
be enough to close a competent valve and consequently to
shield the lower parts of the vein and reduce peak
dynamic pressures. If there were sufficient inflow from
below (unlikely in the human system unless the process
of standing is done very slowly) then the vein could be

filled (distended) entirely by the inflow, and reverse flow
might not occur.

The analysis of the baseline condition gives some confi-
dence in the operation of the model, and also provides
quantitative information on the peak pressure that can be
expected at the distal end of the vein in the absence of pro-
tection from venous valves. Further confidence has been
developed by comparison of the results with those from
three dimensional models using a commercial finite ele-

Table 1: Baseline condition, valve performance and gravity application time results

Parameters No valve Perfect valve "Real" valve Leaky valve Gravity test

Diameter (cm) 1.2 1.2 1.2 1.2 1.2
Length (m) 1 1 1 1 1

Young's modulus (kPa) 1000 1000 1000 1000 1000
Poisson's ratio 0.5 0.5 0.5 0.5 0.5

Blood viscosity (mPas) 4 4 4 4 4
Blood density (Kgm-3) 1000 1000 1000 1000 1000

Gravity application time (s) Near instantaneous Near instantaneous Near instantaneous Near instantaneous 0.1
Valve distribution No valve One One One One

Valve location from inlet (m) No valve 0.5 0.5 0.5 0.5
Valve performance No valve Perfect "Real" Leaky Perfect
First peak (mmHg) 136.9 (18.2 kPa) 60.2 (8.01 kPa) 60.3 (8.02 kPa) 65.4 (8.69 kPa) 50.3 (6.69 kPa)

Second peak (mmHg) 127.1 (16.9 kPa) 81.9 (10.9 kPa) 81.9 (10.9 kPa) 115.8 (15.4 kPa) 72.6 (9.66 kPa)
Maximum pressure (mmHg) 136.9 (18.2 kPa) 93.3 (12.4 kPa) 93.9 (12.4 kPa) 115.8 (15.4 kPa) 99.3 (13.2 kPa)

Dynamic pressure ratio 1.83 1.25 1.25 1.51 1.33
Valve closed time (s) No valve 0.17 0.17 0.11 0.16

Maximum collapse (%) 0.02 20.2 20.4 3.57 8.17
Maximum expansion (%) 15.1 9.89 9.89 12.5 10.6

Baseline condition pressure against time at the distal end of the vesselFigure 2
Baseline condition pressure against time at the distal 
end of the vessel. The system is oscillatory but after 
approximately 12 s the pressure at the distal end remains 
within 2% of the steady state value at 74.5 mmHg (9936.3 
Pa), consistent with the hydrostatic force applied plus the 
(small) pressure drop associated with the superimposed 
steady flow.

Baseline condition pressure against time and flow rate against time at the midpoint of the vesselFigure 3
Baseline condition pressure against time and flow 
rate against time at the midpoint of the vessel. The 
pressure exhibits similar characteristics to that at the distal 
end, oscillating about its hydrostatic condition of one-half of 
the distal end value. The flow starts from the initial condition, 
oscillates in response to the sudden application of gravity, 
and returns to the steady condition after approximately 12 s.
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ment code, but the reporting of these results is beyond the
scope of this paper.

Effect of perfect, real and incompetent valves
The model was next used to evaluate and to provide quan-
titative information about a hypothesis often expressed in
text book descriptions of venous physiology, e.g. Browse
[13]:

'The venous valves normally protect the wall of the vein
below each valve from the pressure in the vein above it.'

A perfect (no reverse flow) valve was introduced into the
vein at a point halfway along its length, and a simulation
performed to illustrate the effect of the valve on the peak
pressures and flows in the system. The oscillatory nature
of the system is such that the valve will open and close sev-
eral times before finally settling in the open state in the
hydrostatic condition. Attention is focused on the early
phase, from the time of gravity application through to the
time of peak pressure in the system. Figure 4 illustrates the
pressure at the distal end against time during the first sec-
ond after application of gravity, together with the results
for the case with no valve. The distinctive saw-tooth
appearance of the oscillations is due to the summation of
pressure waves as they reflect from the domain bounda-
ries. The presence of the valve significantly changes the
form of the dynamic response. Without the valve, the sys-
tem undergoes relatively high-amplitude oscillations
about the hydrostatic pressure value, gradually damping
towards the steady state. With the valve, the approach

towards the steady state is reasonably asymptotic, with
relatively lower pressure oscillations superimposed on the
asymptote. The peak pressure for the system with a valve
is 93.0 mmHg (12370 Pa), representing a dynamic pres-
sure ratio of 1.25. Perhaps, therefore, the most important
observation is that, consistent with the hypothesis, the
valve has provided a very significant shielding effect (over
45 mmHg (5985 Pa) reduction in peak pressure).

Figure 5 illustrates pressure and flow at the section imme-
diately distal to the valve, together with the no-valve sys-
tem. Here the effect of the valve is very clearly indicated.
The analyses are identical up to the point at which flow
reversal occurs. At this point, the valve closes and the flow
is set to zero until forward flow is re-established, partly by
the constant influx from the distal boundary and partly by
wave reflection. The segment of vein distal to the valve
now acts as a closed cylinder (at least in the portion imme-
diately distal to the valve which takes some time to be
affected by the constant influx from the (relatively dis-
tant) distal boundary). Blood continues to fall towards
the distal end but at a significantly reduced rate, and the
segment immediately distal to the valve reduces in diam-
eter and starts to collapse. The degree of collapse is deter-
mined by the rate of application of gravity and the
physical characteristics of the system. In the model
reported here, the area reduction immediately distal to the
valve is approximately 20%. Figure 6 illustrates the ratio
of cross-sectional area to undeformed cross-sectional area
along the length of the vein at different points in time and
Figure 7 illustrates the pressure variation along the length
of the vein at different points in time, showing clearly the
pressure discontinuity at the valve. The presence of waves
reflecting from proximal and distal boundaries is also
apparent. After approximately 6.3 s, the system settles to
within 2% of the hydrostatic state.

The above results illustrate the effect of a perfect valve on
pressure shielding. A real valve must permit some reverse
flow as it is swept to the closed position. A first estimate
of the volume of flow reversal (neglecting the reverse flow
as the valve is first entrained) can be made by measuring
the swept volume of the valve during closure. An estimate
of this volume, based on conic sections is 0.12 ml. Results
based on this approximation are illustrated in Figure 8,
together with those for the perfect valve. Although the
'real' valve allows some regurgitation as the leaflets are
swept to closure, the volume associated with this event is
small and the effect is negligible; this might not be true if
a larger regurgitant volume were to be admitted, reflecting
the entrainment of the leaflets in the reversing flow. An
incompetent valve might be expected to lie further
towards the no-valve condition. To test this hypothesis, an
analysis has been performed in which the negative flow
rate through the valve has been limited to 20 ml/s. In this

Pressure against time at the distal end of the vessel with and without perfect valveFigure 4
Pressure against time at the distal end of the vessel 
with and without perfect valve. The presence of the 
valve significantly changes the form of the dynamic response 
and the approach towards the steady state is reasonably 
asymptotic, with relatively lower pressure oscillations super-
imposed on the asymptote.
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condition, the pressure shielding effect is substantially
reduced, and the dynamic pressure ratio is increased
(from 1.25 for the perfect valve) to 1.51.

In a final test on the reference configuration with a perfect
valve, the time over which gravity was applied was
increased from near instantaneous to 100 ms (more con-
sistent with the likely time taken to stand up). As

expected, the first and second pressure peaks were lower
(by the order of 10%) but perhaps surprisingly, the abso-
lute peak was a little higher. This was due to different
interactions of the wave reflections in the system, but it
does not affect the overall shape of the response, nor
indeed the conclusions.

Parameter studies
The model permits the examination of the effect of change
of the geometrical and mechanical characteristics of the
system on the pressure-shielding phenomenon. Results
for variations of a number of parameters are presented in

Pressure against time and flow rate against time at the mid-point of the vessel with and without a perfect valveFigure 5
Pressure against time and flow rate against time at 
the midpoint of the vessel with and without a perfect 
valve. Here the effect of the valve is very clearly indicated 
since the analyses are identical up to the point at which flow 
reversal occurs.

Ratio of cross-sectional area over undeformed cross sec-tional area along the vein length for increasing timeFigure 6
Ratio of cross-sectional area over undeformed cross 
sectional area along the vein length for increasing 
time.

Pressure along the vein length for increasing time showing a pressure discontinuity at the valve locationFigure 7
Pressure along the vein length for increasing time 
showing a pressure discontinuity at the valve loca-
tion.

Flow rate vs time through a perfect and "real" valveFigure 8
Flow rate vs time through a perfect and "real" valve.
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Table 2: Parameter variation test results

Parameters Perfect valve Diameter test Stiffness test Distribution test Length test Location test

Diameter (cm) 1.2 0.8 1.6 1.2 1.2 1.2 1.2

Length (m) 1 1 1 1 0.50 0.75 1

Young's modulus (kPa) 1000 1000 500 2000 1000 1000 1000

Poisson's ratio 0.5 0.5 0.5 0.5 0.5 0.5

Blood viscosity (mPas) 4 4 4 4 4 4

Blood density (Kgm-3) 1000 1000 1000 1000 1000 1000

Gravity application time (s) Near instantaneous Near instantaneous Near instantaneous Near instantaneous Near instantaneous Near instantaneous

Valve distribution One One One Two One One

Valve location from inlet (m) 0.5 0.5 0.5 0.25 and 0.75 0.5 0.25 0.75

Valve performance Perfect Perfect Perfect Perfect Perfect Perfect

First peak (mmHg) 60.2 (8.01 kPa) 66.3 (8.81 kPa) 56.8 (7.55 kPa) 56.3 (7.48 kPa) 63.2 (8.4 kPa) 32.6 (4.34 kPa) 33.2 (4.41 kPa) 46.8 (6.23 kPa) 32.6 (4.33 kPa) 87.2 (11.6 kPa)

Second peak (mmHg) 81.9 (10.9 kPa) 114.3 (15.2 kPa) 74.9 (9.97 kPa) 74.6 (9.92 kPa) 95.5 (12.7 kPa) 55.6 (7.39 kPa) 55.9 (7.44 kPa) 57 (7.58 kPa) 99.3 (13.2 kPa) 90.2 (12 kPa)

Maximum pressure (mmHg) 93.3 (12.4 kPa) 115.8 (15.4 kPa) 89.5 (11.9 kPa) 90.9 (12.1 kPa) 104.5 (13.9 kPa) 92.9 (12.36 kPa) 57.2 (7.61 kPa) 77.5 (10.31 kPa) 110.5 (14.7 kPa) 105.3 (14 kPa)

Dynamic pressure ratio 1.25 1.47 1.22 1.21 1.41 1.25 1.53 1.39 1.49 1.41

Valve closed time (s) 0.17 0.11 0.19 0.26 0.11 0.09 and 0.17 0.06 0.11 0.16 0.15

Maximum collapse (%) 20.2 3.64 24.5 48.2 6.06 35.6 3.58 10.6 3.25 42.3

Maximum expansion (%) 9.89 12.1 9.87 21.2 5.41 9.89 5.92 7.19 11.9 11.5
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Table 2. Reducing the undeformed diameter of the vein by
one-third increases the dynamic pressure ratio to 1.47 in
the presence of the valve, and increasing the diameter of
the vein by one third reduces the peak pressure ratio to
1.22. Similarly, doubling the vein stiffness causes an
increase to 1.41, and halving it causes a decrease to 1.21.
Each of these results is qualitatively consistent with expec-
tations based on an understanding of the physics phe-
nomena: the model provides quantification of the effect.

Changing the overall length of the system (whilst main-
taining the position of the valve at 0.5 m from the inlet),
or changing the position of the valve along the length of
the 1 m vein, increased the dynamic pressure ratio, sug-
gesting that the optimal position for a valve in a vein with
the imposed boundary conditions is near to the midpoint.
Finally, a test with two valves, one at one-quarter length
and one at three-quarters length produced a pressure
shielding of the same magnitude as that obtained with a
single valve halfway along the vein.

Conclusion
The one-dimensional model reported in this paper per-
mits the quantitative evaluation of the effects of venous
valves on the loads and geometrical changes induced by
the action of gravity. It is an important first step in a
longer-term study of venous valves, venous diseases and
their prevention. With refinements to the venous valve
description, applied tube law and boundary conditions, a
more physiologically realistic model can be created in an
equivalent form to the Westerhof arterial model [29]. This
will enable the model to be validated against physiologi-
cal data. For the purposes of this paper though the greatest
interest is in the dynamic pressure ratio, which provides a
measure of the increase of the peak local pressure in the
system (due to dynamic effects) over the corresponding
hydrostatic pressure. It is demonstrated that, for a config-
uration typical of the femoral vein, the dynamic pressure
ratio without a valve is 1.83, and that with a perfect valve
located halfway along the vein is 1.25. The absolute pres-
sure reduction is over 40 mmHg (5320 Pa). The model
has been used to investigate the quantitative influence of
variation of a number of parameters. Following extensive
in vitro and in vivo validation, this model might be used to
evaluate the effects of valve incompetence on venous pres-
sure distributions and could have implications for the
understanding of the progression of disease in the context
of varicose veins. It might also be used as part of an inter-
ventional planning tool.

The reported study is entirely theoretical. Validation
against other reported numerical studies has been per-
formed to give confidence in the numerical implementa-
tion, but validation against experimental data is an
important next step. Some experimental data does exist

for collapsible tubes with gravity effects, for example of
the filling under gravity of an initially collapsed tube [30],
but none of direct relevance to the current study. A prelim-
inary experimental model that can be used directly to val-
idate the current model has been reported by Potter [31]
and Burnett [32] but this is not yet sufficiently mature for
detailed comparative evaluation. Validation against phys-
iological data, such as that presented in the works refer-
enced in the section on boundary conditions, will require
first the construction of an improved numerical model
with a more complex network representation of the
venous circulation in the lower limb. In the longer term a
detailed three dimensional (3D) model is required to
compute the haemodynamic characteristics in the region
of the valve, and to evaluate the effects of local geometric
and material variations. The 1D model described in this
paper provides important mutual validation data for such
a 3D model, as well as the potential to provide local
boundary conditions for it in the region of the valve.
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Appendix: Equations and discretisation
A1: Governing equations
The continuity equation used was:

where

The momentum equation used was:
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where

The tube law used was:

where

The variables used in equations 1–7 were: A0 – unde-
formed vessel area-, An

i – vessel area at point i along the
vessel length at time n-, µ – fluid viscosity-, ρ – fluid den-
sity-, E – vessel wall Young's modulus, σ-vessel Poisson's
ratio, h – vessel wall thickness and finally r – vessel radius-
. All variables used were described in SI units.

A2: Lax-Wendroff discretisation
To find the two equations of interest for pressure and flow
using the Lax-Wendroff technique the following two
equations have to be used.

The above two equations are the Taylor series expansion
of second order accuracy. Based on the above two equa-
tions and the simplified version of the mass and momen-
tum conservation equations above, the equations needed
for pressure and flow using the Lax-Wendroff technique
can be found. Firstly for pressure to be found the first and
second time derivatives of pressure have to be found. The

first one is easily found from the continuity equation and
is:

In order to find the second time derivative of pressure the
first time derivative of pressure must be differentiated in
time. This gives:

Thus to find the second time derivative of pressure 

must be found. This is done by differentiating the
momentum equations in space. This gives:

Now by substituting 12 in 11 the second time derivative
of pressure is found to be:

Since both the first and second time derivative of pressure
are found, equation 8 can be solved. This gives:

For flow to be found the same methodology as used to
find the pressure equation is used and gives:
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