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Abstract

The delivery of healthcare services has experienced tremendous changes during the
last years. Mobile health or mHealth is a key engine of advance in the forefront of
this revolution. Although there exists a growing development of mobile health
applications, there is a lack of tools specifically devised for their implementation. This
work presents mHealthDroid, an open source Android implementation of a mHealth
Framework designed to facilitate the rapid and easy development of mHealth and
biomedical apps. The framework is particularly planned to leverage the potential of
mobile devices such as smartphones or tablets, wearable sensors and portable
biomedical systems. These devices are increasingly used for the monitoring and
delivery of personal health care and wellbeing. The framework implements several
functionalities to support resource and communication abstraction, biomedical data
acquisition, health knowledge extraction, persistent data storage, adaptive
visualization, system management and value-added services such as intelligent alerts,
recommendations and guidelines. An exemplary application is also presented along
this work to demonstrate the potential of mHealthDroid. This app is used to
investigate on the analysis of human behavior, which is considered to be one of the
most prominent areas in mHealth. An accurate activity recognition model is
developed and successfully validated in both offline and online conditions.

Background
Traditional processes and services for the delivery of health and care are experiencing

a drastic shift to meet people present and future needs. The current proliferation of

mobile technologies is helping to pave the path to a new paradigm in which people’s

health information is timely and ubiquitously available. Concretely, portable and wear-

able sensors are increasingly utilized to collect data on individuals’ biology, psychology

and behavior. This valuable information may be used to reduce health risks, optimize

health outcomes, understand the determinants of health or even yield new insights

into the factors that lead to disease.

Recent surveys show a growing tendency in physicians mobile and digital health

adoption. Mainstream applications in the medical domain are principally devoted to

Banos et al. BioMedical Engineering OnLine 2015, 14(Suppl 2):S6
http://www.biomedical-engineering-online.com/content/14/S2/S6

© 2015 Banos et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:oresti@ugr.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


learning and informative purposes. Examples of these apps are Medscape [1] and

Epocrates [2], which are particularly intended to provide comprehensive and updated

information for medical procedures, disease monographs, drug references or practice

guidelines. Other applications are mostly useful for primary care practitioners or gen-

eralists, such as Calculate by QxMD [3], which provides them with medical calculators

and decision support tools that apply to several medical specialties. Electronic refer-

ence manuals are also close at hand, as it is the case of Monthly Prescribing Reference

[4], an app that incorporates prescribing notes and drug records which facilitate clini-

cal practice and promote the access to the latest advances in treatments [5]. Physicians

also increasingly recommend the use of health apps to patients [6]. While most of

these apps require users to actively report about their health conditions, e.g., through

annotating dietary habits [7] or daily routines [8], new technological trends seek to

benefit from the information collected through wearable biomedical devices. Built-in

motion sensors readily available in smartphones are used, for example, to detect abnor-

mal conducts such as elderly falls [9] or freezing of gait in Parkinson’s patients [10].

Other applications develop on data collected through external wearable health devices

capable of inferring sleep disorders [11], detecting cardiovascular illnesses [12], alerting

on physical conditions [13] or tracking changes in physiological responses of patients

with chronic obstructive pulmonary disease [14].

Despite the rise of mHealth technology, this field is far from mature. Consumers’

demand for health apps and sensors clearly outpaces the science needed to understand

their benefits, risks and impact on health outcomes. In fact, researchers and developers

still need to build and assess the complete spectrum of mHealth technologies, as they cre-

ate safe, scalable and effective applications. To that end, powerful frameworks and tools

that support the development and validation of multidisciplinary mHealth applications are

required. There exist various attempts to this respect. For example, [15] provides an open

source electrocardiogram signal processing code for quality analysis and atrial fibrillation

screening. In [16] the authors present a mobile phone platform to collect users’ psycholo-

gical, physiological and activity information for mental health research. A mobile version

of a data processing toolbox originally devised for computer-based architectures and prin-

cipally used for human behavior modeling is provided in [17]. Distributed signal proces-

sing algorithms for the analysis and classification of sensor data are provided as part of a

framework for rapid prototyping of body sensor networks in [18]. A mHealth middleware

framework integrating multiple interfaces and multiparameter monitoring of physiological

measurement is proposed in [19]. Tools to analyze the provenance of mHealth data have

also been suggested in [20]. Despite the effort put on the development of health frame-

works and tools, past contributions either focus on a specific domain or lack some essen-

tial features of health applications.

Requirements of a mHealth framework
The main goal of mHealth frameworks is to foster the research and development in

health and medical domains as well as to accelerate the market of mobile health tech-

nologies and applications. To that end, two supportive objectives are devised: 1) to

allow developers to rapidly build applications while integrating a wide spectrum of

mobile health devices; 2) to grant simple access, representation and processing of

health data collected through heterogeneous resources across several applications.
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During the design of a mHealth framework several requirements must be borne in

mind, the essential of which are outlined in the following. A certain level of abstraction

from heterogeneous resources should be ensured to make hardware and its communi-

cation transparent to the developer. For the sake of interoperability, the framework

should also define a unified model for multimodal health data. Medical and health

applications can operate on a local basis or remotely, thus it should be supported both

local and remote storage of health data. Raw medical and physiological data is nor-

mally analyzed to extract health knowledge. Accordingly, a mHealth framework should

include signal processing, data mining and machine learning techniques tailored to

mHealth applications. In this regard, mechanisms to visualize medical and health infor-

mation in a user-friendly fashion must be also provided for both average users and

specialists. Another major requirement refers to the provision of healthcare services

such as health delivery, personalized guidelines and intelligent recommendations.

Finally, the framework should be modular and extensible to future sensor technologies

and application needs.

Architecture of the mHealth framework
In the light of the requirements presented in the previous section, a novel framework

devised to enable the easy and agile development of mHealth applications leveraging on

heterogeneous wearable biomedical devices is proposed. The mHealth Framework imple-

ments several functionalities to support resource and communication abstraction, biomedi-

cal data acquisition, health knowledge extraction, persistent data storage, adaptive

visualization, system management and value-added services. Figure 1 shows the architec-

ture that implements these functionalities and the components of the mHealth Framework.

In a nutshell, mHealth data delivered by mobile and biomedical sensors is collected

and structured by the Communication Manager. This raw data can be stored in the

Figure 1 mHealth Framework.
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Storage Manager, further processed by the Data Processing Manager, graphically repre-

sented by the Visualization Manager or directly used by the applications built on the

mHeath Framework. Moreover, the medical knowledge derived by the Data Processing

Manager can also be stored in the Storage Manager, input to advanced functionalities

provided by the Service Enablers or used by the mHealth applications. Since the Storage

Manager offers persistence, stored data can be offline processed by the Data Processing

Manager, graphically represented by the Visualization Manager or accessed by the

mHealth applications. Finally, the mHealth Framework offers, by means of the System

Manager, functionalities to manage general resources of the mobile or wearable device.

Communication Manager

mHealth applications may operate on multiple heterogeneous mobile and biomedical

devices. The Communication Manager provides the abstraction level required to enable

the functioning of applications independently of the underlying health technologies.

This component removes the burden of communicating with several heterogeneous

wearable devices; thus, making the communication transparent to the application and

to the other framework components. Moreover, this manager serves as interpreter of

the multimodal health data, providing a unified data model (see Section “Data Model”)

understandable by the rest of the framework components and mHealth applications.

In order to procure transparent communication and data retrieval, the Communica-

tion Manager incorporates Adapters, which are standalone modules devised to support

the use of an specific mobile or biomedical device. The Adapter manages the connec-

tion with the device, interprets the received data and maps it to the unified data

model. The modularity of the Adapters makes the Communication Manager extensible

and evolvable to future devices and technologies.

Storage manager

The Storage Manager provides data persistence both locally and remotely. It enables

the easy retrieval of stored data, abstracting the queries from the storage system

behind. This manager is also responsible for the efficient synchronization of the data

and its secure transmission to the remote store, either in the cloud or remote server.

Data processing manager

The Data Processing Manager is in charge of the processing of health data by provid-

ing signal processing, data mining and machine learning techniques. The processing

functionalities can run in two different operation modes. The first mode operates

online by processing the data collected at runtime by the Communication Manager.

The second approach functions on an offline manner by retrieving the data from the

Storage Manager. The Data Processing Manager includes four independent modules

each one corresponding to the stages of the data processing chain: preprocessing,

segmentation, feature extraction and classification.

Preprocessing

The health data collected through the sensors may be affected by diverse type of arti-

facts such as spurious spikes or electronic noise, or be loosely controlled resulting in

abnormal values and inconsistencies. Accordingly, it may be necessary to remove these

anomalies from the raw data, for example, by using filtering or screening techniques.
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The Preprocessing module is devised to apply mechanisms to clean, transform and

ultimately adequate the data to the application needs.

Segmentation

Continuous biodata streams need to be split into discrete segments or pieces to be

further processed. For example, sliding window approaches are commonly used for the

segmentation of body-motion data. The Segmentation module provides diverse techni-

ques to partition the data.

Feature extraction

The feature extraction process is performed to provide a more tractable representation

of the biosignals for the pattern recognition or mining stage. The Feature Extraction

module permits to transform the input data into a reduced representation set of fea-

tures or feature vector. Depending on the particular application area or domain some

features may be preferentially used. Examples of features are statistical functions such

as the mean or median, time/frequency transformations, and heuristics, which are pro-

vided by the Feature Extraction module.

Classification

Artificial intelligence algorithms are widely used to gain knowledge from the collected

health data. The features extracted by the Feature Extraction module are input to this

type of algorithms provided by the Classification module to eventually categorize the

data into a particular class or concept. The identified classes, which may represent

health conditions and behavioral patterns, can be used by the Service Enablers and

mHealth applications.

Visualization manager

The data representation is a fundamental element of any mHealth app. Since applications

may have different objectives and target users, developers require a wide sort of graphical

representation tools. The Visualization Manager is in charge of providing diverse modes

and ways to display data. This manager may operate on the data provided by the Commu-

nication Manager or the Storage Manager. An ‘online’ mode is identified for the depiction

of the data provided by the Communication Manager, which corresponds to the informa-

tion collected by the health sensors at runtime. On the other hand, an ‘offline’ operation

mode is defined for the data saved in the permanent storage. Not only raw signals may be

represented but also the information obtained after the data processing.

System manager

The System Manager provides developers with functionalities to manage general

resources of the mobile device. Examples of these resources are wireless connections

(WiFi, 3G connection, Bluetooth), geopositioning technologies (GPS), screen configura-

tion or battery management, among others.

Service enablers

An important characteristic of several mobile health applications is the intervention on

health states. Health data may be profited to influence elements of the intervention

and yield new information from which to act. This information is here devised to be

provided to the users through a set of Service Enablers, which support alerts, notifica-

tions, guidelines, reports and other future advanced functionalities.
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Alerts enabler

The Alerts Enabler provides mechanisms to trigger alerts and emergency procedures

when abnormalities or risk situations are detected. Examples of these mechanisms are

automatic phone calls and messages, which may be delivered to the patients’ family,

carers and emergency services in the event of a critical situation, e.g., after detection of

a fall or cardiac anomaly.

Notifications enabler

Users may need to be timely or occasionally informed about important facts of their

healthcare and wellbeing process. Health remainders, e.g., medication intake or pre-

scribed exercise, are essential mechanisms to engage users in the care process, to pro-

cure their organization and to empower them to meet the treatment goals. The

Notifications Enabler is devised to support prescheduled or event-based user-friendly

notifications that may also trigger additional services.

Guidelines enabler

Instructions, encouragements and educational information from specialists are of high

value to promote healthy lifestyles and to support the patient self-care. The Guidelines

Enabler provides multimedia tools for displaying guidelines that may be personalized

and adapted to the user’s needs and conditions.

Medical reports enabler

The Medical Reports Enabler is devised to facilitate the structuring of the medical knowl-

edge in an expert-oriented standardized format, e.g., HL7. This enabler will help clinicians

and care professionals to interpret health trends and to support medical decisions.

Data model

A unified Data Model enables data interoperability required to ensure intercommunica-

tion among the mHealth Framework components and applications. The model has to be

generic, flexible and extensible to support the representation of heterogeneous data col-

lected by present and future mobile and wearable devices. This is of utmost importance

due to the variety of sensing modalities used in mHealth. The mHealth Data Model

comprises five elements. The Session object is the main element and represents a user’s

health data recording session, including its metadata. The Session is composed of several

Sample objects which refer to each sample from the biodata stream collected during the

session. Each Sample links to multiple Device objects which represent the mobile and

wearable devices streaming during the session. Since a device offers different sensor

modalities, the Device links to the Sensor objects. The Sensor contains the data collected

by a given sensor in a specific moment. Metadata is required to interpret the data col-

lected by the multimodal sensors and the different devices. Since the metadata does not

vary during a recording session, and to reduce the model overhead, the Metadata object

is associated to the Session object instead of to each Sample, Device or Sensor object.

The Metadata defines the types of sensors, the units of the measurements, the start and

end time of the recorded session and the sampling rate.

mHealthDroid: an Implementation of the mHealth framework
mHealthDroid is the Android implementation of the previously proposed mHealth

Framework. It is released open source under the GNU General Public License version 3

and available at [21]. mHealthDroid is devised to operate on the Android operating
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system version 4.2 ("Jelly Bean”), although it provides backwards compatibility to version

2.3.3 ("Gingerbread”). The managers of the mHealth Framework architecture have been

developed using the singleton pattern approach in mHealthDroid.

The mHealthDroid Communication Manager has been implemented to facilitate

the incorporation of new Adapters. To do so, it provides a generic Adapter skeleton.

The current implementation of mHealthDroid provides the Adapter for Android mobile

devices and the Adapter for the Shimmer2 and Shimmer3 wearable devices [22]. The

Android Mobile Adapter abstracts the sensors embedded into the mobile device (e.g.,

GPS, temperature or humidity). Likewise, the Shimmer Adapters provide the means to

communicate the wearable device with the mobile device and to map the data to the

proprietary format. Shimmer devices provide multiple sensing modalities that span from

inertial sensing via accelerometer, gyroscope, magnetometer, and altimeter, to physiolo-

gical signs measurement such as electrocardiogram or electromyogram, among others.

The Storage Manager incorporates a SQLite database [23] to implement the local

persistence functionality. SQLite is a popular database engine on memory constrained

systems, like mobile devices, since it runs in minimal stack space and very little heap.

The Storage Manager also offers an interface to easily retrieve, based on diverse identi-

fiers (session, device identifier, date, time interval), the data stored in the SQLite data-

base. Database consistency check procedures are implemented by the Storage Manager

to ensure integrity in the synchronization between the remote and local storage. The

transmission to the remote storage is implemented using a HTTP POST request

method, which encloses in the request message’s body the JSON [24] representation of

the data. mHealthDroid also offers a server side implementation for remote persis-

tence. This implementation builds on a MySQL [25] database and provides PHP scripts

that use the MySQLi API [26] to manage the remote database.

The mHealthDroid Data Processing Manager provides an essential set of functional-

ities typically used in the data processing chain. The Preprocessing module implements

two techniques: upsampling to increase the sampling rate and downsampling to reduce

the sampling rate. A sliding window approach, widely-used in signal processing pro-

blems, is implemented by the Segmentation module. The Feature Extraction module

implements some generic statistical features such as mean, variance, standard devia-

tion, zero crossing rate, mean crossing rate, maximum and minimum. The Classifica-

tion module builds on an open source stripped version [27] of Weka (Waikato

Environment for Knowledge Analysis [28]). It provides functionalities to train and vali-

date machine learning models, that can be used for classification purposes. mHealth-

Droid currently implements Naive Bayes [29], Adaboost [30], Decision Trees [31],

Linear Regression [32] and ZeroR [33] classification techniques.

The Visualization Manager builds on the open source library Graphview [34], which

has been adapted to fulfill the particular needs of mHealth data representation. The

manager allows multiplot visualization, multisignal representation and customization

for diverse graph types.

The System Manager offers simple interfaces to access common mobile devices

resources (WiFi, 3G, Bluetooth and screen) and builds on the standard Android API [35].

mHealthDroid implements three Service Enablers. The Alerts Enabler provides inter-

faces to trigger phone calls and text messages. The Notifications Enabler implements

text remainders that can be scheduled in a simple way. Moreover, this enabler also
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provides advanced notifications that can trigger external functionalities or applications.

Both Alerts and Notifications Enablers build on the standard Android API. Finally, the

Guidelines Enabler provides interfaces to reproduce multimedia content, both locally

and remotely stored. The Media Player Android API [36] is used in mHealthDroid to

control playback of audio and video files for the local content. For the reproduction of

remote multimedia content, the Guidelines Enabler implements a set of functions that

build on the YouTube Android Player API [37]. This is particularly practical to access

a huge variety of medical and wellbeing content.

The mHealthDroid API is organized into a total of six packages, five of which corre-

spond to each of the aforementioned managers, and an additional one comprising utili-

ties and miscellanea functionalities. The Communication Manager package contains a

set of seven classes, respectively devoted to define sensor adapters, data structures and

communication protocols. The Storage Manager package is consisted of four main

classes, including database adapters, storage interfaces and communication for remote

persistence. The Data Processing Manager package contains six classes, one for each

individual data processing module, and as for the rest of managers, an additional one

for the orchestration of all its modules. The Visualization Manager package consists of

two main classes that provide the required functionalities for customized data repre-

sentation and the control of the canvas. Finally, the System Manager package and

Service Enablers package sum up to eleven classes to support the functionalities

already described above. All these classes total around 500 methods available to the

developer for their use. For a thorough description of the API and its methods, the

reader is particularly referred to [21].

mHealthApp: an exemplary mobile health application
An exemplary application has been developed to illustrate the potential of mHealth-

Droid. The main features and components of the mHealth Framework have been used

during the implementation of this application. As already envisioned during the concep-

tion of this framework, the usage of mHealthDroid proved the rapid application develop-

ment, which in this case was roughly a couple of days. In fact, most of the application

development efforts were mainly devoted to the graphical user interface design, whereas

the implementation of the core functionalities were easily built on mHealthDroid. The

comprehensive set of predefined functions provided by mHealthDroid allowed the

mHealthApp developers to easily interface a wearable sensor through simply three lines

of code, create a lightweight database system to store the data in just five code lines, or

visualize these data on a graph by calling a few predefined functions. This was possible

owing to the level of abstraction and programming simplicity introduced by mHealth-

Droid, also supported with practical templates and helpful documentation provided

together with its implementation [21]. The developed mHealthApp is readily available

for download from Google Play at [38]. The main features of this application, health

data collection, visualization, storage, guidelines and human behavior inference, are

described in the following.

Collection of health data

A key aspect of mHealth applications is the acquisition of people’s health data through

the use of external wearable devices. mHealthApp provides the functionalities to
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connect wearable health sensors to a regular mobile device. Shimmer2 sensors [22],

supported by the current version of mHealthDroid, are here considered for human

health monitoring. These sensors are capable of measuring vital signs and body

motion.

The process of adding a new Shimmer device, for the first time, is quite simple. The

app user just needs to press a button which initiates the scan of available Bluetooth

devices. Then, the pairing of both mobile and wearable sensor devices is performed

according to the user selection. This process is not required to be repeated once mobile

and wearable device are paired. Gathering and streaming of sensor data to the mobile

device can from then on be initiated by the user. After the user presses the correspond-

ing button the app requests the sensor to start collecting data and transfer them to the

mobile. The sensors embedded into the mobile device can be also used for human moni-

toring purposes. Accordingly, mHealthApp provides the user with the possibility of

using these sensors similarly to the external ones. All these functionalities essentially

build on the mHealthDroid Communication Manager.

Health data visualization

The information collected by the wearable or mobile sensors can be depicted through

the visualization menu. mHealthApp supports diverse representation modes and plot

types. An online representation of the signals is provided to visualize the data collected

at runtime, e.g., registered motion data (Figure 2 left and bottom-right). This type of

Figure 2 Examples of representation modes supported by mHealthApp. (Left) Tri- axial acceleration
signals are represented at runtime. (Right) Monthly average heart rate data is depicted on the top, while
continuous 2-leads ECG signals are plotted at the bottom.
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representation is particularly useful for specialists to analyze vital sign patterns. More-

over, average values or general statistics of processed data can be also represented, e.-

g., heart rate averaged by month (Figure 2 top-right). This kind of graphic is specially

devised for the average user, although it is also practical for the expert user.

Persistent remote storage

The health data collected through the wearable and mobile sensors can be locally

stored and uploaded to a remote server. Data transmission procedures, similar to the

ones presented for the mHealthDroid implementation, are used here. In mHealthApp,

the user simply needs to indicate whether they want to upload the locally stored data

and the connection technology, i.e., WiFi or 3G. The user can also select the list of

sensor data modalities to be sent remotely.

Guidelines for health encouragement and personalized recommendations

mHealth applications are devised to play an important role within the delivery of both

traditional and new healthcare services. One of these services corresponds to the

empowerment and encouragement of people in their personal health care and well-

being. mHealthApp comprises an illustrative set of resources to promote education of

healthy dietary habits and physical therapy support. The application provides video

tutorials and guidelines elaborated by specialists and presented in a categorized and

user-friendly fashion (Figure 3). The guidelines may be initiated when the user accesses

the corresponding menu or be triggered by personalized notifications. The notifications

can be scheduled to a particular date and time by the user.

Figure 3 Examples of video tutorials and guidelines for (left) demonstrating rehabilitation exercises
and (right) encouraging healthy dietary habits.
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Inference of human behavior

mHealthApp provides a means to assess users’ daily routines by analyzing the motion

data collected through the wearable sensors. The application identifies a set of com-

mon activities while the user carries them out (Figure 4). To that end, a human activity

recognition model is implemented. This model essentially builds on the mHealthDroid

Data Processing Manager. The following section provides an extensive description of

the methodology used for the development of the behavior inference functionality.

Human behavior inference by means of mHealthApp
The analysis of human behavior has attracted very much attention in healthcare, assis-

tance and wellness areas during the recent years. The identification or inference of

people’s conduct, also known as activity recognition, has been proven of particular

interest to promote healthier lifestyles [39,40], prevent unhealthy habits [41,42], detect

anomalous behaviors [43-45] or track conditions [46]. Wearable and mobile technolo-

gies are extensively used for the inference of human behavior, which makes activity

recognition one of the most prominent domains in mHealth.

This section describes a practical solution to the activity recognition problem, which

has been developed as part of mHealthApp and aims at illustrating the potential of

mHealthDroid. As it is normal practice in the activity recognition domain, a dataset is

collected to train and validate the recognition model. The mHealthApp activity recog-

nition model is defined based on prior solutions proved to perform well in similar

Figure 4 Snapshots from the activity recognition functionality of mHealthApp: (left) the detection
process has not been yet initiated by the user; (right) the application identifies the activity
performed by the user, here, sitting and relaxing.
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problems. In order to determine the statistical performance of the recognition model,

an offline evaluation is carried out. This type of performance analysis, which is the

most recurrently used in activity recognition, consists of training and validating on

multiple complementary subsets of the dataset. Once the model is confirmed to per-

form satisfactorily, it is implemented in mHealthApp by using the mHealthDroid Data

Processing Manager functionalities. To prove the correct functioning of mHealthApp

during real-time activity recognition, an online evaluation, which is less frequent in

activity recognition studies, is performed.

MHEALTH dataset

The collected dataset, hereafter MHEALTH dataset, comprises body motion and vital

signs recordings, for ten volunteers of diverse profile, while performing 12 physical

activities (Table 1). Shimmer2 wearable sensors [22] were used for the recordings. The

sensors were respectively placed on the subject’s chest, right wrist and left ankle and

attached by using elastic straps as illustrated in Figure 5. The use of multiple sensors

permits us to measure the motion experienced by diverse body parts, namely, the

acceleration, the rate of turn and the magnetic field orientation, thus better capturing

the body dynamics. The sensor positioned on the chest also provides 2-lead ECG mea-

surements, which are not used in this work for the development of the recognition

model, but rather collected for future work purposes. This information can be used,

for example, for basic heart monitoring, checking for various arrhythmias or looking at

the effects of exercise on the ECG. The sampling rate used for all sensing modalities is

of 50 Hz, which is considered sufficient for capturing human activity. All sessions were

recorded using a video camera. The video recording was used to label the data and to

check anomalous or unexpected patterns in the signals.

This dataset is found to generalize to common activities of daily living, given the

diversity of body parts involved in each one (e.g., frontal elevation of arms vs. knees

bending), the intensity of the actions (e.g., cycling vs. sitting and relaxing) and their

execution speed or dynamicity (e.g., running vs. standing still). The activities were col-

lected in an out-of-lab environment, with no constraints on the way they had to be

executed. In any case, the subjects were asked to try their best when executing them.

The MHEALTH dataset is readily available for download at [47].

mHealthApp activity recognition model

The activity recognition process consists of a set of steps, already introduced during

the description of the Data Processing Manager, that mainly combine signal proces-

sing, pattern recognition and machine learning techniques to define a specific activity

Table 1. Activity set

Activity Set

L1: Standing still (1 min) L7: Frontal elevation of arms (20×)

L2: Sitting and relaxing (1 min) L8: Knees bending (crouching) (20×)

L3: Lying down (1 min) L9: Cycling (1 min)

L4: Walking (1 min) L10: Jogging (1 min)

L5: Climbing/descending stairs (1 min) L11: Running (1 min)

L6: Waist bends forward (20×) L12: Jump front & back (20×)

In brackets are the number of repetitions (N×) or the duration of the exercises (min).
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recognition model [48]. In the following, the activity recognition model used in

mHealthApp is described.

The motion signals provided by each of the three wearable devices are used for the

activity identification. Concretely, the triaxial acceleration data is considered, since this

is the most prevalent sensor modality in previous activity recognition approaches

Figure 5 Study setup and sensor deployment.
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[49,50]. No preprocessing of the data is applied to avoid the removal of relevant infor-

mation. A non-overlapping sliding window approach is considered for the segmenta-

tion process. This technique is supported by the current version of the mHealthDroid

Segmentation module. The window size is particularly set to two seconds, since it

proves to provide a good trade-off between recognition speed and accuracy for the

activities of interest [51]. Mean, standard deviation, maximum and minimum are

selected from the set of features available in the mHealthDroid Feature Extraction

module. These features are typically used in activity recognition for their discrimina-

tion potential and easy interpretation in the acceleration domain [52-57]. Decision

trees are used for the classification process, which have been shown to perform well in

combination with similar features and activities [52,58,59]. Particularly, the J48 decision

tree model implemented by the mHealthDroid Classification module is used here.

Offline evaluation of the mHealthApp activity recognition model

The offline evaluation of the activity recognition model is performed on the

MHEALTH dataset and through a cross-validation process. The cross-validation tech-

nique involves partitioning the dataset into complementary subsets, performing the

analysis on one subset (training set) and validating the analysis on the other subset

(validation or testing set). Although there exist several cross-validation approaches,

leave-one-subject-out cross validation and ten-fold cross-validation are the most widely

used in activity recognition. In this study the latter validation technique is particularly

considered since it leads to a better estimate of the performance of the recognition

model [60]. Moreover, the ten-fold cross-validation process is repeated 100 times to

ensure statistical robustness and to procure an asymptotic convergence to a correct

estimation of the system performance [61].

Diverse metrics may be used to evaluate the performance of the recognition system.

The confusion matrix stands out among others, since it summarizes in a single matrix

all the information corresponding to the performance evaluation. From this matrix,

several other metrics can be simply derived such as the sensitivity (SE), specificity (SP),

positive predictive value (PPV), negative predictive value (NPV) and F-score. An exten-

sive review of these and other metrics can be seen in [62].

The results obtained after evaluation are shown in Figure 6 and Table 2. As it can be

observed, the developed system provides very promising recognition capabilities for the

considered activities. The confusion matrix (Figure 6) is practically diagonal, which

represents a performance close to absolute. This is further confirmed for each particu-

lar activity, considering the values obtained for each performance metric (Table 2). In

fact, daily activities such as standing still, sitting, lying down or walking are unequivo-

cally identified. Subtle misclassifications are seen for other activities that are more

dependent on the physical conditions of the subjects, such as running or knees bend-

ing. At any rate, from the successful outcomes of this evaluation it can be concluded

that the proposed system is a promising activity recognizer.

Online evaluation of the mHealthApp activity recognition model

The online validation allows us to corroborate the potential of the mHealthApp activ-

ity recognition model at runtime. The recognition model implemented in mHealthApp

builds on the complete MHEALTH dataset. The validation is performed on a different
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set of subjects to the one considered for the model training. A total of five volunteers

were asked to perform the complete activity set (Table 1). Each activity was carried

out during 30 seconds as it was considered to be enough given the characteristics of

the exercises. The activities were performed in various outdoor scenarios for the users’

convenience and to reduce their awareness as much as possible. During the executions

both user’s activity and smartphone’s screen (Figure 4) were recorded on video for the

evaluation of the system performance. This was considered to be a more tractable

approach than using commentary sheets for the activities annotation. The performance

is evaluated by comparing both actual and detected activities based on the observation

Table 2. Recognition performance for each activity class for the offline evaluation

Activity SE SP PPV NPV F-score

L1 1.00 1.00 1.00 1.00 1.00

L2 1.00 1.00 1.00 1.00 1.00

L3 1.00 1.00 1.00 1.00 1.00

L4 1.00 1.00 1.00 1.00 1.00

L5 0.99 1.00 0.99 1.00 0.99

L6 0.97 1.00 0.97 1.00 0.97

L7 1.00 1.00 0.99 1.00 0.99

L8 0.95 1.00 0.97 1.00 0.96

L9 1.00 1.00 0.99 1.00 1.00

L10 0.96 0.99 0.94 1.00 0.95

L11 0.94 1.00 0.96 0.99 0.95

L12 0.99 1.00 0.99 1.00 0.99

Each metric respectively correspond to the sensitivity (SE), specificity (SP), positive predictive value (PPV), negative
predictive value (NPV) and F-score.

Figure 6 Confusion matrix obtained from the offline evaluation of the activity recognition model.
Activities are identified through the labels introduced in Table 1.
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of the video recordings. Actual and predicted activities are aligned taking into account

the 1-second delay associated to the data segmentation process. Transitions among the

activities of interest are left out of the study since a null-class rejection schema has not

been explicitly implemented [63].

The activities detected by mHealthApp, for each user, are depicted in Figure 7. In

broad strokes, it can be said that the system shows good recognition capabilities. Only

a few outliers or misclassifications are observed. For example, during the identification

of “sitting and relaxing”, the model sometimes interprets that the users are bending

their waist forward or elevating their arms. This is explained by some abrupt move-

ments observed during the execution of this activity for some of the participants. Simi-

larly, some errors are found for the detection of “knees bending or crouching”, which

is confused here again with “waist bend forwards”. This is a consequence of some diffi-

culties encountered by part of the users while performing this exercise, which trans-

lated into a moderate sway back and forth. Finally, a few misclassifications are

observed among “walking”, “jogging” and “running”, which are basically originated

from the varying cadence with which these activities were executed by the subjects. All

these conclusions are further supported by the confusion matrix (Figure 8) and the

individual performance metrics for each activity (Table 3). In summary, the developed

mHealthApp activity recognition model is not only shown to operate in an experimen-

tal basis but also proved to work well during the normal use of the system.

Conclusions
A novel mHealth framework intended to facilitate the development of mobile health

applications in a simple and agile fashion has been presented in this paper. The frame-

work has been designed taking into account crucial requirements of mHealth technolo-

gies and applications. This work has also introduced mHealthDroid, an open source

Figure 7 Activities detected by the proposed recognizer during online evaluation of the system
and for various subjects. The actual activities are represented by the ground-truth labels. Activities are
identified through the labels introduced in Table 1.
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implementation of the proposed mHealth Framework that operates on the Android

OS. This implementation aims at bringing together mobile devices and heterogeneous

multimodal sensors including both research and commercial systems. mHealthDroid

supports basic and advanced features of mHealth applications such as resource and

communication abstraction, biomedical data acquisition, health knowledge extraction,

persistent data storage, adaptive visualization, system management and value-added

services such as intelligent alerts, recommendations and guidelines.

An exemplary app has also been provided along with this work to showcase the

potential of mHealthDroid. mHealthApp implements mechanisms for collection and

Table 3. Recognition performance for each activity class for the online evaluation

Activity SE SP PPV NPV F-score

L1 1.00 1.00 1.00 1.00 1.00

L2 0.93 1.00 1.00 0.99 0.97

L3 1.00 1.00 1.00 1.00 1.00

L4 1.00 1.00 1.00 1.00 1.00

L5 1.00 0.99 0.88 1.00 0.94

L6 1.00 0.99 0.91 1.00 0.95

L7 1.00 0.99 0.94 1.00 0.97

L8 0.90 1.00 1.00 0.99 0.95

L9 1.00 1.00 1.00 1.00 1.00

L10 0.87 1.00 1.00 0.99 0.93

L11 1.00 1.00 1.00 1.00 1.00

L12 1.00 1.00 1.00 1.00 1.00

Each metric respectively correspond to the specificity (SP), sensitivity (SE), positive predictive value (PPV), negative
predictive value (NPV) and F-score.

Figure 8 Confusion matrix obtained from the online evaluation of the activity recognition model.
Activities are identified through the labels used in Table 1.
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visualization of health data, persistent remote storage and personalized health and well-

being guidelines. This app also provides an advanced means to detect and track human

behavior, a functionality that has been further validated in this work through extensive

experimentation. The agility and simplicity gained by using the mHealthDroid API is

proved through the reduced time required for developing an app of these

characteristics.

Ultimately, mHealthDroid aims at bringing together developers, healthcare profes-

sionals, academics and health enthusiasts to exchange ideas and cooperate in the defi-

nition of valuable tools for a healthier world. Accordingly, the authors encourage the

community to contribute to this innovative platform by supporting the use of the latest

sensors, incorporating new behavioral algorithms or simply making use of it for the

development of novel mobile health applications.
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