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Abstract

Background: In ultrasound elastography, reconstruction of tissue elasticity
(e.g., Young’s modulus) requires regularization and known information of forces
and/or displacements on tissue boundaries. In practice, it is challenging to choose an
appropriate regularization parameter; and the boundary conditions are difficult to
obtain in vivo. The purpose of this study is to develop a more applicable algorithm that
does not need any regularization or boundary force/displacement information.

Methods: The proposed method adopts the bicubic B-spline as the tissue motion
model to estimate the displacement fields. Then the estimated displacements are input
to the finite element inversion scheme to reconstruct the Young’s modulus of each
element. In the inversion, a modulus boundary condition is used instead of force/
displacement boundary conditions. Simulation and experiments on tissue-mimicking
phantoms are carried out to test the proposed method.

Results: The simulation results demonstrate that Young’s modulus reconstruction of the
proposed method has a relative error of −3.43 ± 0.43% and root-squared-mean error of
16.94 ± 0.25%. The phantom experimental results show that the target hardening artifacts
in the strain images are significantly reduced in the Young’s modulus images. In both
simulation and phantom studies, the size and position of inclusions can be accurately
depicted in the modulus images.

Conclusions: The proposed method can reconstruct tissue Young’s modulus distribution
with a high accuracy. It can reduce the artifacts shown in the strain image and correctly
delineate the locations and sizes of inclusions. Unlike most modulus reconstruction
methods, it does not need any regularization during the inversion procedure.
Furthermore, it does not need to measure the boundary conditions of displacement or
force. Thus this method can be used with a freehand scan, which facilitates its usage in
the clinic.
Background
Breast cancer is the most common cancer among women, and the second-leading

cause of cancer deaths in women in the United States [1]. The pathological state of the

breast cancer highly correlates with their mechanical properties, such as Young’s

modulus (or shear modulus) and viscoelasticity [2]. This lays the foundation of manual

palpation routinely used in breast cancer detection. Palpation is especially helpful in

the detection and localization of breast lesions [3]. However, it is limited in the cases
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when the tumor is small or deep beneath the skin surface [4]. Besides, palpation is sub-

jective and only provides qualitative information. Based on the concept of palpation,

quasi-static elastography (or compression elastography) is proposed to non-invasively

estimate the mechanical property of soft tissues using ultrasound imaging [5].

In quasi-static elastography, the axial strain field is interpreted as relative Young’s

modulus distribution within the tissue with the assumption of constant stress distribu-

tion [5]. The true Young’s modulus distribution could be computed from the internal

strain and stress field [6]. However, the internal stress distribution cannot be measured

in vivo [7]. Due to the non-uniform stress distribution within the tissue, several mech-

anical artifacts could exist in the axial strain image and may compromise the diagnosis

in the clinic [8]. For examples, stress decay with depth causes the target-hardening

artifact [5]. To overcome this limitation, many researchers are devoted to reconstruct-

ing the Young’s or shear modulus within the tissue by using certain constraints and

the estimated displacements or strains [8-15].

The reconstruction of Young’s modulus is an inverse problem [8,16]. Most inversion

approaches assume that the tissue is linearly elastic, isotropic, continuous and incom-

pressible [8,11,13-15]. In addition, the three-dimensional (3D) elasticity problem is

usually simplified to a two-dimensional (2D) problem by assuming plane-strain [8] or

plane-stress [14] conditions. The approaches for this inverse problem can be mainly

divided into two categories, i.e., direct inversion approaches [14,15,17,18] and iterative

inversion approaches [8,10,16,19-21].

The direct approaches compute the Young’s or shear modulus by solving the partial

differential equations of equilibrium [7,16]. These approaches rearrange the equilibrium

equation used in the forward problem, and the Young’s modulus could be directly re-

constructed by using special boundary conditions and estimated strain fields [16]. How-

ever, the boundary conditions are the known modulus values or pressures on the

boundaries of the region of interest (ROI), which are difficult to measure in vivo [7]. In

addition, the errors in the estimated strain field can be greatly amplified in the direct

inversion, and thus may make the reconstruction result unreasonable [16].

The iterative approaches treat the inverse problem as a nonlinear optimization problem.

The shear modulus distribution is calculated from minimization of the difference between

the measured displacements and predicted displacements computed in the forward problem

(i.e., the objective function) [7,22]. Generally, the iterative inversion approaches are more ro-

bust than the direct inversion approaches [16]. However, these approaches also have some

limitations. Firstly, they need to solve the forward problem several times, and hence are

computationally expensive [16,21]. Besides, if the objective function contains multiple

minima, it may converge to a wrong solution rather than the true one [12]. Furthermore,

the iterative inversion requires a regularization term. And choosing an appropriate

regularization parameter is challenging [20]. The purpose of regularization is to suppress

the reconstruction noise. The value of the regularization parameter can affect the size of in-

clusion shown in the reconstructed modulus image and the contrast between the inclusion

and background [20]. An appropriate regularization parameter should be used to reduce

the noise and preserve the contrast of the reconstructed modulus image simultaneously

[20]. However, it is difficult to obtain the optimal regularization parameter in practice.

To the authors’ knowledge, current elasticity inversion schemes require complex

equipment to obtain the boundary conditions of displacement or force [23-26]. These
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complex equipment limit the Young’s modulus reconstruction technique to be used in

a freehand ultrasound scan for breast elastography. The purpose of this study is to de-

velop an elasticity reconstruction method that does not need too much manual inter-

vention or measurements of boundary conditions, which can be implemented in

common medical ultrasound systems with a freehand scan. To overcome the limita-

tions of the existing inversion approaches, a direct inversion scheme based on finite

element method (FEM) is developed. It combines the advantages of direct and iterative

inversion approaches. A novel feature of the proposed method is the utilization of the

bicubic B-spline function as the tissue motion model to suppress the noise in the inver-

sion, meanwhile it does not need any regularization in the inversion. Besides, a more

practical modulus boundary condition is used in this method instead of force or dis-

placement boundary condition. Simulations and phantom experiments are conducted

to validate the effectiveness of the proposed method.

Methods
Inversion method

In the proposed inversion method of Young’s modulus reconstruction, the tissue was

modelled as linearly elastic, isotropic, continuous and incompressible [8,11,13-15]. Be-

sides, the commonly used plane-strain approximation is adopted in the proposed method.

As the boundary forces of the reconstruction ROI are unknown, the reconstructed

Young’s moduli are relative values (i.e., contrast) rather than absolute values for there is

no known stress information [12]. The proposed method is comprised of two algorithms.

The first algorithm is a bicubic B-spline fitting-based technique which estimates the 2D

axial and lateral displacement fields from a pre-estimated axial displacement field, the

plane-strain constraints and incompressibility assumption. The second algorithm is FEM-

based direct inversion with modulus boundary condition. These algorithms are described

in the following sections.

Displacement estimation

The displacements within the tissue are first estimated through a two-step optical flow

method using ultrasound radiofrequency (RF) signals [27]. It has been proved that the dis-

placements estimated from this method have a rather high accuracy. However, they cannot

be directly used in the FEM-based inversion method, since the inversion results are very

sensitive to the errors in the displacement measurements. The modulus reconstruction

accuracy degrades rapidly when the standard deviation of the displacement error exceeds

10−4 mm [11]. However, the displacement errors are typically larger than this threshold

[28]. Hence, the estimated displacements need to be processed before the inversion.

The B-spline fitting technique is used to smooth the displacements estimated from

the optical flow method. We denote ai,j with size of nx×ny as axial displacement param-

eters of bicubic B-spline function, and bi,j as lateral displacement parameters with the

same size. nx and ny are the number of uniformly-spaced knots in the lateral and axial

directions, respectively. The axial displacement field V and lateral displacement field U

can be presented as

V x; yð Þ ¼
X3
m¼0

X3
n¼0

aiþm;jþnBm pð ÞBn qð Þ ð1Þ
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U x; yð Þ ¼
X3
m¼0

X3
n¼0

biþm;jþnBm pð ÞBn qð Þ ð2Þ

where i = [x/nx] − 1, j = [y/ny] − 1, p = x/nx − [x/nx], q = y/ny − [y/ny] and where Bm and
Bn stands for the m-th and n-th basis function of the B-spline [29,30], respectively.

The axial displacement parameters ai,j are calculated by fitting the axial displace-

ments V(x, y) of B-spline and estimated axial displacements V0 (x, y) from optical flow

using the least square technique [31]. Hence, the axial displacements estimated with

this method could preserve a rather high precision and smoothness. However, the lat-

eral displacements estimated from optical flow are much noisier than axial displace-

ments, due to lower resolution, lower sampling rate and lack of phase information in

the lateral direction [32]. It is inappropriate to obtain the lateral displacement parame-

ters bi,j in a similar way as the axial parameters. To overcome this limitation, the con-

straints of 2D plane strain and the incompressibility of the tissue are utilized to

compute the lateral displacement. These constraints could be formulated as.

∂U
∂x

þ ∂V
∂y

¼ 0 ð3Þ

where ∂U and ∂V denote the lateral and axial normal strains, respectively. As the axial
∂x ∂y

strain ∂V
∂y has been accurately estimated from the two-step optical flow method [27],

and lateral strain ∂U
∂x could be calculated with Eq. (3). Combining the known lateral

strain ∂U
∂x and the partial derivative of Eq. (2),

∂U x; yð Þ
∂x

¼
X3
m¼0

X3
n¼0

biþm;jþn
∂Bm pð Þ

∂x
Bn qð Þ ð4Þ

the lateral displacement parameters bi,j can also be calculated by the least square
technique [31]. Finally, the axial and lateral displacements of B-spline model could be

computed by substituting ai,j and bi,j into Eqs. (1) and (2), respectively.

Elasticity reconstruction

The estimated displacement field (including both axial and lateral components) is used

as one of the inputs of the elasticity reconstruction algorithm. Nevertheless, the elasti-

city cannot be derived by the displacement field alone [33]. Either the stress distribu-

tion or the elastic modulus must be measured at a sufficient portion of the boundary

[33]. As the internal geometry is unknown, the uniform quadrilateral elements are

used in the FEM inversion model. The Poisson ratio is set to be 0.495 throughout the

model under the near-incompressibility assumption [8]. The Young’s moduli of the

boundary elements around the ROI are assumed to be the same in the model, and the

Young’s moduli of the elements around the boundary of the ROI are set to unity

(Figure 1).

The boundary node forces are first calculated by solving a 2D forward problem. By

considering boundary elements as an object (Figure 1), the forces on the boundary

nodes can be calculated by



Figure 1 An illustration of the 2D meshes with quadrilateral elements. The ROI is outlined with thick
lines. The boundary nodes are marked with white circles, and the interior nodes are depicted with black
circles. The boundary elements are shown with the gray elements.
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f ¼ Kboundarydboundary ð5Þ

where Kboundary, dboundary and f are the global stiffness matrix, the global nodal dis-
placement vector and the global nodal force vector of the boundary, respectively. Node

displacement dboundary can be obtained from the estimated displacement field. The glo-

bal stiffness matrix Kboundary is assembled from the elements with the known node pos-

ition, Young’s modulus and Poisson ratio [34]. The global nodal force vector of

boundary f determines the forces of the boundary nodes (white circles, Figure 1) and

interior nodes (black circles, Figure 1).

After the boundary node forces have been calculated, the Young’s modulus distribu-

tion within the ROI is calculated by solving an inverse problem with FEM framework.

Unlike the forward problem with known Young’s modulus distribution, the Young’s

modulus of each element becomes unknown in the inverse problem. Hence, the

Young’s modulus vector E is the variable to be solved. Now, consider all the elements

within the ROI as an object. Denote the number of elements and nodes as Nelement and

Nnode, respectively. As described in [11], the Young’s modulus vector E can be ex-

tracted from the multiplication of the global stiffness matrix Kroi and the displacement

vector d. The right term of Equation (5) becomes [11].

Kroid ¼ DE ð6Þ

Here, D is a 2Nnode ×Nelement matrix which is related to the elements and Poisson ra-
tio, while the size of E is Nelement × l. For more details about the procedure of assembly

of matrix D, the readers are referred to [11]. For the quadrilateral element used in this

method, Nnode is greater than Nelement. The Young’s modulus vector E is solved by the

least square method

E ¼ DTD
� �−1

DT fboundary ð7Þ

The boundary nodal force vector fboundary is a subset of f which has been solved in (5).



Figure 2 The FE model used in the simulation study. The two inclusions are shown with the
gray meshes.
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Simulations

A 2D heterogeneous model with two circular inclusions embedded in a homogenous

background was simulated in a plane strain condition (Figure 2). The model was as-

sumed to be linearly elastic and nearly incompressible (with a Poisson ratio of 0.495)

and had a size of 38 × 38 mm2 (axially × laterally, Figure 2). The inclusions had the

same diameter of 6.5 mm. The Young’s moduli of the inclusions and background were

75 kPa and 25 kPa, respectively. Compressional axial strains between 0.5% and 2.0%

were applied to the model, with a perfect slip boundary.

A 320-element linear array transducer with a center frequency of 6 MHz and a −3 dB

bandwidth of 50% was simulated with Field_II software (http://field-ii.dk/) [35,36]. The

speed of sound was assumed to be 1540 m/s, and the sampling frequency of the RF sig-

nals was 32 MHz. The pitch of the transducer was 0.12 mm. The focal depth was

19 mm and the F number was 0.5. These transducer parameters were chosen to corres-

pond to the actual transducer used in the phantom experiments. 320 lines were simu-

lated in each ultrasound image, and the distance between adjacent lines was equal to

the pitch. The imaging zone had a depth of 38 mm and a width of 38 mm. Randomly

distributed scatterers were simulated within the model. The scatterer density was 200/

mm2, which fulfilled the requirement for fully developed speckle in the simulated ultra-

sound image [37]. The pre-deformed RF signals of the model were simulated from

Field_II using the parameters described above. Finite element analysis was performed

with FEMLAB 2.3 software (Comsol Inc. Burlington, MA, USA) and MATLAB 6.5

(The MathWorks Inc., Natick, MA, USA) to calculate the theoretical displacements of

the model. The scatterers were moved according to finite element solutions with

http://field-ii.dk/
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different applied strains. The post-deformed RF signals were then simulated from

Field_II using the new scatterers’ distribution. Gaussian white noises were added in the

simulated RF signals, with a signal-to-noise ratio (SNR) of 30 dB.
Phantom experiments

Experiments were performed on a tissue-mimicking elasticity QA phantom (Model

049A, CIRS Inc., Norfolk, VA, USA) and a breast elastography phantom (Model 059,

CIRS Inc.). For the elasticity QA phantom, the Young’s moduli of the background and

cylindrical inclusions were 25 ± 6 kPa and 80 ± 12 kPa (mean ± standard deviation), re-

spectively. There were multiple cylindrical inclusions in the phantom and those used in

the experiments had diameters between 2.5 and 10.4 mm. For the breast elastography

phantom, 5 spherical inclusions of different sizes were randomly distributed within the

phantom. And the Young’s moduli of the inclusions were at least two times greater

than that of the background.

The ultrasound RF signals of the phantoms were recorded at a sampling frequency of

32 MHz and a frame rate of 91 Hz using a Philips iU22 ultrasound system (Philips

Medical Systems, Bothell, WA, USA), equipped with an L9-3 linear array transducer.

Each image consists of 320 lines, with a distance of 0.12 mm between adjacent lines.

The RF data were acquired from the pre- and post-deformed phantom with freehand

scan, as shown in Figure 3.
Quantitative evaluation

In the optical flow-based displacement estimation, a window size of 2.2 × 1.8 mm2

(height × width) was used. In the following B-spline fitting, the axial and lateral knot

spacing were 4.82 mm and 4.75 mm, respectively. For the modulus reconstruction, the
Figure 3 The tissue-mimicking breast phantom used in the phantom study. The acquisition of
ultrasound RF data of the breast phantom with freehand scan.
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quadrilateral element used in the inversion was 0.48 × 0.48 mm2 (height × width). These

parameters were used in the data processing of both simulation and phantom studies.

The displacement estimation and elasticity reconstruction methods described above

were used in both the simulation and phantom studies.

In the simulation study, as the ground true is available, the mean relative error [11]

and root-mean-square error (RMSE) of the relative Young’s modulus were utilized to

evaluate the accuracy of the Young’s modulus reconstruction. Here, the mean relative

error and RMSE are defined as follows

RelativeError ¼ 1
N

XEestimated−Etheory

Etheory ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X Eestimated−Etheory

Etheory

� �2
s

ð9Þ

Results
Simulation results

Figure 4 compares the displacements estimated from the optical flow method (Figures 4

(b) and (e)) and from B-spline fitting (Figures 4(c) and (f )) with the theoretical displace-

ments (Figures 4(a) and (d)). The axial displacements estimated from optical flow

(Figure 4(b)) are closer to the theoretical axial displacements than B-spline fitting

(Figure 4(c)). The standard deviations of axial displacement errors of optical flow and

B-spline fitting are 1.9 × 10−3 and 2.6 × 10−3 mm, respectively. The lateral displacements

obtained from B-spline fitting (Figure 4(f )) are smoother than those estimated from op-

tical flow (Figure 4(e)), and closer to the theoretical displacement (Figure 4(d)). The

standard deviations of lateral displacement errors of optical flow and B-spline fitting
Figure 4 The estimated displacements at an applied strain of 2.0%. The theoretical (a) axial and (d)
lateral displacement. The (b) axial and (e) lateral displacement estimated from optical flow. The (c) axial and
(f) lateral displacement computed from B-spline fitting.



Figure 5 The estimated Young’s modulus distributions. (a) The theoretical Young’s modulus
distribution. (b) The Young’s modulus reconstructed from the theoretical displacements calculated from
finite element analysis. (c) The Young’s modulus reconstructed from the estimated displacements from
optical flow. (d) The Young’s modulus reconstructed from the estimated displacements of B-spline fitting.
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are 13.4 × 10−3 and 6.9 × 10−3 mm, respectively. This suggests that the lateral displace-

ments estimated from B-spline fitting are more precise than those from optical flow.

Figure 5 shows the theoretical Young’s modulus distribution (Figure 5(a)) and the Young’s

modulus distributions reconstructed from theoretical displacements (Figure 5(b)) and from

displacements estimated from optical flow (Figure 5(c)) and B-spline fitting (Figure 5(d)).

Only relative Young’s moduli (i.e., contrast) are shown because the stress is unknown (the

same below). The quadrilateral mesh used in the reconstruction has a size of 0.48 ×

0.48 mm2 (height × width). Due to the noise in the lateral displacements estimated from op-

tical flow (Figure 4(e)), the modulus could not be correctly reconstructed (Figure 5(c)). The

Young’s moduli of the inclusion reconstructed from both the theoretical and estimated dis-

placements are lower than the theoretical value. The Young’s moduli reconstructed from

the theoretical displacement were relatively uniform within the inclusions, with a rapid tran-

sition from the inclusion to the background (Figure 5(b)). In contrast, the Young’s moduli

reconstructed from the estimated displacement have the highest values in the center of the

inclusions and gradually decrease with the distance from the center. A smooth transition

from the inclusion to the background is shown (Figure 5(d)).

To quantitatively investigate the error of Young’s modulus reconstruction, the mean

relative error and RMSE between the theoretical and reconstructed modulus values are

calculated with different applied strains (Figure 6). The mean relative errors of recon-

structed Young’s modulus from the estimated displacements of B-spline model is
Figure 6 Modulus reconstruction error analysis. Comparison of the errors of reconstructed Young’s
moduli from the theoretical and estimated displacements.
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−3.43 ± 0.43% and is about 22% smaller than those from the theoretical displacements

(−4.40%). The RMSE of the modulus estimates of B-spline displacements is 16.94 ±

0.25% and is about 25% larger than those of theoretical displacements (13.52%). These

can be explained by the small errors in the estimated displacements.
Phantom results

Figure 7 demonstrates the axial strain images and Young’s modulus images of different

inclusions in the tissue mimicking elasticity QA phantom. The diameters of inclusions

are 2.5 mm, 4.1 mm, 6.5 mm and 10.4 mm, respectively, and inclusions are located in

the middle of the ultrasound image plane, as can be roughly found in the B-mode im-

ages (Figures 7(a)–(d)). The inclusion’ locations in the axial strain images (Figures 7

(e)–(h)) and Young’s modulus images (Figure 7(i)–(l)) are in a good agreement with the

B-mode images. However, the target hardening artifacts appear in the axial strain im-

ages, while the Young’s modulus images are free of these artifacts. And the recon-

structed modulus image has a high spatial resolution of 2.5 mm (Figure 7(i)).

To quantitative investigate the target hardening artifacts, two rectangular ROIs from

the top and bottom of axial strain images are chosen (Figure 7(e)), respectively. The es-

timated strains in the ROIs on the top and bottom are −1.39 ± 0.1% and −0.85 ± 0.08%,

respectively. The strains in the ROI on the bottom are 39% lower than those on the

top. In contrast, the estimated Young’s modulus values in the ROIs on the top and bot-

tom are 1.00 ± 0.01 and 0.94 ± 0.01, respectively. The estimated Young’s modulus values

in the ROI on the bottom are only 6% lower than those on the top. These suggest that
Figure 7 Modulus reconstruction results of inclusions with different diameters. (a)-(d) The B-mode
images of inclusions with diameters ranging from 2.5 mm to 10.4 mm. (e)-(h) The corresponding axial strain
images at an applied strain of 1.0%. (i)-(l) The corresponding reconstructed Young’s modulus images.
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the Young’s modulus images significant reduce the target hardening artifacts compared

to the axial strain images.

To investigate the sensitivity of the modulus reconstruction results to the amount of

applied force. The inclusion with a diameter of 6.5 mm in the elasticity QA phantom

was chosen for this study. Different strains between from 1.14% and 2.26% were applied

to the phantom. The applied strains were calculated by the difference between the dis-

placements on the top and bottom of the ROI. Figure 8 depicts the axial strain and

Young’s modulus images overlaid on the B-mode image. The axial strains of the inclu-

sion and background vary with the applied strains, while the reconstructed Young’s

moduli are stable at different strains. The axial strain is related to both the tissue mech-

anical property and the external force magnitude, and the change of the external force

will change the values of the axial strain correspondingly (Figure 8 (a)-(c)). In contrast,

the Young’s modulus image reflects the intrinsic mechanical property of the tissue and

is not affected by the external force (Figure 8 (d)-(f )). These results show that the

propose method is not sensitive to the amount of applied forces.

For the breast elastography phantom, ultrasound RF data were acquired with free-

hand scan. Figure 9 shows the axial strain and reconstructed Young’s modulus images

with one and two inclusions, respectively. In the Young’s modulus images, the locations

and sizes of the inclusions match well to those in the axial strain images. Besides, the

target hardening artifacts shown in the axial strain images are eliminated in the Young’s

modulus images.

Figure 10 shows the Young’s modulus images of the breast phantom with one inclu-

sion using different ROI sizes in the reconstruction. The ROIs have sizes of 24.1 ×
Figure 8 The reconstructed Young’s modulus values to the different amount of applied forces.
(a)-(c) The estimated axial strain images overlaid onto the B-mode images under the applied strains of
1.14%, 1.70% and 2.26%, respectively. (d)-(f) The corresponding reconstructed Young’s modulus images
overlaid onto the B-mode images.



Figure 9 The reconstructed Young’s modulus distributions of the breast phantom. (a) The axial strain
image and (c) Young’s modulus image of one inclusion overlaid onto the corresponding B-mode images. (b) The
axial strain image and (d) Young’s modulus image of two inclusions overlaid onto the corresponding B-mode
images.
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33.2 mm2 (height × width, Figure 10(a)), 23.1 × 28.5 mm2 (Figure 10(b)) and 22.2 ×

23.7 mm2 (Figure 10(c)), respectively. The numbers of elements used in are 50 × 70,

48 × 60 and 46 × 50, respectively, and the computational time are 2.2 s, 1.2 s and 0.75 s,

respectively. All the programs were performed on the platform of MATLAB 6.5 (The

MathWorks Inc., Natick, MA, USA). The reconstructed modulus values of a circular

ROI in the inclusion center with a radius of 2 mm are 1.87 ± 0.16, 1.98 ± 0.17 and 2.02

± 0.18 for Figures 10(a), 10(b) and 10(c), respectively. Although the reconstruction

ROIs are different in size, the estimated Young’s modulus distributions of the inclusion

are similar.
Figure 10 The reconstruction Young’s modulus distributions of the breast phantom with different
ROI sizes. The different ROI sizes are (a) 24.1 × 33.2 mm2, (b) 23.1 × 28.5 mm2 and (c) 22.2 × 23.7 mm2.



Pan et al. BioMedical Engineering OnLine 2014, 13:132 Page 13 of 17
http://www.biomedical-engineering-online.com/content/13/1/132
Discussion
The goal of this study is to develop a robust elasticity reconstruction method for ultra-

sound elastography with freehand scan. Conventional elastography typically shows axial

strain images [3,38], which suffer from mechanical artifacts (such as target hardening

and stress concentration) and lack of quantitative information [7,8]. The reconstruction

of Young’s modulus or shear modulus (i.e., solving the inverse problem) can overcome

these drawbacks. However, the inverse problem generally has an ill-posed nature

[9,25,33]. In this work, we proposed a B-spline function-based displacement estimation

method, and employed a modulus boundary condition to convert the ill-posed problem

to a well-posed one. Simulations and phantom experiments were conducted to validate

the performance of the proposed method. In the simulation study, the mean relative

error and RMSE were used to evaluate the accuracy and precision of Young’s modulus

reconstruction. In the phantom study, the reconstructed modulus images were com-

pared with the corresponding strain images.

The axial and lateral displacement fields used in the inversion scheme are defined as

bicubic B-spline function. This tissue motion model is also called free-form deform-

ation [39], and has been used in ultrasound cardiac motion estimation [40,41]. The

conventional motion estimation methods are usually based on local information

(Figures 4(b) and (e)), while the proposed B-spline fitting method takes the global infor-

mation into consideration, and can obtain much smoother displacement estimation

(Figures 4(c) and (f )). Although the axial displacement estimated from the optical

method is more precise than that of the B-spline fitting method, they cannot be directly

used in the inversion since the noise in the displacement will be amplified without the

restriction of continuity. The B-spline displacement model has the implicit continuous

constraint, and it is helpful to reduce the ill-condition of the Young’s modulus inver-

sion. The tissue incompressibility and plane strain assumptions are used to estimate

the lateral displacement, which is a necessary part for modulus reconstruction. The B-

spline motion model could be implemented by the proposed displacement fitting or

non-rigid registration of the RF signals [42]. However, the non-rigid registration is

much more computationally expensive than displacement fitting, and may present local

minima during the iteration process, due to the highly oscillatory nature of the RF sig-

nals [20]. Thus, the displacement fitting technique is used in this study.

Conventional ultrasound elastography typically shows strain images, and can provide

improved ability to determine the lesions’ location and shape when compared to the

corresponding B-mode image [3]. Nevertheless, under the assumption of stress uni-

formity, the strain image suffers from several artifacts and therefore do not reveal the

true tissue elastic properties [8,9]. In reality, the stress together with strain attenuates

with depth, hence the tissue on the bottom part of the tissue seems stiffer than that on

the top (Figures 7(c)-(h)). These are the so-called target hardening artifacts [5,8,9]. In

the Young’s modulus images, these artifacts are eliminated (Figures 7(i)-(l), and

Figures 9(c)-(d)), which may facilitate the diagnosis of the breast tumors in the clinic. It

would have a high contrast of modulus image for the inclusion by fixing the scale of

the image colour bar around 2, since the modulus contrast between normal and cancer-

ous tissues is usually great than 100% [43].

The boundary conditions currently used in the iterative inversion schemes include dis-

placement boundary conditions [13,25], force boundary conditions [8] and a combination
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of both [16,20,23]. However, the force distribution within the tissue is difficult to measure

in vivo [7]. The combination boundary conditions of displacement and force need special

experimental setup [20,23], and hence limit the usage in the clinic. The boundary condi-

tion used in the proposed method is the modulus boundary condition which assumes the

moduli of the boundary elements around the reconstruction ROI are the same [13,15,44].

It may induce some artifacts if the moduli on the ROI boundary are different. However,

the ROI around the inclusion could be chosen according to the B-mode and/or strain im-

ages in order to avoid this situation. Besides, the size or shape of the ROI can be changed.

If the moduli of the inclusion do not have much difference when different ROIs are used,

as shown in Figure 10, the modulus reconstruction result can be deemed reliable.

In the simulation study, the RMSE of the Young’s moduli reconstructed from the es-

timated displacements are about 25% higher than those from theoretical displacements,

while the mean error of estimated Young’s moduli reconstructed from the estimated

displacements are about 22% lower than those from the theoretical displacements

(Figure 6). These results suggest that the precision of the Young’s modulus recon-

structed by the proposed method is comparable to those from the theoretical displace-

ments. As shown, the modulus distributions reconstructed from the theoretical

displacements are not the same as the theoretical modulus distribution (Figures 5(a)

and (c)). This can be explained by the measurement noise (i.e., displacement estimation

noise) and process noise caused by the mismatch between the models used in the

forward and inverse problems, which are the two main factors that affect the modulus

reconstruction results [45]. In the forward problem, the object was meshed with non-

uniform size elements, and the meshes were finer near the inclusion boundary

(Figure 2). In the inverse problem, as the internal geometry of the tissue is usually un-

known, the uniform quadrilateral elements were used (Figure 1). The discrepancy of

the meshes used in the forward and inverse problems leads to reconstruction error

even if the theoretical displacements are used as the input. The reconstruction errors

in the simulation study are similar to the results of Zhu et al. [11].

Another limitation of the proposed method is the smoothing effect on the interface

between the inclusion and background. This is mainly attribute to the smoothness of

displacements by the bicubic B-spline fitting in the displacement estimation. The high-

frequency estimation noise together with high-frequency displacement information is

filtered out, and hence the high-frequency components in the modulus distribution are

also eliminated. The smoothness of displacements used in the proposed method is

similar to the regularization used in the iterative inversion schemes, which also tends

to smooth over the sharp dips in the reconstructed modulus image [2,16,24,25]. The

lower reconstructed Young’s modulus values in the inclusions (or contrasts) are con-

sistent with the results of a previous study [24]. As shown in Figure 7, the smaller the

size of the inclusion is, the lager the influence of the smoothing effect will be. Hence,

the result of the reconstructed Young’s modulus becomes worse when the inclusion

gets smaller (Figure 7). To overcome these limitations, the mesh adaptation algorithm

has been proposed to improve the accuracy of Young’s modulus reconstruction [46].

Nevertheless, the adaptive mesh generation requires image segmentation using the in-

ternal tissue geometry or axial strain information.

Tissue deformation is typically 3D in nature, but ultrasound RF data are often col-

lected from a 2D imaging plane. The 2D plane strain simplification is utilized in the
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proposed method. Some errors may be incurred when the 3D elasticity problem is

modelled by either plane strain or plane stress approximation [7,20]. However, we be-

lieve that plane strain is a reasonable assumption for breast elastography in the clinic

because it has proved that the motion perpendicular to the image plane is small in the

breast in vivo [11]. And when 3D data are available, the FEM-based inversion scheme

could be extended to 3D case. As a final note, the displacement fields could also be es-

timated from other imaging modalities such as magnetic resonance imaging (MRI), and

the Young’s modulus distribution of tissue could be inferred by using the proposed

method.

Conclusions
In this paper, a finite element based Young’s modulus reconstruction method is pro-

posed to facilitate the quantitative investigation of the elasticity of soft tissues. The B-

spline function fitting method is proposed to reduce the displacement estimation noise.

Then the Young’s modulus distribution within the tissue is reconstructed based on the

framework of FEM with the input of displacements and modulus boundary condition.

The simulation and phantom studies demonstrated that the proposed method yields

the inclusion’s relative modulus with reasonably high accuracy, and correctly delineates

the locations and sizes of inclusions. Besides, the computational time of the proposed

reconstruction method ranges from 0.75 to 2.2 s, which is much faster than the con-

ventional iterative reconstruction methods (e.g., 18 hours) [21]. More importantly, the

proposed method does not need any regularization or boundary force information, thus

avoiding too much manual intervention and special equipment. With these advantages,

the proposed method could be implemented in conventional ultrasound systems with

freehand scan.
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