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Abstract

Background: Breast density is a significant breast cancer risk factor measured from
mammograms. The most appropriate method for measuring breast density for risk
applications is still under investigation. Calibration standardizes mammograms to
account for acquisition technique differences prior to making breast density
measurements. We evaluated whether a calibration methodology developed for an
indirect x-ray conversion full field digital mammography (FFDM) technology applies
to direct x-ray conversion FFDM systems.

Methods: Breast tissue equivalent (BTE) phantom images were used to establish
calibration datasets for three similar direct x-ray conversion FFDM systems. The
calibration dataset for each unit is a function of the target/filter combination, x-ray
tube voltage, current × time (mAs), phantom height, and two detector fields of view
(FOVs). Methods were investigated to reduce the amount of calibration data by
restricting the height, mAs, and FOV sampling. Calibration accuracy was evaluated
with mixture phantoms. We also compared both intra- and inter-system calibration
characteristics and accuracy.

Results: Calibration methods developed previously apply to direct x-ray conversion
systems with modification. Calibration accuracy was largely within the acceptable
range of ± 4 standardized units from the ideal value over the entire acquisition
parameter space for the direct conversion units. Acceptable calibration accuracy was
maintained with a cubic-spline height interpolation, representing a modification to
previous work. Calibration data is unit specific, can be acquired with the large FOV,
and requires a minimum of one reference mAs sample. The mAs sampling, calibration
accuracy, and the necessity for machine specific calibration data are common
characteristics and in agreement with our previous work.

Conclusion: The generality of our calibration approach was established under ideal
conditions. Evaluation with patient data using breast cancer status as the endpoint is
required to demonstrate that the approach produces a breast density measure
associated with breast cancer.
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Introduction
Mammographic breast density is a significant breast cancer risk factor [1-3]. Although

used extensively in research, breast density is not generally used in the clinical environ-

ment for breast cancer risk applications [4] due in large part to the lack of an automated

measurement. There are various methods under evaluation for estimating breast density

from either raw or calibrated mammograms [5]. A large portion of breast density research

was derived without calibration [1,2], as calibration is a more recent development for

mammography.

Ideally, calibration adjusts for inter-patient x-ray image acquisition technique differ-

ences to produce some form of standardized data representation [6-9]. Calibration

research is still in its early stage of development and there are few published reports

evaluating its potential application relative to the volume of published breast density

research using raw mammograms. The findings from calibration research have been

mixed in identifying a measure that strengthens the associations with breast cancer in

comparison with the operator-assisted percentage of breast density measure [10-15].

Due to its stage of development, it may be premature to conclude whether calibration is

generally a useful technique for risk assessments. However, one benefit of establishing a

calibration method is that it permits automated breast density measurements. We have

posited that calibration may be an important step for automation.

Full field digital mammography (FFDM) detector technologies can be broadly catego-

rized as either indirect or direct x-ray conversion systems [16]. Although these designs

have many characteristics that vary, until recently both technologies produced an energy

weighted integrated signal at the pixel level [17]. More recently, another type of direct

x-ray conversion technology was approved for clinical use in the US that uses photon

counting detection technology [18], which, in contrast to the established FFDM de-

signs, does not produce an integrated weighted signal. Currently, it is not known if

calibration will produce equivalent findings across these varying FFDM platforms.

We applied a calibration methodology developed previously for a General Electric

Senographe 2000D FFDM system [19-22], which is an indirect x-ray conversion tech-

nology. Our findings based on images taken from this technology [12-14] suggest that

calibrated breast density measurements are strong indicators of risk, providing justifi-

cation to investigate the merits of calibration in more detail. As many characteristics

vary between the direct and indirect x-ray conversion systems, the applicability of our

calibration methodology has yet to be established for direct x-ray conversion FFDM

systems.

In this current report, we expand our understanding of calibration gained previously

[21,22] and establish a calibration system for a direct x-ray conversion FFDM design

using phantom images acquired from three Hologic Selenia FFDM units, as the primary

analysis. We considered several design objectives. One objective is to minimize the

amount of calibration data collection while maintaining acceptable calibration accuracy,

representing an important compromise. Although optimal, it is nearly impossible to

sample all acquisition technique combinations to construct the calibration curves.

Therefore, some form of sampling scheme and interpolation methodology must be

established to minimize effort while maintaining acceptance accuracy. It is reasonable

to assume that if calibration requires excessive phantom imaging effort or is difficult to

apply across imaging platforms without considerable modification, it may not be used
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beyond research. Another objective is to evaluate whether calibration data collected

from one FFDM unit can be applied to another similarly manufactured unit, with or

without modification, as inter-unit generalization for a given technology is an import-

ant step for universal application. As a secondary objective, we also compared calibra-

tion and detector response data obtained from the Hologic units investigated in this

report with those previously acquired from the General Electric FFDM unit when ap-

plicable to assess inter-technology similarities.
Methods
We acquired calibration and exposure response data from three Hologic Selenia FFDM units

to evaluate the generality of our approach. Calibration curves were generated by imaging

standard breast tissue equivalent (BTE) phantoms (CIRS, Norfolk, VA) described previously

[22]. Our BTE phantom set includes 100% fibroglandular (glandular) and 100% adipose BTE

materials that are of 1 mm, 2 mm, 1 cm, and 2 cm thicknesses (i.e. precise heights) and

18 cm× 24 cm in area dimension. These phantoms were combined (stacked) to produce de-

sired composite proportions at a given total thickness (height). For example, combining a

2 cm thickness glandular phantom with a 2 cm thickness adipose phantom gives a 50% glan-

dular composition with a total height of 4 cm. Calibration curves are functions of the com-

pressed breast thickness above the breast support surface, referenced as height, and several

other acquisition technique parameters, including target/filter combination, x-ray tube vol-

tage (kV), current × time (mAs), and detector field of view (FOV), representing a five dimen-

sional parameter space. As previously, we refer to the initial data collection as the baseline

(BL) calibration dataset. A BL dataset was established for each unit.

The three Selenia systems evaluated in this report are located within the breast clinics

at the Moffitt Cancer Center and are used for both screening and diagnostic purposes.

Two of these systems, referred to as the H1 and H2, have a tungsten (W) target with

rhodium (Rh) and silver (Ag) filter options. The third unit has a molybdenum (Mo)

target with Mo and Rh filter options and is referred to as H3. The Selenia detector has

70 micron pitch (pixel spatial resolution), and the raw data used for this work has 14

bit per pixel dynamic range. Two detector FOVs are used for screening mammograms

on these units depending upon the choice of compression paddle: 24 cm× 29 cm (large)

and 18 cm × 24 cm (small). The General Electric Senographe 2000D FFDM unit is re-

ferred to as GE in the report. This unit has a Mo target with Mo and Rh filter options,

and a Rh target with a Rh filter. The GE detector has 100 micron spatial resolution, a

19.2 cm × 23 cm detector FOV (i.e. 1914 × 2294 pixels) and 14 bit dynamic range per pixel

for the raw data used in this work. As a standard convention, we acquired all phantom

images as left cranial caudal (LCC) views. In the LCC view, the detector left border in the

vertical direction is parallel with the chest wall position as observed in a displayed image.

The aims of this study were to assess the pixel value – detector exposure (detector

response) relationship without attenuation, generate and assess the calibration curves

for linearity, and evaluate the calibration accuracy. To minimize the BL data collection,

we evaluated the calibration accuracy under these conditions: (a) when applying

interpolation for the height variable; (b) when applying a data reduction step to reduce

mAs sampling; and (c) as a function of FOV. To evaluate the FOV impact, we acquired

the calibration datasets with the large detector FOV only. The validity of collecting
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calibration data with the large FOV only was evaluated by examining calibration accur-

acy for images acquired with the small FOV. We made direct comparisons between H1

and H2 because of their target/filter and manufacturing similarity, and evaluated

whether calibration data collected with one unit is valid when applied to another simi-

larly manufactured unit. Likewise, we made direct comparisons between the H3 and GE

units for the Mo/Mo and Mo/Rh combinations, when applicable.

The analysis was restricted to specific regions depending on the FFDM design and spe-

cific analysis endpoint. For the H1 H2 and H3 units, unless stated otherwise, the analysis

was constrained to a large region of interest (ROI) specific to the large FOV. This ROI is

defined as 2000 × 2500 pixels (14 cm× 17.5 cm), centered in the vertical direction with an

horizontal offset of 75 pixels (not included) from the outside of the detector (i.e. parallel

to the chest wall) or left border (LCC view). This restriction is to avoid stacked-phantom

edge effects near the detector outer edge and possible flat field non-uniformity interfe-

rence at regions far (interior) from the central detector area. For the FOV analysis and for

images taken with the GE unit, the analysis was constrained to 1000 × 1250 pixel ROI
Figure 1 Breast tissue equivalent phantom positioning, detector field of view, and regions of
interest. This shows the large field of view (largest rectangle) for the Hologic Selenia unit, the phantom
(gray rectangle) placement on the detector (18 cm × 24 cm or approximately 2500 × 3400 pixels), and the
regions of interest (ROIs) used for the analysis outlined with narrow light borders. The size of the large ROI
is 2000 × 2500 pixels, and the size of the small ROI is 1000 × 1250 pixels.
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with a 75 pixel offset (as above). The ROIs relative to the Hologic detector and the BTE

phantom area are shown in Figure 1.

Exposure response evaluation

We assessed the detector exposure and pixel value (pv) response relationships for the H1,

H2, and H3 units for select kV settings for each target/filter combination, using the large

FOV. The raw image pixel value (pvraw) response was modeled as a linear function of mAs

by acquiring images without attenuation (i.e. open exposures of the detector). The mAs

variable was sampled up to the point of detector saturation. The sample sets for each kV

setting were analyzed with regression analysis and fitted to this form: <pvraw > = m× x + b,

where x is the system readout mAs quantity for each acquisition. The slope (m), intercept

(b), coefficient of determination (R2), and standard error (SE) in the slope were used for

evaluation purposes. The brackets indicate the mean pvraw within the large ROI. We make

the approximation that the system readout mAs value is a surrogate (proportional with) for

the x-ray exposure at the detector, which is common practice. We made both intra-

technology comparisons and comparisons with the GE exposure response, where applicable.

Because H1 and H2 have the same target/filter combinations and H3 and GE have common

combinations, the respective pairwise comparisons were included in the analysis. When

making pairwise inter-unit slope comparisons for given kV, an important difference is de-

fined as when the central value of mi falls outside of this tolerance range: mj ± 2 × SEj or vice

versa, where the index = 0 is reserved for the GE unit. Where appropriate, we compared the

entire set of mj across units with a t-test. Demonstrating that the response is linear has im-

portant implications in the BL calibration data collection requirements. When the linear ap-

proximation holds, the mAs sampling may be reduced to one sample in the BL dataset.

Calibration dataset and characterization

The phantom imaging techniques and methods for constructing the BL calibration

datasets (i.e. calibration curves) were described previously [21,22]. The same approach

was applied in this report with some modification. Briefly, to construct the calibration

curves for a given acquisition technique, two series of BTE phantoms were imaged to

generate the respective glandular and adipose calibration curves for BL sampled heights

defined as tk. Reference points derived from theses curves are used in the calibration

application (discussed below). The phantom heights (total stacked heights) for a given

calibration curve range from 2-7 cm depending on the acquisition technique, and were

taken at 1 cm increments for convenience. To estimate the kV range, we selected the

automated exposure control (auto-kV mode) and adjusted the compression paddle

over a range of heights for fixed target/filter combinations. We estimated the W/Rh

range is between 26-30 kV, and the W/Ag range is between 27-32 kV for the H1 and

H2 systems. The same procedure was followed for Mo/Mo and Mo/Rh techniques for

the H3 system giving 25-31 kV and 27-34 kV ranges, respectively. BL calibration datasets

(H1, H2, H3 and GE units) were acquired with the same reference mAs setting defined as:

xr = 160 mAs. We selected a reference mAs value that does not cause detector saturation

when imaging phantom configurations with smaller heights, in particular adipose phan-

toms, while providing sufficient signal when imaging phantoms with larger heights, in

particular glandular phantoms, over the entire acquisition technique range considered, as

discussed previously [22].
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For both comparison and presentation purposes, we evaluated the calibration curves

using linear regression methods without regard to calibration accuracy. We subdivided the

large ROI (2000 × 2500 pixel region shown in Figure 1) into a grid consisting of 25 × 25

pixel smaller non-overlapping sub-regions defined as rs. This gives 80 × 96 = 7680 rs sub-

regions (for the large FOV). As above, tk is the BL phantom height in cm with the index k

designating a sampled height. For a given phantom configuration (fixed height and BTE

type), we average the pixel values (i.e. <pvraw>) within rs giving the mean exposure, El(rs),

at rs and tk. For this report, the index, l, is reserved for the BTE type designation: l = a for

adipose; and l = g for glandular. We divide El(rs) by the reference mAs giving the relative

mean exposure, REl(rs) = El(rs) / xr (i.e. the reference xr = 160 mAs) at each subdivision.

We evaluate the natural logarithm of the relative mean exposure, LREl(rs) = ln[REl(rs)], as

a function of increasing tk giving a regional calibration curve; for reference, this defines

logarithm of the relative exposure (LRE) domain, which holds at the pixel level as well.

For inter-unit comparisons, we applied linear regression at each rs for each BTE type

resulting in a distribution for the slopes (μl), logarithmic intercepts (LIl), and R2

values estimated by fitting the ordered pairs [tk, LREl (rs)] to this model

LREl ¼ μl � tk þ LIl: ð1Þ

When fitted to this form (tk+1 > tk), the magnitude of the slope can be interpreted as the
effective x-ray attenuation coefficient (i.e. μg for glandular and μa for adipose tissue, cited

as positive quantities in the tables and expressions) measured in cm-1 for a given kV and

target/filter combination. The LIl quantities are the respective intercepts, which are unit-

less. We summarized these regression parameter distributions with the mean and mean

standard error (SE). As above, we use the μl ± 2 × SEl tolerance gauge for the inter-system

pairwise comparisons. Where appropriate, we compared the entire set of effective x-ray at-

tenuation coefficients across systems with a t-test for each BTE material. This sub-region

analysis also gives a method for assessing the spatial uniformity of the calibration data.

Calibration procedure

When calibrating an arbitrary image, the operation takes place in the LRE domain. In con-

trast to the calibration curve normalization that uses the reference mAs, the LRE for an arbi-

trary image (i.e. a prospective calibration application) is formed by normalizing either pvraw
or < pvraw > by the acquisition system readout mAs defined as x before applying the natural

logarithm given by: LRE = ln(pvraw/x). This normalization holds under certain conditions

when the exposure response is linear. Similarly when the response is linear, two calibration

points are required to calibrate an arbitrary image. These calibration points are derived from

the BL curves and correspond to the theoretical pixel values in the LRE domain that would

result when imaging materials that are (a) 100% glandular tissue = pvg, and (b) 100% adi-

pose tissue = pva for a specific acquisition technique and height. For consistency with

our past convention, we refer to the calibration domain as the percent glandular (PG)

representation with values theoretically ranging from 0-100 PG units. This represen-

tation is analogous to a normalized x-ray attenuation coefficient representation,

which is easily converted to total volume or average volumetric glandular metric by

incorporating the compressed breast thickness (height) into the analysis [21]. The

calibration mapping takes this form: PGcal = M × LRE + B, where M and B are specific

to a given kV, target/filter combination and height above the breast support surface;
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capitals are used to distinguish these parameters from the open detector exposure re-

lationships. The LRE can be determined at the pixel level or sub-region level by using

either the respective pixel value with the corresponding height or sub-region mean

pixel value with corresponding mean height above the support surface.

For efficient prospective calibration applications, the BL calibration data must be

stored. Therefore, we investigated two storage methods. The stored BL calibration data

is then used in the specification of M and B. Both M and B are determined (fixed kV

and target/filter) by considering the endpoints for a specific height t = t0. In the LRE

domain, we set PGcal = 100 when LRE = pvg, PGcal = 0 when LRE = pva and solve for M

and B: M = 100 × (pvg – pva)
-1 and B = 50 – ½M× (pvg + pva), giving one method for

specifying M and B. In this specification approach, when t0 does not correspond exactly

with a specific sample height from the BL, a cubic-spline interpolation was used to de-

termine pvg and pva at t0. The second method for specifying M and B expresses pva
and pvg as functions of the regressions parameters (μg, μa, LIg and LIa ) and t0 using

Equation (1) by substituting tk with t0: for example, pvg ≈ − μg × t0 + LIg. In this case,

the M and B specification and height interpolation are performed simultaneously; the

validity of this approach relies on the agreement with Equation (1) and was the method

developed previously for the GE unit [21,22]. With either specification method, the B rela-

tionship can be expressed in a simpler form to include only the pva term or the pvg term,

or the regression parameters from one of the calibration curves. We have included both

measured terms (or all four regression parameters) to reduce variation in the event the

curves or parameters carry dissimilar accuracy. We note, the 0–100 (PG units) calibration

range is imposed by the development and it is not unique but follows intuition.

When applying the calibration, the large ROI within a given image is divided into

25 × 25 pixel sub-regions as above and the average of each sub-region is used in the

calibration equation giving PGcal =M × <LRE(rs,<t0>)> + B, where < t0 > is the mean

height above the breast support surface about rs, resulting in a spatial distribution of

calibrated values. The methods described in the Calibration dataset and characterization

Section indicate the calibration curves, in the most general terms, are functions of po-

sition. For this report, we used the mean values of the calibration BL data taken over all

rs in the specification of M and B (both methods), removing the spatial dependency.

Calibration accuracy evaluation

To evaluate the intra-machine calibration accuracy near the BL acquisition date (for the H1,

H2, and H3 units), we imaged 4 cm composite phantoms comprised of a 2 cm adipose phan-

tom stacked upon a 2 cm glandular phantom for the majority of kV settings and target/filter

combinations. For a few of the larger kV acquisitions we used the same adipose and glandular

ratio to construct 6 cm phantoms to avoid detector saturation. We refer to these composite

phantoms as 50/50 mixtures. We also acquired 50/50 mixture images with three mAs settings

to evaluate the impact of reference mAs normalization on the calibration accuracy: 120 mAs,

160 mAs (the reference) and 200 mAs (i.e. two additional samples for comparison purposes).

For the accuracy evaluation, we used the two methods outlined above for specifying

M and B to select the optimal technique and make comparisons with our previous

work. This evaluation was performed in four related steps. In step 1, we used the pva
and pvg determined with the BL dataset to calibrate 50/50 mixtures acquired with

heights included in the BL; this should provide the best accuracy because no
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interpolation is required. In step 2, we calibrated the same mixtures used in step 1 with

the regression parameter specification method; this does not permit a fair comparison

with the first step because it includes interpolation but is required for the comparisons

in the next two steps. To fully evaluate both interpolation methods, we also included

additional 50/50 mixture acquisitions using the reference mAs (xr = 160 mAs) with

heights set at 4.2 cm, 4.4 cm and 6.4 cm, which were not included in the BL datasets

(i.e. non-BL mixtures). In step 3, we used pva and pvg derived from spline

interpolation in the calibration of the non-BL mixtures, and in step 4 we used the re-

gression parameters to calibrate the same non-BL mixtures. The comparison of step 1

with step 3 and comparison of step 2 with step 4 provides an intra-specification

method evaluation by considering BL and non-BL height samples. The comparison of

step 1 and 3 with step 2 and 4 provides a means for selecting the optimal

interpolation method. From previous experience, we used an empirically derived tol-

erance of approximately ± 4 PG unit deviation from the ideal PGcal = 50 for comparing

calibration accuracy. For these comparisons, we acquired additional 50/50 mixtures

using both BL heights (4 and 6 cm phantom heights) and non-BL heights. To

minimize serial drift influences within the BL and non-BL comparison, we acquired

both phantom series on the same day.

We performed two additional experiments to assess the calibration generality and

accuracy. First, to evaluate whether calibration data acquired from one FFDM unit is

applicable to another similar unit, we switched the BL calibration data and used BL1
(i.e. from H1) to calibrate 50/50 mixtures (with 160 mAs) acquired from H2 and vice

versa, referred to as the cross-unit calibration analysis (findings discussed with those

resulting from step 1). Secondly to evaluate FOV influences, we acquired 50/50 mixtures

using the small FOV and performed calibration with the BL calibration data acquired with

the large FOV for the H1, H2, and H3 units. To perform the small FOV analysis, a reduced

ROI was used comprised of 1000 × 1250 pixels, outlined in Figure 1.
Results
Exposure response

The open detector exposure relationships (pv and exposure response) for all systems

are summarized in Table 1. Example plots are shown in Figure 2 for the similar H1 and

H2 units. Plots for the H3 and GE units for common filter/target combinations are

shown in Figure 3. The plots in both figures are representative of the linear response

relationship for the four units. The R2 estimates (Table 1) are close to unity for all of

the acquisition techniques considered, indicating the relationships are well approxi-

mated as linear for all units. Despite their design similarities, the response varies be-

yond our tolerance (i.e. mj ± 2 × SEj) between the H1 and H2 units within kV settings.

Although beyond the tolerance, the percent difference between m1 and m2 is within

3.3%-5.5%, whereas the intercepts show much larger variation. Comparing the set of

m1 estimates with the set of m2 estimates (t-test) gave P > 0.96, indicating the exposure

response does not differ significantly across similar systems. The pairwise responses also

vary beyond the tolerance across the H3 and GE systems as expected for all observations.

Although the exposure response quantities vary across all systems, the response linearity

is a common characteristic across all units (H1, H2, H3, and GE). This common trait



Table 1 Exposure and pixel value response analysis by target/filter and select kV
combination

H1 and H2 mAs m1 (SE1) b1 R1
2 mAs m2 (SE2) b2 R2

2

W/Rh

kV = 26 26 - 150 63.86 (0.15) 0.65 0.99 26 - 150 66.26 (0.15) 38.69 0.99

28 10 - 120 82.37 (0.38) 3.06 0.99 10 - 120 85.24 (0.09) 43.44 0.99

30 4 - 85 101.37 (0.66) 16.52 0.99 4 - 85 105.26 (0.17) 48.54 0.99

W/Ag

kV = 28 4 - 85 113.52 (0.57) 19.31 0.99 4 - 85 108.44 (0.21) 52.47 0.99

30 4 - 75 146.00 (1.04) 2.51 0.99 4 - 75 137.99 (0.51) 54.89 0.99

H3 and GE mAs m3 (SE3) b3 R3
2 mAs m0 (SE0) b0 R0

2

Mo/Mo

kV = 26 6 - 80 103.86 (0.30) 72.34 0.99 10 - 80 183.37 (0.89) 56.65 0.99

27 6 - 80 122.71 (0.36) 72.29 0.99 10 - 65 219.59 (1.09) 29.72 0.99

Mo/Rh

kV = 28 6 - 65 123.56 (0.60) 76.19 0.99 7 - 56 248.42 (0.78) 12.03 0.99

29 6 - 65 142.01 (0.73) 69.55 0.99 10 - 45 288.13 (1.32) 3.09 0.99

H1: data acquired on 07/27/2012.
H2: data acquired on 07/20/2012.
H3: data acquired on 04/08/2013.
GE: data acquired on 10/13/2006.
GE: quantities referenced with the ′0′ subscript.
The detector exposure and pixel value response is modeled as a linear function of mAs for select kV settings: (1) the
W/Rh and W/Ag target/filter combinations for the similar Hologic Selenia systems H1 and H2 (top); and (2) the Mo/Mo
and Mo/Rh combinations for the third Hologic Selenia H3 system and General Electric Senographe 2000D (GE) system
(bottom), designated by the subscript 0. The slopes (mi) and standard error (SEi), estimated as unit increase in pixel value
per mAs, intercept (bi) measured in pixel value, and coefficient of determination (Ri

2) were derived from linear regression
analysis. The mAs columns give the range of settings used for the acquisition techniques. The upper mAs value for a
given technique was set close to where detector saturation occurs.
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suggests the mAs sampling can be reduced to one sample for a given target/filter combin-

ation and kV setting (as evaluated below).
Calibration datasets

The effective attenuation coefficients (μl) and logarithmic intercepts (LIl) for the H1

and H2 units are shown in Table 2 separated by the BTE type and FFDM unit. We

have provided the absolute value of the slope from the regression analysis, which is

cited as μl, and the corresponding SEl. Example calibration curve plots for these units

fitted with regression analysis are shown in Figure 4. The R2 findings indicate the lin-

ear model fits well. The agreement of respective μl pair and SE vary. For example, the

μa pairwise comparison for W/Rh combinations indicates there is close agreement for

the 26–29 kV as gauged by the preset tolerance (μl ± 2 × SEl) with little variation at

26 kV and a maximum 2.3% variation at 30 kV, which is beyond the tolerance. The

corresponding variations across the μg pairs show greater variation for the W/Rh

combinations but are within the tolerance. The W/Ag glandular and adipose coeffi-

cients follow a similar trend and are within the similarity tolerance. Comparing the

set of μa estimates for H1 with the corresponding set from H2 (t-test) gave P > 0.70.

Similarly, comparing the μg set between H1 and H2 gave P > 0.45. These comparisons

indicate the set of effective x-ray attenuation coefficients for a given BTE material

does not differ significantly across similar systems. Because of the target/filter
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Figure 3 Exposure response for the H3 and GE units. This shows the exposure measured in milliampere
seconds (mAs), the pixel value response, and fitted curves (solid) of the detector for the H3 (left) and GE (right)
units. The measured values are averages represented by squares. The Mo/Mo (target/filter) combinations were
acquired with 27 kV (top) and the Mo/Rh combinations (bottom) were acquired with 28 kV.
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Figure 2 Exposure response for the H1 and H2 units. This shows exposure measured in milliampere
seconds (mAs), the pixel value response, and fitted curves (solid) of the detector without attenuation for
the H1 (left) and H2 (right) units. The measured values are averages represented by squares. The top plots
show the W/Rh (target/filter) combinations acquired with 28 kV and the bottom plots show the W/Ag
combinations acquired with 30 kV.
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Table 2 Baseline (BL) calibration dataset summary for the Hologic Selenia (H1 and H2)
units

Target/filter
and kV
combination

Height
range (cm)

Adipose BTE Glandular BTE

μa (SE) LIa R2 μg (SE) LIg R2

H1 unit

W/Rh

kV = 26 2 - 6 0.464 (0.008) 4.03 0.99 0.624 (0.022) 3.80 0.99

27 2 - 6 0.461 (0.007) 4.17 0.99 0.620 (0.020) 3.93 0.99

28 2 - 7 0.448 (0.008) 4.26 0.99 0.595 (0.020) 4.00 0.99

29 3 - 7 0.432 (0.009) 4.31 0.99 0.560 (0.018) 3.94 0.99

30 3 - 7 0.432 (0.007) 4.44 0.99 0.560 (0.016) 4.08 0.99

W/Ag

kV = 27 3 - 7 0.412 (0.006) 4.40 0.99 0.539 (0.013) 4.09 0.99

28 3 - 7 0.405 (0.006) 4.55 0.99 0.539 (0.013) 4.29 0.99

29 3 - 7 0.403 (0.006) 4.71 0.99 0.538 (0.010) 4.45 0.99

30 3 - 7 0.400 (0.005) 4.83 0.99 0.537 (0.010) 4.61 0.99

31a 3 - 7 0.406 (0.006) 5.04 0.99 0.533 (0.011) 4.76 0.99

32b 4 - 7 0.392 (0.004) 5.08 0.99 0.512 (0.011) 4.79 0.99

H2 unit

W/Rh

kV = 26 2 - 6 0.464 (0.008) 4.06 0.99 0.616 (0.026) 3.82 0.99

27 2 - 6 0.462 (0.008) 4.21 0.99 0.621 (0.019) 3.97 0.99

28 2 - 7 0.442 (0.008) 4.27 0.99 0.581 (0.023) 4.00 0.99

29 3 - 7 0.431 (0.006) 4.35 0.99 0.536 (0.026) 3.90 0.99

30 3 - 7 0.422 (0.007) 4.42 0.99 0.540 (0.020) 4.06 0.99

W/Ag

kV = 27 3 - 7 0.404 (0.005) 4.34 0.99 0.518 (0.019) 4.01 0.99

28 3 - 7 0.401 (0.004) 4.49 0.99 0.522 (0.015) 4.23 0.99

29 3 - 7 0.402 (0.004) 4.66 0.99 0.520 (0.014) 4.37 0.99

30 3 - 7 0.395 (0.006) 4.77 0.99 0.534 (0.009) 4.58 0.99

31 3 - 7 0.395 (0.005) 4.91 0.99 0.524 (0.009) 4.67 0.99

32b 4 - 7 0.388 (0.005) 5.01 0.99 0.506 (0.011) 4.72 0.99

H1: W/Rh data acquired on 07/06/2012; W/Ag 27-30 kV data acquired on 07/06/2012.
H2: W/Rh data acquired on 07/10/2012; W/Ag 27-31 kV data acquired on 07/10/2012.
a: data acquired on 07/09/2012.
b: data acquired on 07/17/2012.
The effective x-ray attenuation coefficients, μa and μg, logarithmic intercepts, LIa and LIg, and coefficient of determination
(R2) were derived with regression analysis for the similar Hologic (H1 and H2 ) units for the W/Rh and W/Ag target/filter
combinations are provided as mean values. The mean μl and the associated mean standard error (SEl) are cited. The
x-ray tube voltage (kV) and phantom height ranges are provided. For each kV setting, the images were acquired by
incrementing the phantom heights from the lower range to the upper range in 1 cm increments. The absolute value of
the slope is equivalent to the effective x-ray attenuation coefficient for each acquisition technique and BTE material.
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difference, no comparisons of the H3 and GE units with the H1 and H2 units are pro-

vided. The μl, associated SEl, and LIl for the H3 and GE units are shown in Table 3 for

the Mo/Mo and Mo/Rh combinations, and example calibration curve plots fitted with

regression analysis are shown in Figure 5. The R2 quantities indicate linearity is a

common trait across these two different units. The pairwise attenuation coefficients

are within magnitude agreement as are the LIl quantities for these units but are not

interchangeable or within the tolerance range when comparing the H3 and GE units.
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Figure 4 Calibration curves for H1 and H2 units. This shows the fitted adipose (solid) and glandular
(dotted) calibration curves for the H1 (left-side plots) and H2 (right-side plots) units. The measured
logarithmic relative response (LRE) quantities are averages represented by squares. The top plots show the
W/Rh target/filter combinations acquired with 28 kV and the bottom plots show the W/Ag combinations
acquired with 30 kV.
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As above, comparing the μa set for H3 with the corresponding set for GE (t-test) gave

P > 0.14, indicating the set of adipose x-ray attenuation coefficients is similar across

systems that use different detector technologies. In contrast, the corresponding μg set

comparison gave P < 0.0001, suggesting the attenuation coefficients for the glandular

BTE material differ across these systems.
Calibration accuracy

For the BL calibration accuracy evaluation, the spline specification method findings

(step 1) are presented in this section because the M and B are specified by the calibra-

tion points at tk, which are special cases. For the most part as shown in Table 4, the

within-unit accuracy for the H1 and H2 units is within ± 4 PG units of the ideal value

(i.e. PGcal = 50). However, there is greater variation for W/Ag acquisitions in the lar-

ger kV settings. This may be because the H1 calibration data for these samples was ac-

quired on a different date than the rest of the respective BL dataset. The within-unit

W/Ag accuracy for the most part is similar to the intra-system accuracy, whereas the

accuracy for the W/Rh shows greater variation from the ideal value. The accuracy for

the examples taken with non-reference mAs settings are similar to those obtained

with the 160 mAs reference, showing the validity of the LRE normalization. The

cross-unit calibration findings, provided in the right side of Table 4 for H1 and H2

units, show a trend beyond our tolerance gauge of ± 4 PG. These findings suggest that

the calibration data in general is specific to the unit, even though they are identical.

In addition to the x-ray attenuation coefficient differences, another source of variation

stems from the LIs, which may vary due to the inter-system exposure response differ-

ences (Table 1). The accuracy evaluation for H3 is shown in Table 5 using the same



Table 3 Baseline (BL) calibration data summary for two different FFDM technologies

Target/filter
and kV
combination

Height
range (cm)

Adipose BTE Glandular BTE

μa (SE) LIa R2 μg (SE) LIg R2

H3 unit

Mo/Mo

kV = 25 2 - 6 0.561 (0.014) 4.18 0.99 0.705 (0.047) 3.69 0.99

26 2 - 6 0.557 (0.011) 4.40 0.99 0.706 (0.043) 3.92 0.99

27 2 - 6 0.551 (0.012) 4.57 0.99 0.709 (0.036) 4.18 0.99

28 2 - 7 0.526 (0.012) 4.70 0.99 0.639 (0.039) 4.15 0.99

29 3 - 7 0.495 (0.010) 4.74 0.99 0.586 (0.029) 4.09 0.99

30 3 - 7 0.486 (0.009) 4.89 0.99 0.568 (0.030) 4.22 0.99

31 3 - 7 0.470 (0.011) 4.99 0.99 0.560 (0.026) 4.42 0.99

Mo/Rh

kV = 27 3 - 7 0.476 (0.009) 4.35 0.99 0.586 (0.031) 3.80 0.99

28 3 - 7 0.482 (0.008) 4.55 0.99 0.592 (0.026) 4.01 0.99

29 3 - 7 0.475 (0.008) 4.67 0.99 0.595 (0.024) 4.20 0.99

30 3 - 7 0.471 (0.008) 4.83 0.99 0.585 (0.025) 4.32 0.99

31 3 - 7 0.463 (0.008) 4.93 0.99 0.582 (0.021) 4.49 0.99

32 3 - 7 0.459 (0.009) 5.07 0.99 0.564 (0.022) 4.57 0.99

33 3 - 7 0.445 (0.008) 5.14 0.99 0.554 (0.021) 4.71 0.99

34 3 - 7 0.443 (0.008) 5.28 0.99 0.533 (0.020) 4.77 0.99

GE unit

Mo/Mo

kV = 25* 2 - 6 0.584 (0.004) 4.93 0.99 0.861 (0.014) 4.74 0.99

26 2 - 6 0.572 (0.005) 5.09 0.99 0.833 (0.016) 4.89 0.99

27 2 - 6 0.560 (0.005) 5.26 0.99 0.805 (0.017) 5.04 0.99

28* 2 - 7 0.548 (0.005) 5.43 0.99 0.777 (0.019) 5.19 0.99

29* 3 - 7 0.536 (0.006) 5.60 0.99 0.749 (0.021) 5.34 0.99

30* 3 - 7 0.524 (0.006) 5.77 0.99 0.721 (0.023) 5.49 0.99

Mo/Rh

kV = 27* 3 - 7 *0.512 (0.005) 5.21 0.99 0.736 (0.011) 5.03 0.99

28 3 - 7 0.504 (0.005) 5.34 0.99 0.718 (0.013) 5.15 0.99

29 3 - 7 0.495 (0.004) 5.47 0.99 0.700 (0.014) 5.27 0.99

30* 3 - 7 *0.487 (0.004) 5.60 0.99 0.682 (0.016) 5.39 0.99

31* 3 - 7 *0.479 (0.004) 5.74 0.99 0.665 (0.017) 5.51 0.99

H3: data acquired on 04/08/2013.
GE: data acquired on 10/13/2006.
* Interpolated values.
The effective x-ray attenuation coefficients, μa and μg, logarithmic intercepts LIa and LIg, and coefficient of determination
(R2), derived with regression analysis, for the Hologic (H3) and the General Electric Senographe 2000D (GE) FFDM systems
for the Mo/Mo and Mo/Rh target/filter combinations are provided as mean values. The mean μl and the associated mean
standard error (SEl) are cited. The x-ray tube voltage (kV) and phantom height (thickness) ranges are provided. For each
kV sample, images were acquired by incrementing the phantom heights from the lower range limit to the upper range
limit in 1 cm increments. The absolute value of the slope, as cited, is equivalent to the effective attenuation coefficient
for a given BTE material.
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format (without cross-unit calibration). The Mo/Mo and Mo/Rh accuracies margin-

ally exceed the tolerance gauge but are similar across the mAs range. Because we do

not have similar experiments performed with the GE unit, direct comparisons are not

possible. However, in general, the accuracies obtained with H3, as well as the H1 and



0 2 4 6 8
Height (cm)

-2

0

2

4

6

LR
E

0 2 4 6 8
Height (cm)

-2

0

2

4

6

LR
E

0 2 4 6 8
Height (cm)

-2

0

2

4

6

LR
E

0 2 4 6 8
Height (cm)

-2

0

2

4

6

LR
E

Figure 5 Calibration curves for H3 and GE units. This shows the fitted adipose (solid) and glandular (dotted)
calibration curves for the H3 (left) and GE (right) units. The measured logarithmic relative response (LRE)
quantities are averages represented by squares. The top plots show the Mo/Mo target/filter combinations
acquired with 28 kV and the bottom plots show the Mo/Rh combinations acquired with 28 kV.
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H2 units, are similar to those obtained with GE previously [22]. The accuracies shown

in Tables 4 and 5 with the respective standard deviations (SDs) indicate that spatial

non-uniformity has a minimal influence.

Table 6 shows the calibration generated with linear regression parameter specification

method (i.e. step 2) for the H1 and H2 units. For the 160 mAs reference examples, the

accuracy for 5 of the 11 acquisition techniques was outside of the ± 4 PG tolerance for

the H1 unit. Similarly, the calibration was beyond the tolerance for 6 of the 11 acquisi-

tion techniques for H2. For the H3 unit, the accuracy was beyond the tolerance for all

15 acquisition techniques and exceeded +7 PG for 9 of these techniques (data not

shown to limit the presentation). The accuracy for non-reference mAs examples follows

a similar accuracy trend. The accuracies in Table 6 should be compared with respective

findings in Table 4 (left side).

The cubic-spline height interpolation findings for the H1, H2, and H3 systems are

shown in Table 7 for the non-BL evaluation (step 3). When comparing either within or

across the H1 and H2 systems, the findings show that non-BL height accuracy is within

the ± 4 PG tolerance for all but one acquisition technique indicating similarity across

systems and the validity of the spline interpolation. The right portion of Table 7 shows

the H3 evaluation for the Mo/Mo and Mo/Rh examples. Although the calibration

accuracies are marginally above the tolerance for both the BL and non-BL heights, the

accuracies are similar to those shown in Table 5, again demonstrating the validity of

the spline interpolation technique. The regression parameter interpolation findings for

the non-BL evaluation are shown in Table 8 (step 4). The accuracies for the non-BL

from H1 are within the tolerance, whereas the majority of the H2 accuracies are beyond

the tolerance. Although the H3 accuracy is in agreement with its related findings

(Table 5), the BL accuracies are beyond the tolerance, and the non-BL calibration quan-

tities deviate beyond the BL quantities. In summary, interpolation with the regression



Table 4 Calibration accuracy for the H1 and H2 units

Target/filter
and kV
combination

Within-unit calibration Cross-unit calibration

H1 H2 H1 images calibrated with H2 data H2 images calibrated with H1 data

120mAs 160mAsr 200mAs 120mAs 160mAsr 200mAs 120mAs 160mAsr 200mAs 120mAs 160mAsr 200mAs

W/Rh

kV = 26 50.6(0.44) 51.9(0.47) 54.0(0.47) 48.8(0.48) 51.6(0.44) 52.9(0.40) 55.7(0.44) 57.1(0.47) 59.2(0.47) 43.6(0.48) 46.5(0.44) 47.8(0.40)

27 50.2(0.44) 51.8(0.46) 53.5(0.44) 49.2(0.43) 50.6(0.43) 52.3(0.42) 54.2(0.44) 55.9(0.46) 57.6(0.44) 45.2(0.43) 46.5(0.43) 48.2(0.42)

28 50.8(0.46) 52.3(0.46) 53.5(0.46) 50.8(0.37) 51.8(0.33) 53.2(0.35) 55.5(0.47) 57.0(0.47) 58.2(0.46) 46.2(0.36) 47.2(0.33) 48.5(0.35)

29 50.3(0.47) 51.4(0.50) 52.7(0.48) 51.2(0.31) 52.6(0.30) 53.3(0.31) 55.9(0.47) 57.0(0.50) 58.3(0.49) 45.7(0.31) 47.1(0.29) 47.8(0.31)

30 50.9(0.61) 52.1(0.63) 53.0(0.62) 51.5(0.39) 52.5(0.40) 53.1(0.42) 55.8(0.62) 57.0(0.65) 57.9(0.63) 46.7(0.38) 47.8(0.39) 48.3(0.41)

W/Ag

kV = 27 51.0(0.77) 52.4(0.78) 52.9(0.80) 52.3(0.43) 53.3(0.44) 54.0(0.44) 50.9(0.80) 52.4(0.81) 52.9(0.83) 52.3(0.42) 53.3(0.42) 53.9(0.43)

28 51.1(0.90) 52.1(0.92) 52.8(0.93) 52.2(0.39) 53.5(0.41) 52.5(0.43) 50.1(0.92) 51.1(0.94) 51.8(0.95) 53.1(0.38) 54.4(0.39) 53.5(0.42)

29 50.8(0.94) 52.1(0.96) 52.2(0.97) 51.5(0.40) 52.8(0.41) 52.9(0.40) 49.5(0.99) 50.7(0.98) 50.9(0.99) 52.8(0.39) 54.1(0.40) 54.2(0.39)

30 51.5(0.98) 52.5(0.99) 52.6(1.00) 52.5(0.44) 53.0(0.44) 53.4(0.45) 48.9(0.99) 50.0(1.00) 50.0(1.01) 55.0(0.43) 55.6(0.44) 55.9(0.45)

31 55.9(0.91) 56.7(0.90) 56.8(0.93) 52.3(0.51) 53.2(0.51) 53.6(0.52) 48.3(0.94) 49.1(0.93) 49.3(0.97) 59.7(0.49) 60.6(0.49) 61.0(0.50)

32 54.0(0.97) 54.8(0.97) 55.9(1.00) 54.0(0.64) 54.6(0.64) 55.8(0.65) 51.2(0.98) 52.1(0.97) 53.2(1.00) 56.7(0.63) 57.3(0.64) 58.5(0.65)

Within-unit Calibration: 50/50 mixtures acquired and calibrated with the same FFDM unit.
Cross-unit Calibration: 50/50 mixtures acquired with each FFDM unit were calibrated with the other unit's calibration data.
H1: phantom data acquired on 07/27/2012 and calibration data on 07/06/2012.
H2: phantom data acquired on 07/20/2012 and calibration data on 07/10/2012.
This table summarizes the results from the within-unit calibration (left side) and cross-unit calibration (right side) for H1 and H2 units. For each target/filter combination and kV setting, the 50/50 mixture phantom im-
ages were acquired with three mAs settings including the reference denoted by mAsr. The mean and the standard deviation (SD) of the respective distributions are provided in PG units.
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Table 5 Within-unit calibration accuracy for the H3

Target/filter
and kV
combination

Within-unit Calibration: H3

120mAs 160mAsr 200mAs

Mo/Mo

kV = 25 49.4(0.53) 54.5(0.49) 56.1(0.48)

26 50.3(0.47) 53.7(0.40) 55.3(0.41)

27 51.6(0.36) 54.6(0.34) 55.1(0.35)

28 52.2(0.24) 54.6(0.23) 55.0(0.25)

29 53.4(0.16) 55.4(0.17) 55.6(0.19)

30 52.8(0.16) 55.1(0.20) 55.3(0.21)

31 53.3(0.27) 55.7(0.32) 55.7(0.32)

Mo/Rh

kV = 27 51.8(1.44) 53.6(1.52) 54.2(1.51)

28 52.6(1.45) 53.8(1.52) 54.0(1.53)

29 52.8(1.44) 54.0(1.52) 54.4(1.51)

30 53.7(1.35) 54.5(1.42) 54.8(1.42)

31 53.0(1.30) 54.6(1.37) 54.7(1.35)

32 53.3(1.16) 54.6(1.24) 54.2(1.19)

33 54.3(1.09) 55.0(1.15) 55.0(1.14)

34 55.6(0.94) 55.6(1.00) 55.8(0.98)

Within-unit Calibration: 50/50 mixtures acquired and calibrated with the same FFDM unit.
For each target/filter and kV setting, the 50/50 mixture phantom images were acquired with three mAs settings,
including the reference denoted by mAsr. The mean and the standard deviation (SD) of the respective distributions are
provided in PG units.

Table 6 Calibration accuracy for the H1 and H2 units using the regression parameters

Target/filter
and kV
combination

Within-unit calibration

H1 H2

120mAs 160mAsr 200mAs 120mAs 160mAsr 200mAs

W/Rh

kV = 26 55.2 (0.46) 56.6 (0.49) 58.8 (0.48) 53.4 (0.50) 56.3 (0.46) 57.7 (0.42)

27 54.0 (0.45) 55.7 (0.47) 57.4 (0.45) 53.2 (0.44) 54.6 (0.44) 56.3 (0.43)

28 56.1 (0.48) 57.7 (0.48) 58.9 (0.48) 56.8 (0.39) 57.9 (0.35) 59.4 (0.37)

29 51.8 (0.47) 53.0 (0.50) 54.2 (0.48) 52.7 (0.32) 54.1 (0.30) 54.8 (0.32)

30 52.4 (0.61) 53.6 (0.64) 54.5 (0.62) 52.8 (0.39) 53.9 (0.40) 54.5 (0.43)

W/Ag

kV = 27 52.0 (0.78) 53.4 (0.79) 53.9 (0.81) 53.2 (0.44) 54.2 (0.44) 55.0 (0.44)

28 52.3 (0.89) 53.3 (0.91) 54.0 (0.93) 53.0 (0.40) 54.4 (0.41) 53.4 (0.43)

29 52.0 (0.94) 53.2 (0.96) 53.3 (0.97) 52.3 (0.40) 53.6 (0.41) 53.8 (0.41)

30 52.2 (0.98) 53.2 (0.99) 53.3 (1.00) 53.4 (0.44) 54.0 (0.45) 54.4 (0.45)

31 57.1 (0.91) 57.9 (0.90) 58.0 (0.93) 53.2 (0.51) 54.1 (0.51) 54.5 (0.52)

32 54.8 (0.97) 55.6 (0.97) 56.8 (1.00) 54.9 (0.64) 55.5 (0.65) 56.7 (0.66)

Within-unit Calibration: 50/50 mixtures acquired and calibrated with a same FFDM unit.
H1: Phantom data acquired on 07/27/2012 and calibration data on 07/06/2012.
H2: Phantom data acquired on 07/20/2012 and calibration data on 07/10/2012.
This table gives the calibration findings for the two similar H1 and H2 FFDM systems determined with the regression
parameters. The mean and the standard deviation (SD) of the respective distributions are provided in PG units. For each
target/filter and kV setting, the 50/50 mixture phantom images were acquired with three mAs settings including the
reference denoted as mAsr.
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Table 7 Calibration accuracy using the cubic-spline height interpolation

Target/filter
and kV
combination

Within-unit calibration: H1 Within-unit calibration: H2 Target/filter
and kV
combination

Within-unit calibration: H3

Non-BL height (cm) BL Non-BL BL Non-BL Non-BL height (cm) BL Non-BL

W/Rh Mo/Mo

kV = 25 – – – – – kV = 25 4.2 54.5 (0.49) 54.9 (0.84)

26 4.2 46.5 (0.36) 48.6 (0.67) 51.1 (0.41) 52.8 (0.76) 26 4.4 53.7 (0.40) 54.5 (0.47)

27 4.4 48.6 (0.67) 48.8 (0.42) 51.4 (0.43) 50.9 (0.82) 27 4.2 54.6 (0.34) 54.7 (0.70)

28 4.2 48.4 (0.39) 49.6 (0.65) 51.8 (0.68) 53.2 (0.91) 28 4.4 54.6 (0.23) 54.7 (0.32)

29 4.4 47.8 (0.49) 48.3 (0.53) 51.3 (0.56) 52.9 (0.63) 29 4.2 55.4 (0.17) 55.2 (0.56)

30 4.2 48.2 (0.70) 48.5 (0.80) 51.9 (0.51) 51.7 (0.88) 30 4.4 55.1 (0.20) 54.8 (0.31)

31 – – – – – 31 4.2 55.7 (0.32) 55.9 (0.52)

W/Ag Mo/Rh

kV = 27 4.2 46.5 (0.73) 47.8 (0.91) 52.0 (0.54) 53.5 (0.89) kV = 27 4.2 53.6 (1.52) 53.9 (1.68)

28 4.4 47.3 (0.85) 48.0 (0.96) 52.1 (0.52) 51.8 (0.65) 28 4.4 53.8 (1.52) 54.2 (1.38)

29 4.2 47.5 (0.90) 48.4 (1.10) 50.9 (0.49) 52.4 (0.73) 29 4.2 54.0 (1.52) 54.2 (1.68)

30 4.4 47.8 (0.95) 48.0 (0.99) 51.6 (0.52) 51.5 (0.54) 30 4.4 54.5 (1.42) 54.3 (1.23)

31 4.2 52.4 (0.86) 52.8 (1.13) 52.0 (0.50) 52.0 (0.56) 31 4.2 54.6 (1.37) 54.7 (1.52)

32 6.4 51.9 (0.75) 52.4 (0.78) 53.6 (0.57) 54.5 (0.61) 32 4.4 54.6 (1.24) 54.1 (0.98)

33 – – – – – 33 4.2 55.0 (1.15) 55.0 (1.29)

34 – – – – – 34 4.4 55.6 (1.00) 52.9 (0.76)

Within-unit Calibration: 50/50 mixtures acquired and calibrated with a same FFDM unit.
H1: data acquired on 08/10/2012.
H2: data acquired on 08/06/2012.
H3: data acquired on 04/08/2013.
32 kV W/Ag BL acquired at 6.0 cm.
50/50 mixture phantom images were acquired with the 160 mAs reference setting for heights (right most column) not considered in the baseline sampling (Non-BL) and calibrated to evaluate the cubic-spline height
interpolation. The findings are provided as the mean and the standard deviation (parenthetically) for the respective distributions in PG units. The calibration findings are also provided for 50/50 mixture phantom
images acquired with the standard BL heights close to (4 cm or 6 cm) the non-BL heights, which were acquired on the same day for comparison purposes.
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Table 8 Calibration Accuracy using the regression parameters

Target/filter
and kV
combination

Within-unit calibration: H1 Within-unit calibration: H2 Target/filter
and kV
combination

Within-unit calibration: H3

Non-BL height (cm) BL Non-BL BL Non-BL Non-BL height (cm) BL Non-BL

W/Rh Mo/Mo

kV = 25 – – – – – kV = 25 4.2 62.8 (0.53) 63.3 (0.92)

26 4.2 50.9 (0.37) 53.1 (0.70) 55.8 (0.43) 57.8 (0.80) 26 4.4 60.8 (0.43) 61.5 (0.51)

27 4.4 51.6 (0.36) 52.7 (0.44) 55.4 (0.43) 54.8 (0.84) 27 4.2 61.2 (0.36) 61.2 (0.74)

28 4.2 53.6 (0.40) 55.2 (0.68) 57.9 (0.72) 59.8 (0.97) 28 4.4 63.5 (0.25) 64.5 (0.36)

29 4.4 49.3 (0.49) 51.4 (0.54) 52.7 (0.57) 55.7 (0.65) 29 4.2 58.0 (0.18) 59.2 (0.58)

30 4.2 49.6 (0.71) 50.8 (0.81) 53.2 (0.52) 54.0 (0.90) 30 4.4 57.7 (0.20) 59.7 (0.33)

31 – – – – – 31 4.2 58.2 (0.33) 59.7 (0.53)

W/Ag Mo/Rh

kV = 27 4.2 47.5 (0.73) 49.5 (0.93) 52.9 (0.54) 55.3 (0.90) kV = 27 4.2 55.8 (1.55) 57.5 (1.74)

28 4.4 48.5 (0.84) 50.4 (0.97) 53.0 (0.52) 54.3 (0.66) 28 4.4 55.8 (1.54) 58.1 (1.43)

29 4.2 48.6 (0.90) 50.2 (1.11) 51.7 (0.49) 54.0 (0.74) 29 4.2 55.7 (1.55) 57.0 (1.73)

30 4.4 48.5 (0.94) 50.0 (1.00) 52.6 (0.52) 53.6 (0.55) 30 4.4 56.3 (1.45) 58.1 (1.28)

31 4.2 53.6 (0.87) 54.8 (1.14) 52.9 (0.50) 53.5 (0.56) 31 4.2 56.9 (1.39) 58.0 (1.56)

32 6.4 52.7 (0.76) 52.5 (0.78) 54.5 (0.57) 54.6 (0.62) 32 4.4 57.1 (1.26) 58.4 (1.01)

33 – – – – – 33 4.2 57.4 (1.18) 58.5 (1.33)

34 – – – – – 34 4.4 57.6 (1.02) 56.9 (0.79)

Within-unit Calibration: 50/50 mixtures acquired and calibrated with a same FFDM unit.
H1: data acquired on 08/10/2012.
H2: data acquired on 08/06/2012.
H3: data acquired on 04/08/2013.
32 kV W/Ag BL acquired at 6.0 cm.
50/50 mixture phantom images were acquired with the 160 mAs reference setting for heights (right most column) not considered in the BL sampling (Non-BL) and calibrated to assess the regression parameter height
interpolation. The findings are provided as the mean and the standard deviation (parenthetically) for the respective distributions in PG units. The calibration findings are also provided for 50/50 images acquired with
the standard BL heights close to (4 cm or 6 cm) the non-BL heights, which were acquired on the same day for comparison proposes.
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parameter method is inferior to the spline method when considering the H1, H2, and

H3 units in combination. We note, the H3 findings for both BL and non-BL examples

are consistently beyond the tolerance in contrast with H1 and H2 findings. At this time,

we cannot account for this discrepancy.

In the final analysis, we assessed the potential influence of the system FOV for the

H1, H2 and H3 units (cubic-spline approach). Table 9 shows the findings when applying

the calibration data acquired with the large FOV to 50/50 mixtures taken with the

small FOV. For comparison, 50/50 mixtures acquired with the large FOV were also

calibrated; both sets of images were acquired on the same day to minimize serial drift

influences. Considering the large FOV findings as the standards, the respective small

FOV calibration accuracy is well within ± 4 PG tolerance, demonstrating the FOV

change has little influence.
Discussion
A calibration system for Hologic Selenia FFDM units was established upon our previous

work [21,22] using a different FFDM technology. The findings demonstrate the generality

of our approach. There are both important similarities and differences when comparing

the inter-FFDM technology calibration requirements. The mAs normalization was similar

across the two technologies and is dependent in part upon the linearity of the pixel value
Table 9 Calibration accuracy for images acquired with the small FOV calibrated with
data acquired with the large FOV

Target/filter
and kV
combination

H1 H2 Target/filter
and kV
combination

H3

Small FOV Large FOV Small FOV Large FOV Small FOV Large FOV

W/Rh Mo/Mo

kV = 25 – – – – kV = 25 53.0 (0.37) 54.5 (0.49)

26 54.5 (0.38) 51.9 (0.47) 51.8 (0.28) 51.6 (0.44) 26 52.3 (0.30) 53.7 (0.40)

27 53.0 (0.38) 51.8 (0.46) 48.2 (0.34) 50.6 (0.43) 27 53.1 (0.24) 54.6 (0.34)

28 53.2 (0.44) 52.3 (0.46) 51.5 (0.42) 50.6 (0.43) 28 53.3 (0.17) 54.6 (0.23)

29 52.5 (0.50) 51.4 (0.50) 51.5 (0.55) 51.8 (0.33) 29 54.2 (0.14) 55.4 (0.17)

30 53.0 (0.64) 52.1 (0.63) 51.6 (0.72) 52.6 (0.30) 30 54.1 (0.17) 55.1 (0.20)

31 – – – – 31 54.7 (0.25) 55.7 (0.32)

W/Ag Mo/Rh

kV = 27 52.2 (0.39) 52.4 (0.78) 52.7 (0.70) 53.3 (0.44) kV = 27 51.2 (1.15) 53.6 (1.52)

28 52.1 (0.42) 52.1 (0.92) 52.2 (0.72) 53.5 (0.41) 28 51.7 (1.15) 53.8 (1.52)

29 50.9 (0.42) 52.1 (0.96) 52.1 (0.75) 52.8 (0.41) 29 51.6 (1.15) 54.0 (1.52)

30 52.1 (0.43) 52.5 (0.99) 51.9 (0.86) 53.0 (0.44) 30 52.3 (1.08) 54.5 (1.42)

31 56.3 (0.41) 56.7 (0.90) 52.2 (0.96) 53.2 (0.51) 31 52.3 (1.08) 54.6 (1.37)

32 54.9 (0.38) 54.8 (0.97) 54.5 (1.00) 54.6 (0.64) 32 52.7 (1.01) 54.6 (1.24)

33 – – – – 33 53.3 (0.99) 55.0 (1.15)

34 – – – – 34 53.8 (0.91) 55.6 (1.00)

H1: data acquired on 07/27/2012.
H2: data acquired on 07/20/2012.
H3: data acquired on 04/08/2012.
50/50 mixture phantom images were acquired with small field of view (FOV) using the standard BL heights and the 160
mAs reference setting for and calibrated with data acquired with the large FOV for the H1, H2, and H3 FFDM units
(Hologic units). The large FOV calibration results are provided for reference. The findings are provided as the mean and
the standard deviation (parenthetically) of the respective distributions in PG units.
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and exposure relationship and the validity of ignoring the intercept term (i.e. assum-

ing the relationship is proportional in addition to linear). The findings suggest that at

a minimum, one reference mAs sample may be sufficient for generating calibration

curves in agreement with our previous findings. We showed that the calibration data

could be acquired with the large FOV only without impacting the calibration accuracy

for images acquired with the small FOV. The ability to use a single reference mAs

and FOV results in a substantial reduction in data collection required to establish the

BL calibration datasets. Although the calibration curves were well approximated as

linear for the systems evaluated in this report, we required a cubic-spline height

interpolation for the H1, H2, and H3 units. This spline interpolation requirement is in

contrast with our previous work, where the effective x-ray attenuation coefficients

and logarithmic intercepts (i.e. regression parameters) were stored and then used for

generating both the height interpolation and calibration points. Consistent with our find-

ings from similar GE systems [22], each similarly-manufactured Hologic system (i.e. H1

and H2) requires its own BL calibration dataset to maintain acceptable calibration

accuracy.

There are several limitations with this work. The data was collected over a period of

approximately 35 days and the phantom heights were precise. In previous work [20],

we showed that the GE unit exhibited serial drift with respect to the BL dataset and

drift should be accounted for to maintain prospective calibration accuracy. Because the

data in this report was collected over a relatively short time interval, serial drift influ-

ences are likely minimal. Similarly, the calibration accuracy was evaluated without

height uncertainty. Therefore, the accuracies obtained in this report may be considered

ideal.

Our original objective was to develop a continuous calibrated breast density measure-

ment applicable across imaging platforms. Additionally, calibration may be useful for

other than risk applications, such as estimating the BI-RADS breast composition de-

scriptors [23]. The BI-RADS breast composition descriptors were developed for stan-

dardized reporting purposes and synchronized with situations where mammographic

sensitivity may be lower due to composition. Calibrated tissue composition measure-

ments may be useful for both breast cancer risk applications as well as providing quan-

titative sensitivity measure.
Conclusion
This initial evaluation in combination with our previous calibration findings indicate

that the same calibration approach may apply to both indirect and direct x-ray conver-

sion technologies. Because the BL dataset requires a considerable amount of phantom

imaging, it is not cost-effective to acquire serial replications of the BL dataset on a

regular basis for calibration purposes. Therefore, it is imperative to evaluate the for-

ward serial applicability or stability of the BL datasets [20]. In addition, alternative

methods of updating the BL dataset with a minimal amount of serial phantom imaging

will be explored in future work. Previously, we adapted the Cumulative Sum approach

to monitor the forward stability of the BL dataset [20]. However, the serial updating re-

mains an open-ended problem. For this report, the compressed breast thickness was

not a source of uncertainty. The calibration accuracies in the work were obtained under
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relatively ideal conditions by design. The compression paddle on the Hologic systems

in this report is spring tensioned and therefore somewhat different from the technology

we evaluated previously. During actual breast imaging, the compression paddle tilts

and warps, and the system compressed breast thickness readout is often nominal [21],

which are common traits across the FFDM designs. Additional work is required to as-

sess the influence of uncertainty in paddle height (relative to breast support surface)

using deformable phantoms and generate a compressed breast thickness correction be-

fore applying calibration to actual mammograms. Although the calibration accuracies

were within our preset tolerances for the most part, the viability of our technique with

this particular FFDM technology will require evaluation with patient images to show

that a calibrated measure of breast density is associated with breast cancer.
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