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Abstract
Background: Dynamic positron emission tomography studies produce a large amount of image
data, from which clinically useful parametric information can be extracted using tracer kinetic
methods. Data reduction methods can facilitate the initial interpretation and visual analysis of these
large image sequences and at the same time can preserve important information and allow for basic
feature characterization.

Methods: We have applied principal component analysis to provide high-contrast parametric
image sets of lower dimensions than the original data set separating structures based on their
kinetic characteristics. Our method has the potential to constitute an alternative quantification
method, independent of any kinetic model, and is particularly useful when the retrieval of the
arterial input function is complicated. In independent component analysis images, structures that
have different kinetic characteristics are assigned opposite values, and are readily discriminated.
Furthermore, novel similarity mapping techniques are proposed, which can summarize in a single
image the temporal properties of the entire image sequence according to a reference region.

Results: Using our new cubed sum coefficient similarity measure, we have shown that structures
with similar time activity curves can be identified, thus facilitating the detection of lesions that are
not easily discriminated using the conventional method employing standardized uptake values.

Background
In oncology, Positron Emission Tomography (PET) stud-
ies are routinely used for tumor diagnosis, detection of
metastases, and treatment evaluation. Dynamic PET (i.e.,
temporal sequences of images at the same bed position)
offers differential diagnostic information, and therefore
represents an accurate approach to quantifying radiotracer

kinetics However, the quantitative analysis of dynamic
PET sequences often requires complex analysis using com-
partmental [1,2] or non-compartmental models [3],
where many difficulties must be overcome, such as deter-
mination of the input function of the concentration of the
radioactive tracer in the plasma [4], the intrinsic inaccura-
cies at the time of selecting the appropriate compartmen-
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tal model [5], or carrying out time-consuming
computations involving a large volume of image data that
has to be processed [6].

In this work, we investigated the use of principal compo-
nent analysis (PCA) [7,8], independent component anal-
ysis (ICA) [9,10], and similarity mapping (SM) [11]
techniques to reduce the initial volume of image data to a
smaller and more comprehensive and easily managed set
of parametric images. Blind source separation methods,
such as PCA and ICA, can provide component extraction
and time courses in dynamic PET studies without requir-
ing any explicit knowledge of the system transfer function
which is needed in the case of image reconstruction. Fur-
thermore, such methods have the advantage in producing
results in very short time, as they have little computational
complexity, and can provide an accurate tool for the sup-
port of both visual inspections and the subsequent
detailed kinetic analysis of the dynamic series using com-
partmental or non-compartmental models. As an alterna-
tive data reduction technique, SM permits the extraction
of information from a sequence of images on the physio-
logical behavior of the system under study, which is not
revealed by visual inspection of the image sets.

In the following subsections, the above techniques are
presented in more detail.

A. Principal Component Analysis
PCA explains the variance-covariance of a set of variables
using a few linear combinations of the data to achieve
data reduction and thus facilitates data interpretation
[12]. Although N components are required to reproduce
the total system variability, often much of this variability
can be accounted for by a small number, p, of the princi-
pal components, which can be considered as containing
the same information as the original data set (excluding
the contribution of noise, which can be attributed to the
remaining data). These components can then replace the
initial N variables, and the original data set, consisting of
k measurements of N variables, is reduced to a data set
consisting of k measurements of p principal components.

PCA has been early adopted in the applied sciences [13],
with the main goal of investigating if the first few princi-
pal components account for most of the variation in the
original data [14]. The same methodology has been
applied in the field of medical imaging, particularly in
functional magnetic resonance imaging (fMRI) [15], and
in nuclear medicine, where this type of analysis has been
employed as a tool for denoising dynamic image
sequences [16,17].

In dynamic PET images, the first few principal compo-
nents (PC) constitute a reduced set of the principal com-

ponent images (PCI) that can be considered as
representing a "summary" of the kinetic information that
is contained in the original study frames [18], and can
therefore be used to extract basic information for initial
evaluations in dynamic studies in oncological applica-
tions [19,20], as well as in neurological studies, where
PCA is particularly useful in the follow-up of Parkinson's
disease patients [21,22].

Furthermore, PCA techniques have been proposed and
applied in dynamic PET [17] as a filtering method in the
time domain with the reconstruction being performed
component by component in the PC (Karhunen-Loewe,
KL) domain, followed by a recovery of the spatial distribu-
tion of the radioactivity in the source using an inverse KL
transform [23]. This sinogram-domain PCA (S-PCA) for
dynamic PET image reconstruction has been improved by
researchers on using noise normalization and optimal
sampling techniques [24], and in regard to the resulting
data sets, a segmentation method has been recently pro-
posed [25] that could extract noninvasively the input
function (arterial time-activity curve) in the kinetic analy-
sis of a dynamic study.

B. Independent Component Analysis
ICA [26] is another data-driven statistical technique that
can be used for blind separation of sources, and has early
found application in medical signals [27] and image anal-
ysis [28]. The observed data are assumed to be an
unknown linear mixture of unobserved independent
source signals, which can be recovered with no prior infor-
mation or other knowledge of the system response func-
tion.

ICA has been recently shown to produce promising results
in the analysis of task-related fMRI techniques [29], as
well as in the extraction of the input function [30] and the
separation of functional components in gated myocardial
PET studies [31]. ICA has also been recently applied to
extract the plasma time activity curve (TAC) in dynamic
FDG PET brain studies [32].

Spatial ICA (sICA) [33] can be used to decompose an
image sequence into a set of mutually independent com-
ponent (IC) source images and a corresponding set of
unconstrained time courses, based on the assumption
that the probability density function (PDF) of the inde-
pendent sources is highly kurtotic and symmetric. Since
this assumption is not necessary for dynamic PET data
sets, skew-sICA [34] has been applied to dynamic PET
data sets using the code developed by Stone et al. [29].
Skew-sICA assumes that images are characterized by the
skewness (rather than the peakedness) of their PDFs,
which is consistent with spatially localized regions of
activity.
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Singular value decomposition (SVD) is performed to
decorrelate input images, and the eigenvalues (λ) are nor-
malized such that:

Σλ = number of frames (1)

The eigenvectors with the largest variance and eigenvalues
greater than unity are selected as the ICA input data, and
the remaining noise components are discarded.

C. Similarity Mapping
As mentioned earlier, the main goal of the initial evalua-
tion step in dynamic oncological PET studies is to assess
the accuracy in localizing and staging primary tumors and
metastases. SM methods create a temporal match of the
intensity values of the pixels in the image sequence with
the pixels from a selected reference region of interest
(rROI). Therefore, SM segments multidimensional images
into regions according to their temporal properties rather
than their spatial properties, which makes it useful for the
temporal analysis of dynamic PET series.

In medical imaging, the application of SM to CT images of
rabbits with focal cerebral ischemia allowed for the iden-
tification of small differences in the temporal kinetics
around the infarct [35]. In an analysis of dynamic scinti-
graphic cardiac images, SM applied to regions of similar
temporal behavior (i.e., covariance images) captured the
essential elements of the sequence while reducing the
amount of image data presented to the clinician for diag-
nostic interpretation [36]. The similarity measures
applied in dynamic MRI studies [37,38] are based on the
calculation of the correlation (COR) and the normalized
correlation (NCOR) coefficients. However, for low con-
trast PET images, as discussed in the Results section, these
similarity coefficients are inadequate, and therefore for
the purposes of our study we have introduced additional
similarity measures as described in the Methods section
below.

Methods
We have used PCA, ICA and SM techniques and applied
them to dynamic 2-deoxy-2 [18F]fluoro-D-glucose (18F-
FDG) PET studies, first to realistic synthetic data sets, and
then to clinical data from oncological patients.

In order to improve the performance of PCAs for dynamic
PET we decided to introduce data preprocessing. From the
several data preprocessing methods described in the liter-
ature [39], we have selected and used preprocessing by the
column sum (PCS), where the data are divided column-
wise using the column sum:

where yij and zij are the original and the final value of pixel
i (i = 1,..., m) of frame j (j = 1,..., n), respectively.

Similarly, and in order to avoid the known problem of
overfitting [26] in ICA, the PCS preprocessing method has
been also applied to image data before the application of
ICA.

Regarding SM, and in order to overcome the limitations of
COR and NCOR coefficients when applied to low contrast
PET images, we introduced additional similarity measures
of: (i) the sum of squares (SSQ); (ii) the sum of cubes
(SC); (iii) the squared sum (SQS); and (iv) the cubed sum
(CS) coefficients:
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where N is the frame number, Vijn is the value of pixel (i,
j) in frame n, Rn is the value of the TAC and μR is the mean
value of the TAC in the rROI, respectively, and μVij is the
mean value of the TAC of pixel (i, j).

The application of SM to a dynamic PET study results in
one map per slice, where each pixel value represents the
degree of temporal similarity of the selected region to the
reference region. Both the COR and the NCOR measures
are normalized for proportional differences, while only
the NCOR data are normalized for additive differences,
and therefore, TACs that differ by an additive constant
cannot be distinguished using NCOR, as they can in the
case of COR [37]. The SSQ and SQS measures provide a
similarity measure that is normalized for additive differ-
ences and negative values, whereas the SC and CS meas-
ures are normalized for additive differences.

A. Simulated Data
We applied the data reduction techniques to synthetic
dynamic data from a digital phantom (figure 1), which
simulated a single-slice image series from an 18F-FDG
PET study of a colorectal tumor recurrence.

The phantom image consisted of a large ellipse (M) corre-
sponding to the normal tissue masses (which, in real PET
scans apart from muscle may include gut, fat, fine vascu-
lature, other soft tissue structures, and bones of the pel-
vis), and three smaller ellipses corresponding to the
bladder (B), tumor (T), and blood vessel (V).

The TACs were derived from ROIs placed over the struc-
tures of a real, clinical dynamic 18F-FDG PET study,
including the noise characteristics of the measured data.
The acquisition and image reconstruction protocols used
were those described in the next subsection.

B. Clinical Data
Our study involved 17 patients with colorectal tumor
recurrences, and one patient with liver metastasis, referred
on the basis of clinical symptoms and radiological exam-
inations. The final diagnosis was based on the histological
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Two frames (a) and (b) from a real dynamic PET study used for the formation of a simulated dynamic PET phantom image series, (c)Figure 1
Two frames (a) and (b) from a real dynamic PET study used for the formation of a simulated dynamic PET phantom image 
series, (c). The TACs (d) from the study were used for the definition of the corresponding TAC functions of the phantom. The 
phantom consisted of a large ellipse (M) corresponding to the normal tissue mass and three smaller ellipses corresponding to 
the bladder (B), tumor (T), and a blood vessel (V).
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data from surgical samples. Figure 2 shows images from
the liver and one of the colon studies, corresponding to
the late emission part of the dynamic data (i.e., the sum-
mation of the final four frames).

The dynamic PET studies were performed after intrave-
nous injection of 300–370 MBq 18F-FDG for a period of
60 min. A 23-frame protocol was used (10 × 1 min, 5 × 2
min, and 8 × 5 min). The 18F-FDG was prepared accord-
ing to Toorongian's protocol [40]. A dedicated PET system
(ECAT EXACT HR+; Siemens, Erlangen, Germany) operat-
ing in the two-dimensional (2D)-mode (septa extended)
was used for the patient studies. The system allows for the
simultaneous acquisition of 63transverse slices with a the-
oretical slice thickness of 2.4 mm, and had an axial field
of view of 15.3 cm. Transmission scans were obtained
over a period of 10 min using three rotating germanium
pin sources for the attenuation correction of the acquired
emission images before injection of the FDG.

All the PET images were attenuation corrected, and an
image matrix of 128 × 128 pixels was used. An iterative
image reconstruction algorithm [41] was employed
(weighted least-square method, ordered subsets, 4 sub-

sets, and 6 iterations) and the standardized uptake values
(SUV) were calculated as:

The SUV calculations were carried out using the last study
frame (55–60 min, post injection). No partial volume cor-
rection was performed. However, SUV measurements
were performed on volumes of interest spanning over sev-
eral tomographic slices instead of using the conventional
method averaging the measured concentration over an
ROI drawn from a single slice.

Results
A. Application of PCA
Applying PCA to the synthetic data (figure 1) resulted in
two PCIs (figure 3). In image PCI1 regions were depicted
corresponding to the bladder and tumor of the phantom,
whereas image PCI2 showed the blood vessel region in
white and the tumor in dark gray. The PCS data transform
did not change the images. However, the corresponding
PC curves differed slightly. In both cases, curve PC1
resembled the bladder's TAC of the phantom data, which

SUV =
tissue concentration (MBq/g)

injected activity (MBq)/boddy weight (g)
(9)

Clinical dynamic PET data showing: (a) a large lesion on the upper left liver lobe and (b) a colorectal tumor recurrence, and (c) and (d) the corresponding TACsFigure 2
Clinical dynamic PET data showing: (a) a large lesion on the upper left liver lobe and (b) a colorectal tumor recurrence, and (c) 
and (d) the corresponding TACs.
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was in agreement with the structures present in the PCIs.
However, transforming the raw data led to a shape of
curve PC2 that was closer to the actual blood vessel's TAC.

When PCA was applied to the clinical study used to create
the synthetic data (figure 1), the tumor in the vicinity of
the bladder was clearly detected in image PCI1 (figure 3),
whether the raw data (denoted as rPC) or PCS-trans-
formed data (denoted as pcsPC) were used. The blood
vessels were clearly shown in images PCI2 or PCI4,
depending on whether or not the original data were pre-
processed. In agreement with the results obtained using
the phantom, the PC curves matched the measured TACs
better using PCS-transformed data. Beyond the fourth
principal component, the resulting principal component
images contained mainly noise.

In the case of the liver study shown in figure 2, image PCI1
resembled a summed image of all the original image
frames, where all the structures were visible (figure 4).
Image PCI2 showed only the vascular components leav-
ing the area covered by the lesion in black, whereas the
third image (PCI3) contained a bright area corresponding
to the lesion. The PCS transformation technique applied
before PCA improved the lesion delineation in the corre-
sponding PCI (PCI3).

Our results and the initial conclusions drawn were veri-
fied by applying the same analysis to the data obtained
from 17colorectal tumor recurrence clinical studies. Only
in image PCI3 were the lesions clearly visible in 14 of the
cases, and in only in three cases did their small size, due
to partial volume effects and possibly to physiologic activ-

Image PCI1 (a) and image PCI2 (c) of the phantom study and the PCs (e) calculated using the raw data (rPC), and after applying the PCS preprocessing technique (pcsPC)Figure 3
Image PCI1 (a) and image PCI2 (c) of the phantom study and the PCs (e) calculated using the raw data (rPC), and after applying 
the PCS preprocessing technique (pcsPC). Also shown are image PCI1 (b) and image PCI2 (d) of the corresponding clinical 
study calculated using the PCS preprocessed data and PCs (f) for both the raw and the PCS-transformed data.
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ity in the surrounding tissues, not allow the direct correla-
tion of image PCI3 to the tumor. Preprocessing the data
resulted in PC images where the lesions were better delin-
eated and the blood vessels could hardly be seen, which is
in agreement with the corresponding PCs. Therefore, the
PCA facilitated the detection and identification of struc-
tures in large dynamic FDG PET oncological studies.

B. Application of ICA
Figure 5 shows the results from the application of a skew-
sICA to the dynamic PET study shown in figure 1. When
no preprocessing was applied to the data before SVD anal-
ysis, all the structures are present in the third raw Inde-
pendent Component Image (rICI3), which was colored
according to the kinetic characteristics (i.e., the bladder
and tumor in white, and the blood vessels in black). On
preprocessing the data, the bladder and blood vessels are
shown correspondingly in the PCS-preprocessed ICI1

image (pcsICI1) and in pcsICI2, while the tumor was
"guessed" in pcsICI1. The results are in agreement with
the images obtained using the phantom data and the ICIs
shown in figure 5 (right column).

When applying the skew-sICA to the liver study, the lesion
was displayed in image rICI1 in a bright color, and blood
vessel was shown in a dark color, while in image rICI2, the
blood vessel was clearly depicted as white, and the lesion
could hardly be distinguished (figure 6). On transforming
the data using the PCS, image pcsICI2 only displayed the
blood vessel, whereas image pcsICI3 resembled image
rICI1. However, the lesion in the latter could be distin-
guished using higher contrast.

In the case of the colorectal tumor recurrence clinical stud-
ies, the tumors are shown in bright and dark colors in
images rICI1 and rICI2, respectively, while the blood ves-

PC Images from the liver study: rPCI1 (a), rPCI3 (c), pcsPCI3 (e), and PCIs from the colon study: rPCI3 (b) and pcsPCI3 (d), with the corresponding PCs (f)Figure 4
PC Images from the liver study: rPCI1 (a), rPCI3 (c), pcsPCI3 (e), and PCIs from the colon study: rPCI3 (b) and pcsPCI3 (d), 
with the corresponding PCs (f).
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ICIs of the clinical study shown in figure 1 based on raw data rICI3 (a) and on PCS-transformed data pcsICI1 (c), pcsICI2 (e), and pcsICI1 (b) and pcsICI2 (d) for the phantomFigure 5
ICIs of the clinical study shown in figure 1 based on raw data rICI3 (a) and on PCS-transformed data pcsICI1 (c), pcsICI2 (e), 
and pcsICI1 (b) and pcsICI2 (d) for the phantom. The corresponding ICs for all the images are shown in (f).
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sels are displayed in bright colors in image rICI3. The PCS
data transformations carried out before the ICA process
produced similar results. The difference in activity levels
between the lesion and normal tissue was higher in the
colorectal tumors than in the liver metastasis (figure 2),
and no transformation was required to improve the sepa-
ration of the structures.

C. Application of SM
Figure 7 shows similarity maps of the clinical and simu-
lated studies shown in figure 1 that were calculated by
placing an ROI over the bladder, and using the similarity
coefficients SSQ, SQS, SC, and CS. Figure 8 shows similar-

ity maps of the clinical studies shown in figure 2, calcu-
lated using a tumor rROI. In all cases, the similarity maps
based on the COR and NCOR coefficients were very noisy,
and it was difficult to separate different structures.

Tumors could be distinguished in the SM images using
different levels of contrast and clarity. In the SSQ and SC
maps, the lesions were difficult to detect, while use of the
SQS and CS coefficients detected all the lesions (from the
21 individual lesions present in all the studies). However,
in the SQS maps, both the blood vessels and the tumors
had positive values, and are displayed in white. On the
other hand, the CS coefficient provides a way of discrimi-

Images rICI1 (a), pcsICI1 (c), and pcsICI3 (e) from the liver studyFigure 6
Images rICI1 (a), pcsICI1 (c), and pcsICI3 (e) from the liver study. Images pcsICI1 (b) and pcsICI2 (d) from the colon study. The 
corresponding ICs of the above images are shown in (f).
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nating between these two different groups of structures,
by assigning positive values to the tumors and negative
values to the blood vessels, due to their different kinetic
characteristics.

The contrast in the similarity images was measured using
CR = (T-M)/M (where T and M are the mean activity dis-
tributions in the ROIs placed over the tumor and normal
tissue mass areas, respectively). The resulting values
ranged from 0.15 for the COR coefficient (showing the
lesions were at a similar contrast level to that of normal
tissue) and 2.46 for the NCOR coefficient, to 54 for the CS
metric. The SUV images exhibited values around 34.

Discussion
In addition to the traditional diagnostic procedure based
on the visual inspection of tomographic images, semi-
quantitative measures based on the SUV normalization of
tracer concentrations of the injected activity and body
weight are becoming common in the clinical praxis of
oncological PET studies [42]. It should be noted that SUV-
based evaluation requires a well-calibrated PET platform
to produce those semi-quantitative results.

SUV-based evaluation can also be used to characterize the
later stages of glucose uptake of tissues by ignoring the
kinetics of this predominantly dynamic process, which
may be able to provide valuable information on the
molecular events that characterize tumor development
and associated vasculature, as well as its specific resistance
to treatment. The use of SUV as a classification method for
tissue areas as being either benign or malignant is still
being discussed by nuclear medicine physicians and
oncologists [43,44], and depending on the conditions
under which the study has been performed and the data
have been preprocessed, the use of SUV can be misleading
in PET studies [45]. PCA automatically generates images
that correlate with the activity of different structures
present in a dynamic PET study, facilitating visual inspec-
tion and the application of compartmental analysis, since
it provides a tool for a more accurate selection of ROIs in
lesions and/or blood vessels to allow for further paramet-
ric analysis of the dynamic sequences.

ICA has also been evaluated to see if this approach can fur-
ther improve on the results obtained so far. Being data-
driven methods, both PCA and ICA imply that a particular
statistical model is used, whether or not this model is
made explicit. The model implicit in PCA is that different
modes are Gaussian and uncorrelated, whereas the ICA
model is that different modes are non-Gaussian and inde-
pendent. Therefore, ICA with proper preprocessing is
expected both to decorrelate the signals and to reduce any
higher order statistical dependency and the contribution
due to the source that corresponds to the noise. Using this
approach, structures in an image series can be separated
easily without the need for precise a priori anatomical
information.

A dynamic PET image sequence represents sample meas-
urements of the FDG distribution with time, as this is
described using an underlying compartmental model [2].
The images are generated using the assumption that the
image frames are a linear combination of spatially inde-
pendent images, in our case, tumors, blood vessels, blad-
der, normal tissue, and noise. It should be noted that the
spatial independence does not interfere with the fact that
the TACs are correlated in time according to the FDG com-
partmental model. Since the source components are non-

Similarity maps of the PET studies shown in Fig. 2 showing SQS (a), SC (c), and CS (b) from the liver study, and the CS (d) from the colon studyFigure 8
Similarity maps of the PET studies shown in Fig. 2 showing 
SQS (a), SC (c), and CS (b) from the liver study, and the CS 
(d) from the colon study. The reference ROIs were placed 
over the lesions in both cases.

Similarity maps of the clinical PET study shown in figure 1 cal-culated using a reference ROI placed over the bladder, and using the SM measures of: SSQ (a), SQS (c), SC (b), and CS (d)Figure 7
Similarity maps of the clinical PET study shown in figure 1 cal-
culated using a reference ROI placed over the bladder, and 
using the SM measures of: SSQ (a), SQS (c), SC (b), and CS 
(d). Images (e-h) show the corresponding similarity maps for 
the simulated data of figure 1.
Page 10 of 13
(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:36 http://www.biomedical-engineering-online.com/content/6/1/36
Gaussian in a general sense, and are considered spatially
independent, the ICA approach is assumed to be the most
appropriate method for performing blind source separa-
tion in dynamic FDG PET image sequences.

The results discussed above show that the skew-sICA
approach automatically generates images where structures
with different kinetic characteristics, such as tumors and
blood vessels, can be readily discriminated, since they are
assigned opposite values. The possibility of performing
quantitative analysis of dynamic PET studies using the
skew-sICA approach, and the assessment of the perform-
ance of spatiotemporal ICA experiments are presently
under investigation.

Two previously described similarity measures were used
to calculate the similarity maps: COR and NCOR, and
four new similarity measures were introduced: SSQ, SQS,
SC, and CS. The use of these correlation-based similarity
metrics was selected as being the most commonly used
methodology used in comparisons of the similarity
between images or image segments. SM depicts all the
structures present in the dynamic studies in a single
image. The generation of similarity maps is not automatic,
as in the case of PCA, since these maps represent the con-
trast of a lesion area versus muscle tissue, after the place-
ment of an ROI over the lesion and the blood vessels,
respectively.

The application of COR and NCOR maps can be used to
discriminate the structures present in the dynamic phan-
tom data set. However, these were found to be ineffective
in separating structures in clinical data. The new similarity
coefficients proposed here in equations (5)–(8) revealed
the structures of interest on visual inspection. In particu-
lar, CS, as defined in equation (8), provided better para-
metric images, and could be the method of choice as far as
discriminating between a tumor and other structures is
concerned, both from simulated phantom studies and
clinical data from PET studies of colorectal tumor recur-
rences. In its formulation, CS basically resembles NCOR,
defined in equation (4). However, the numerator in CS is
raised to the third order power, which helps to increase
the contrast in CS-calculated similarity maps for low
counts and high-noise PET images, and it also includes a
calibration parameter in the denominator. This contrast-
enhancement property of the CS approach is less pro-
nounced in the SQS approach of equation (7), as the
square power is used instead, and this limits the value
range for this similarity criterion.

Parametric images calculated using each of the techniques
discussed depict structures that share the same kinetic
characteristics. However, they do not provide quantitative
information. These images may contain negative values,

corresponding to pixels within the TACs of different
kinetic characteristics, and are finally normalized for dis-
play, which facilitates the discrimination of the regions of
interest.

The PCs and ICs generated by the PCA and ICA
approaches may also contain negative values in the time
domain, even though they do not coincide with physio-
logically meaningful TACs. Their shape (either increasing
or decreasing with time) rather than their absolute values
agrees with the type of TACs expected according to the
structures present in the corresponding images. Therefore,
they can be used for the identification of regions of inter-
est.

Depending on the type of structures present in each
dynamic study, the difference in activity levels among
them, and the method employed in their analysis, pre-
processing the original data could improve lesion deline-
ation, and possibly its detectability too, as shown when
PCS was applied prior to PCA in the liver and colorectal
studies, or prior to ICA in the liver study. In all these stud-
ies, the shape of the PCs of the PCS-transformed data was
much closer to the shape of the real, measured TACs of
similar structures. In some cases, the application of pre-
processing had no visible effect on the resulting images,
e.g., when ICA was applied to the colorectal PET studies,
or it could even hinder the detection of lesions, as shown
in figure 5.

All the methods described require that the image frames
for the same tomographic slice be spatially registered.
These images need to be checked for spatial registration to
correctly classify voxels or the volumes/regions of interest
based on similarity criteria. Therefore, patient motion and
respiratory artifacts should be corrected prior to the appli-
cation of these methods to dynamic PET images.

Concluding remarks
The PCA, ICA, and SM techniques represent efficient
methods for data reduction of large PET dynamic image
sequences. They support visual interpretation of dynamic
studies and can assist the application of compartment
modeling. The methods developed here represent promis-
ing alternative techniques for the fast, independent, quan-
tification of any kinetic model, and this is useful when the
retrieval of the input function is complicated. Therefore,
the treatment planning and assessment of angiogenesis-
blocking drugs using PCA, ICA, and SM can now be inves-
tigated. In the case of SM processing, manual selection of
the reference ROI can be time consuming and prone to
operator bias, and therefore further research is required
for the development of a semiautomatic technique for the
optimum selection of a reference ROI. The methods dis-
cussed permit the study of the temporal behavior of
Page 11 of 13
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dynamic PET image sequences, and allow for the extrac-
tion of valuable information in real time to assist the phy-
sician in obtaining a diagnostic decision, which may be
difficult under other circumstances.
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