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Abstract

Background: Due to the limited number of experimental studies that mechanically
characterise human atherosclerotic plaque tissue from the femoral arteries, a recent
trend has emerged in current literature whereby one set of material data based on
aortic plaque tissue is employed to numerically represent diseased femoral artery
tissue. This study aims to generate novel vessel-appropriate material models for
femoral plaque tissue and assess the influence of using material models based on
experimental data generated from aortic plaque testing to represent diseased
femoral arterial tissue.

Methods: Novel material models based on experimental data generated from
testing of atherosclerotic femoral artery tissue are developed and a computational
analysis of the revascularisation of a quarter model idealised diseased femoral artery
from a 90% diameter stenosis to a 10% diameter stenosis is performed using these
novel material models. The simulation is also performed using material models based
on experimental data obtained from aortic plaque testing in order to examine the
effect of employing vessel appropriate material models versus those currently
employed in literature to represent femoral plaque tissue.

Results: Simulations that employ material models based on atherosclerotic aortic
tissue exhibit much higher maximum principal stresses within the plaque than
simulations that employ material models based on atherosclerotic femoral tissue.
Specifically, employing a material model based on calcified aortic tissue, instead of
one based on heavily calcified femoral tissue, to represent diseased femoral arterial
vessels results in a 487 fold increase in maximum principal stress within the plaque
at a depth of 0.8 mm from the lumen.

Conclusions: Large differences are induced on numerical results as a consequence
of employing material models based on aortic plaque, in place of material models
based on femoral plaque, to represent a diseased femoral vessel. Due to these large
discrepancies, future studies should seek to employ vessel-appropriate material
models to simulate the response of diseased femoral tissue in order to obtain the
most accurate numerical results.
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Background
The finite element (FE) method allows for the simulation of endovascular intervention

through the use of a material model that is characterised by a strain energy function

(SEF) to represent the highly deformable behaviour exhibited by healthy and diseased

arterial tissue. The majority of FE studies develop the required material models based on

in vitro experimental data obtained through the mechanical testing of healthy and ather-

osclerotic arterial tissue. However, as there are a limited number of experimental studies

that mechanically characterise human atherosclerotic plaque tissue, a recent trend has

emerged in current literature whereby one set of material data from a single arterial

location is employed to represent the diseased tissue of numerous vascular locations as

highlighted in Holzapfel et al. (2014) [1]. This trend is also true of numerical simulations

of atherosclerotic femoral arteries as several studies characterise femoral plaque tissue

using experimental data based on aortic plaque tissue generated by Loree et al. (1994)

[2-5]. Such tissue has been shown to exhibit mechanical behaviour distinct to plaque tis-

sue from other vascular locations [6].

This study generates material models based on experimental testing of atherosclerotic

femoral artery tissue that can be employed to more accurately model diseased femoral

artery tissue using computational methods. These models are generated from the mechan-

ical behaviour of human atherosclerotic femoral plaque tissue that was characterised using

uniaxial planar shear testing in Cunnane et al. (2014) [7]. Tissue samples were also biologi-

cally classified using Fourier Transform Infrared (FTIR) spectroscopy prior to mechanical

testing and were classified into three groups based on increasing levels of calcified tissue

content relative to lipid content to further characterise the plaque samples [7,8].

A computational analysis of the revascularisation of a highly idealised diseased

femoral artery is performed using these novel material models and the effect of using

these vessel appropriate material models versus material models based on atherosclero-

tic arterial tissue from aortic vessels generated by Loree et al. (1994) [2] is examined.

This comparison of numerical results intends to examine the influence of basing the

material models for numerical simulations of atherosclerotic femoral vessels on experi-

mental data derived from atherosclerotic aortic tissue.

Methods
Material model

The Yeoh SEF is the material model used in this study to characterise the mechanical

response of the tissue [9]. This function is a third-order reduced polynomial SEF that

is suitable for characterising hyperelastic materials using uniaxial mechanical data, in

tension or planar shear, as the function only depends on the first strain invariant of

the Cauchy Green deformation tensor, I1.

�(I1) =
3∑

(i=1)

Ci0(I1 − 3)i (1)

Ci0 are the material coefficients, and I1 is the first-strain invariant which is based on

the principal stretch ratios, Eqn. 2.

I1 = λ2
1 + λ2

2 + λ2
3 (2)
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The principal stretches (l1, l2 and l3) for planar shear testing are shown in equation 3.

λ1 = λ, λ2 = 1, λ3 =
1
λ

(3)

The Yeoh SEF is sufficient for the uniaxial test data modelled in this study as it is an iso-

tropic model. However, anisotropic material models are recommended for arterial tissues

and require that the mechanical behaviour of at least two directions (circumferential and

longitudinal) be characterised. Utilising an anisotropic model such as Holzapfel and

Ogden (2009) [10] also requires in vitro histological studies of the samples in order to

determine the angle and dispersion of collagen fibers within the tissue [11-13]. As such

structural information is not available regarding the data modelled in this study and the

geometrical sizes of the samples only permitted uniaxial testing to failure, an isotropic

model based on uniaxial testing is employed.

Mechanical testing

Twenty femoral plaque samples were characterised, as described in [7], in order to

develop the SEF necessary to model femoral plaque tissue. FTIR analysis (Spectrum 100,

Perkin Elmer Inc., MA, USA, Diamond Crystal) was performed over the plaque luminal

surface using the attenuated total reflectance (ATR) probe to characterise the global bio-

logical content of the samples. A background spectrum was removed and the ATR crys-

tal was placed in direct contact with the sample. All of the spectrums were acquired

using the absorbance mode with a resolution of 2 cm-1 for 16 scans over the range of

4000 - 700 cm-1. The water spectrum was subtracted from each sample spectrum prior

to peak area calculation [14]. The CH2 stretch peaks found between 2972 - 2845 cm-1

represent the absorbance of lipid within the specimen. Also, lipid ester peaks can often

be identified at 1730 cm-1 and were included in the lipid peak area calculation. The cal-

cification peak is represented by the phosphate absorbance peak in the 1180 - 900 cm-1

range. The area under these peaks was measured using inbuilt software from Spectrum

100 (Perkin Elmer Inc., MA, USA). From this, the ratios of calcification to lipid (Ca:Li)

present within each sample were calculated and averaged. Three distinct groups were

identified from these ratios based on increasing levels of calcified tissue content relative

to lipid content: lightly calcified plaques (1 < Ca:Li < 1.5), moderately calcified plaques

(1.5 < Ca:Li < 2) and heavily calcified plaques (2 < Ca:Li < 3).

Samples were then subjected to uniaxial planar shear testing using a uniaxial tester and

video extensometer. Samples were elongated in the circumferential direction in order to

determine the mechanical response of the tissue to large deformation and the mechani-

cally induced failure properties. Samples were preconditioned using 5 cycles to 10%

stretch at a displacement rate of 0.1 mm/s and then elongated to failure at a displacement

rate of 30% of gauge length per second [8]. This testing generated the experimental data

necessary to characterise the femoral plaque material properties.

Material properties

SFA plaque properties

The experimental data of each plaque sample were fitted to the Yeoh SEF using an

optimisation technique developed with Matlab (r2010a, Natick, MA; The Mathworks

Inc., 2009) to minimise the difference in stress values between the Yeoh SEF and the
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experimental data which ensures stability of the SEF. Figure 1 displays the experimen-

tal data, graphically represented in terms of Cauchy stress and stretch ratio, grouped

by FTIR classification and also the SEF curves fit to each data group. The light grey

dashed lines represent the lightly calcified group and the blue line characterises the

average curve of this group which was generated by fitting a single polynomial curve

to the mechanical response curves of all of the plaque samples in this group. The dark

grey dashed lines represent the moderately calcified group and the red line charac-

terises the average curve of this group. The black lines represent the heavily calcified

group and the green line characterises the average curve of this group. The curves con-

tinue until the average point of mechanically induced ultimate failure recorded for

each group.

The coefficients generated to characterise the Yeoh SEF curves shown in Figure 1 are

displayed in table 1. These coefficients are generated from the experimental data that

characterise the mechanical response of the femoral plaque tissue. The R2 value

denotes the quality of the fit of each set of coefficients to the corresponding average

curve used to represent the experimental data.

The averaged stretch ratio and Cauchy stress values at the point of ultimate

mechanically induced failure are listed in table 2. These values are used to assess the

likelihood of plaque failure during revascularisation and are also compared to the fail-

ure values of aortic plaque tissue generated by Loree et al. (1994) [2].

Figure 1 The experimental data grouped by FTIR classification and the SEF curves fit to each data
group. The light grey dashed lines represent the lightly calcified group and the blue line characterises the
average curve of this group. The dark grey dashed lines represent the moderately calcified group and the
red line characterises the average curve of this group. The black lines represent the heavily calcified group
and the green line characterises the average curve of this group.

Table 1 The Yeoh SEF coefficients generated to develop the material models used to
represent the experimental data that characterise the mechanical response of the
femoral plaque tissue

Group C10 (MPa) C20 (MPa) C30 (MPa) R2

Lightly Calcified 4.98E-02 -6.19E-03 8.98E-04 0.99992

Moderately Calcified 1.35E-01 -2.84E-02 4.90E-03 0.99997

Heavily Calcified 4.62E-02 -1.47E-02 4.95E-03 0.99994

The R2 values denote the quality of the fit of each set of coefficients to the corresponding average curve used to
represent the experimental data.
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Aortic plaque properties

The aortic plaque tissue experimental data generated by Loree et al. (1994) [2] was

fitted to the Yeoh SEF again using an optimisation technique developed with Matlab

to minimise the difference in stress values between the Yeoh SEF and the experimental

data. The data was taken from the averaged curves generated by Walsh et al. (2014)

[6] which were fitted to the data published by Loree et al. (1994) [2]. This data set was

selected as it is currently used in literature to computationally represent plaques from

the femoral artery [4,5]. The SEFs generated to represent the atherosclerotic aortic tis-

sue are displayed in Figure 2 and are also compared to the femoral plaque tissue mate-

rial models generated specifically for this study.

Table 3 lists the SEF coefficients generated to develop the material models used to

represent the material properties of the aortic plaque tissue as determined by Loree

et al. (1994) [2].

The averaged stretch ratio and Cauchy stress values at the point of ultimate

mechanically induced aortic plaque tissue failure are listed in table 4. These values are

included in order to determine the effect of employing plaque failure properties gener-

ated from aortic plaque tissue.

Computational model

Artery model

A 2D plane strain quarter model was developed to simulate an idealised concentric

section of diseased femoral artery. This model is intended to offer a quantitative eva-

luation of the effects of employing material models based on aortic atherosclerotic tis-

sue to represent diseased femoral artery tissue. As the numerical results of the artery

Table 2 The stretch ratio and Cauchy stress values at ultimate mechanically induced
failure for each of the three femoral plaque groups tested

Lightly Calcified Moderately Calcified Heavily Calcified

Failure Type Stretch Ratio Cauchy (MPa) Stretch Ratio Cauchy (MPa) Stretch Ratio Cauchy (MPa)

Ultimate 2.16 ± 0.09 0.3 ± 0.01 1.75 ± 0.19 0.43 ± 0.11 1.55 ± 0.21 0.16 ± 0.04

Figure 2 The SEFs generated to develop the material models used to represent the atherosclerotic
aortic tissue characterised by Loree et al. (1994) [2]. Also included are the SEFs generated to develop
the material models used to represent the femoral tissue. In this figure the blue, red and green lines
correspond to the lightly, moderately and heavily calcified femoral groups respectively. Similarly, the black,
dark grey and light grey dashed lines correspond to the calcified, cellular and hypocellular aortic groups
respectively.
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model are intended solely to compare the influence of material model, geometrical and

computational complexities such as patient specific geometries and compositions and

also the influences of residual stresses have been neglected. A fibrous cap was not

included in this model as atherosclerotic plaques originating in the femoral arteries

have been found to be primarily Types VII and VIII (American Heart Association) and

are therefore highly fibrotic and calcified structures that possess no fibrous cap or

underlying lipid pool [15,16].

The artery dimensions and stenosis levels used to develop this model are listed in

table 5. The vessel diameter used is the average value taken from several studies that

characterise both the healthy and diseased femoral vessels of numerous patients

using ultrasound [17-22]. The lumen diameter is the average measurement of the

healthy femoral vessels of 20 patients, again obtained from a study that employs

ultrasound [21]. The resulting media/adventitia wall thickness at initial stenosis is

listed in table 5 and is consistent with values reported in literature for healthy

femoral arteries [18]. The stenosis levels employed represent the most common sce-

narios found in several clinical trials that perform angioplasty procedures in the

femoral arteries of multiple patients suffering from peripheral arterial disease

[23-26].

A grid independent structured mesh consisting of over 400,000 4-node bilinear plane

strain quadrilateral elements was generated to perform the numerical simulation.

Results were obtained along a line located through the centre of the model which

extends from the lumen to the extreior of the artery wall, Figure 3.

Results
Figure 4 displays the maximum principal stress profiles along the line of interest, depicted

in Figure 3, for each of the material models simulated in this study. A log scale is used to

portray the stress values as the large differences in maximum principal stress values

between the material models makes visualising the profiles difficult on a linear scale.

Figure 5 displays the individual maximum principal stress values generated by each mate-

rial model at a point 0.8 mm radial from the lumen along the line of interest, Figure 3. This

point was chosen to avoid the effects of the boundary conditions that were applied to the

luminal surface in order to simulate the displacement of the plaque. Also, this point allows

Table 3 The Yeoh SEF coefficients generated to develop the material models used to
represent the experimental data that characterise the mechanical response of aortic
plaque tissue generated by Loree et al. (1994) [2]

Group C10 (MPa) C20 (MPa) C30 (MPa) R2

Calcified 1.41E-03 4.73E+00 8.51E-01 0.99825

Cellular 4.84E-03 3.59E-01 6.08E-01 0.99953

Hypocellular 2.20E-01 5.09E-01 6.19E-01 0.99903

The R2 values denote the quality of the fit of each set of coefficients to the corresponding average curve used to
represent the experimental data.

Table 4 The stretch ratio and Cauchy stress values at ultimate mechanically induced
failure for aortic plaque tissue

Calcified Cellular Hypocellular

Failure Type Stretch Ratio Cauchy (MPa) Stretch Ratio Cauchy (MPa) Stretch Ratio Cauchy (MPa)

Ultimate 1.19 ± 0.04 0.52 ± 0.34 1.42 ± 0.14 0.74 ± 0.27 1.23 0.67
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for the stress profiles to converge therefore facilitating for a better comparison of induced

stress values. It can be observed that employing a material model based on calcified aortic

tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral

vessels, results in a 487 fold increase in maximum principal stress at this point.

Table 5 Dimensions and parameters used to generate the idealised diseased femoral
artery modelled employed in this study

SFA Diameter
(mm)

Lumen
Diameter (mm)

Wall Thickness
(mm)

Initial Stenosis (% of SFA
Diameter)

Final Stenosis (% of SFA
Diameter)

6.87 5.95 0.48 90 10

Figure 3 Idealised concentric quarter model of a diseased femoral artery with an initial stenosis
obstructing 90% of the luminal diameter. The yellow section represents the diseased tissue and the
green section represents the healthy tissue. The red line indicates the line along which data was extracted
from the model.

Figure 4 Maximum principal stress profile across the line of interest for each material model
examined in this study. In this figure the blue, red and green lines correspond to the lightly, moderately
and heavily calcified femoral groups respectively. Similarly, the black, dark grey and light grey dashed lines
correspond to the calcified, cellular and hypocellular aortic groups respectively.
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Figure 5 also illustrates the failure criteria for both the aortic and femoral data sets as

listed in tables 2 and 4. These points of mechanically induced failure are portrayed as

dashed lines with a colour corresponding to the material model to which it applies. These

lines reveal that tissue failure would have occurred at this location of the plaque in each of

the simulations that employ material models based on aortic tissue. However, tissue failure

would not have occurred in the simulations that employ material models based on femoral

plaque tissue.

Discussion
This study performs a computational analysis of the revascularisation of an idealised

diseased femoral artery using novel material models based on femoral plaque tissue

and also using material models based on atherosclerotic aortic tissue that are cur-

rently employed in literature. The comparison of the numerical results from these

simulations is intended to examine the influence of basing the material models

intended for numerical simulations of atherosclerotic femoral vessels on experimental

data derived from atherosclerotic aortic tissue.

The effect of employing material models based on atherosclerotic aortic tissue rather

than femoral tissue can be seen in Figure 4. Comparing the results of the aortic calci-

fied model and the heavily calcified femoral model offers the most insightful compari-

son as the calcified aortic experimental data is most often employed in literature to

represent diseased femoral tissue [4,5] and heavily calcified samples were the most

common class of samples identified by FTIR classification of atherosclerotic femoral

tissue [7]. Employing a material model based on calcified aortic tissue, instead of one

based on heavily calcified femoral tissue, to represent diseased femoral vessels, results

in a 487 fold increase in maximum principal stress at a depth of 0.8 mm from the

lumen. From a medical device design perspective, this overestimation of the stress

induced in the plaque structure may lead to revascularisation devices that are inappro-

priately designed in order to account for this inaccurately high stress value. Rectifying

this issue through the employment of vessel appropriate material models may help

Figure 5 Maximum principal stress values present in the plaque model at a distance of 0.8 mm
from the lumen along the line of interest for each of the material models employed in this study.
The dashed lines represent the ultimate failure stress of each material modelled. The blue, red and green
dashed lines correspond to the lightly, moderately and heavily calcified femoral groups respectively.
Similarly, the black, dark grey and light grey dashed lines correspond to the calcified, cellular and
hypocellular aortic groups respectively.
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reduce the high incident of stent fracture [27-29] and arterial dissection [30,31]

reported in literature for stents deployed in the femoral vessels.

The deviation between the numerical results of the simulations based on aortic and

femoral plaque material models are caused by the discrepancies between the two

experimental data sets visible in Figure 2. These discrepancies may arise due to the

condition of the samples obtained from the two vascular locations. The atherosclerotic

aortic samples selected for testing in the Loree et al. (1994) [2] study were visibly

uncomplicated fibrous cap samples free from thrombus or surface fracture and were

also separated from the underlying necrotic core. This may explain why the mechanical

responses of the aortic plaque samples resemble healthy intimal tissue with an orga-

nised collagen structure [32]. A mechanical response resembling that of healthy intimal

tissue is inappropriate to represent femoral plaque tissue as plaques originating in this

vasculature have been shown to be highly advanced forms of atherosclerotic tissue that

contain high proportions of calcified and fibrous lesions [15,16]. The femoral plaque

samples are therefore believed to be far more diseased than the aortic samples and

were also tested as whole specimens meaning that the mechanical responses displayed

in Figure 1 incorporate the behaviour of the entire intimal layer and not just

the fibrous cap. Furthermore, the majority of the mechanical responses displayed by

the femoral plaque samples in Figure 1 do not display the collagen stiffening response

expected of healthy arterial tissue and displayed by the aortic samples [32]. This sug-

gests that the collagen structure is extremely heterogeneous due to the disruption

caused by the advancement of the atherosclerotic process and that the plaque beha-

viour is dominated by the prevalence, properties and interactions of the diseased and

healthy tissue components rather than properly orientated collagen fibres [33]. This

potentially explains the differences between the mechanical behaviour exhibited by the

two data sets and highlights the need for vessel specific plaque characterisation.

This difference in mechanical response between the two data sets is compounded

further when the inappropriate aortic data is applied to numerical models that simulate

the deployment of endovascular devices. Such events expose the plaque tissue to

stretch that is far beyond the failure point of the tested samples. This causes the SEF

curve to follow the predicted path of the tissue response and therefore any difference

in mechanical behaviour, such as the stiffening behaviour of organised collagen fibres

observed in the aortic plaque samples versus the heterogeneous calcified and fibrous

tissue behaviour exhibited by the femoral plaque samples, is further exasperated. The

problem of material model choice therefore becomes an exponential one and leads to

the large discrepancies observed between the simulations based on aortic and femoral

plaque material models. This highlights the need for future atherosclerotic based FE

studies of femoral arteries, regardless of geometrical or computational complexity, to

employ material models specific to the vascular location.

A major limitation of this study is the relative simplicity of the diseased arterial

model used to compare the material models based on aortic and femoral atherosclero-

tic tissue. Current numerical models of diseased arterial vessels are based on 3D

patient specific vessel geometries and compositions derived from medical imaging

techniques [34-36]. Such models contain far more complex geometrical and computa-

tional parameters. However, as the purpose of this study is to compare the effect of

material model choice on numerical results, free from geometrical influences, it was
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deemed acceptable to employ a highly idealised computational model. A further limita-

tion is that the mechanical response and failure properties of atherosclerotic femoral

plaque tissue are multi-axial in vivo parameters that in vitro mechanical testing cannot

fully characterise. Ideally, in vivo imaging techniques should be employed to character-

ise these mechanical parameters. However, direct mechanical testing remains the only

standardised method currently capable of characterising plaque failure under mechani-

cal loading.

Conclusion
The comparison of numerical results from simulations of femoral artery revascularisation

performed in this study have revealed the influence of employing material models based

on aortic and femoral atherosclerotic experimental data on numerical results. Large differ-

ences are induced on numerical results as a consequence of employing material models

based on aortic plaque, in place of material models based on femoral plaque, to represent

the diseased femoral vessel. These discrepancies are attributed to the differences in the

condition of the aortic and femoral samples tested to generate the mechanical data

whereby the aortic samples exhibit behaviour far closer to healthy intimal tissue than that

of the femoral samples. Due to these large discrepancies, future studies should seek to

employ vessel appropriate material models to simulate the response of diseased femoral

tissue in order to obtain the most accurate numerical results.
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