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Abstract

Background: The feasibility of selectively stimulating fascicles and fibers within
peripheral nerves has been demonstrated by a number of groups. Although various
multi-contact electrodes have been developed for this purpose, the lack of
procedures for fast determination of stimulation parameters to produce the desired
effector activity hampers the clinical application of these techniques.
In this paper, we propose an automated search routine that may facilitate the
determination of stimulation parameters. To verify the routine's performance, we also
developed an another routine that performs systematic stimulus–response mapping
(the mapping routine).

Method: The mapping routine performs systematic mapping of all possible
combinations of the allowed stimulation parameters (i.e. combinations of electrode
contacts used to provide the stimulus and sets of stimulus parameters values) and
the observed displacements. The proposed automated search routine, similarly to
the mapping routine, maps stimulation parameters to muscle responses, but it first
investigates stimuli of the low charge and during the mapping process it compares
the recorded responses with the desired one. Depending on the result of that
comparison, it decides whether the use of a particular combination of electrode
contacts should be further investigated or skipped.
Both approaches were implemented on a custom-made closed-loop FES platform
and preliminary experiments were performed on a rat model. The rat's sciatic nerve
was stimulated with a 12-contact cuff electrode and the resulting displacement of
the rat's paw was determined using a MEMS accelerometer.

Results: The automated search routine was faster than the mapping routine;
however, it failed to find correct stimulation parameters in one out of three searches.
This could be due to unexpectedly high variability in the responses to a constant
stimulus.
(Continued on next page)
© 2013 Maciejasz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:pawel.maciejasz@inria.fr
http://creativecommons.org/licenses/by/2.0


Maciejasz et al. BioMedical Engineering OnLine 2013, 12:11 Page 2 of 19
http://www.biomedical-engineering-online.com/content/12/1/11
(Continued from previous page)

Conclusion: Our initial tests have proven that the proposed method determines the
desired stimulation parameters much more quickly than systematic stimulus–
response mapping. However, the factors influencing the variability of responses to
constant stimuli should be identified, and their influence diminished; the remaining
essential variability can then be identified. Thereafter, the criteria influencing the
search process should be investigated and refined.
Further improvements to the search routine are also proposed.

Keywords: Selective electric stimulation, Automated determination of stimulation
parameters, Peripheral nerve, Multi-contact electrodes
Background
State-of-the-art neuroprostheses are able to restore only a small part of body functions

lost due to disease or injury [1]. To restore other functions such as vision or coordi-

nated and accurate movement, only certain fibers or groups of fibers within the nerve

need to be activated. A number of groups have proposed various multi-contact electro-

des implanted around or within the nerve, which allow selective activation of particular

nerve fibers through the choice of appropriate stimulation parameters (a review on this

subject is available [2]). However, to take advantage of such interfaces, it is necessary to

know which combination of electrode contacts (CEC) and which set of stimulus param-

eter values (SPV) should be used to activate particular nerve fibers in order to produce

the desired response (i.e., the desired level of muscle or other effector activity). If elec-

trodes with a high number of stimulation sites are used, there is a correspondingly large

number of possible CEC and SPV combinations and manually checking all these com-

binations is tedious and time-consuming. For example, 10–15 hours were needed to

perform an experiment during which the recruitment curves were determined for four

muscles innervated by cat's sciatic nerve stimulated with a 12-polar cuff electrode [3].

Realistic computational models, like those described in [4,5], could be used to predict

the CECs and SPVs required to achieve the desired response. However, prediction

assumes the specific location of nerve fibers and fascicles within the nerve, which in

fact varies among individuals, and knowledge of the exact positions of the electrode

contacts around or within the nerve, which depends on the implantation procedure.

Therefore, such models may and should be used to determine which CECs and SPVs

should be investigated, which would decrease the number of combinations to be tested.

However, they still cannot determine the exact combination of CECs and SPVs that

would produce the desired response.

An alternative for manual determination of the desired stimulation parameters is an

automated search. In the simplest case, the routine performs automated stimulus–re-

sponse mapping by systematic verification of all the combinations of SPVs and CECs

allowed by the operator. Such an approach reduces the search time since the auto-

mated setting of stimulation parameters is faster than manual setting but still generates

the same number of pulses as manual mapping.

Automated routines, which adapt the parameters of the next stimuli to be investi-

gated during the search based on the responses recorded for the already-generated
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stimuli, could further shorten the search time. However, such algorithms have been

presented by few groups thus far [6,7].

Polasek et al. [6] proposed an adaptive binary routine automatically selecting stimulus

amplitude or stimulus duration in order to determine muscle recruitment curves. The

routine was applied to determine muscle recruitment curves when stimulating nerves

of human arm [6] and leg [8,9] using a four-contact spiral nerve cuff electrode [6,8]

and an eight-contact flat interface nerve electrode (FINE) [9].

Wilder et al. [7] proposed two routines for automated mapping of stimulation para-

meters with muscle responses from the nerve trunk stimulated by an electrode with

multiple contacts. The first routine was used to determine the stimulation levels

needed to produce perithreshold (i.e., small yet measurable) muscle activity. The sec-

ond algorithm automatically determined the isometric force or EMG recruitment

curves, based on the assumption that recruitment curves have a sigmoidal shape. Both

routines were verified using a Utah Slanted Electrode Array with 100 stimulating con-

tacts implanted in a cat's hind limb nerves [10].

However, the routines proposed by the both groups used only various SPVs for each

of the electrode contacts separately and did not investigate the possibility of using a

few electrode contacts concurrently. Furthermore, determining the recruitment curves

for each CEC is not necessary if the desired response is already specified. In this case,

investigation of the responses produced using particular CECs should be stopped once

it becomes clear that these particular CECs do not lead to the desired response.

Certain controllers have been proposed to provide precise, time-varying effector re-

sponse, i.e., muscle isometric force [11] and joint torque [12]; however, these control-

lers also require stimulus–response mapping during the initialization phase. Frankel

[11] reported that minimizing the duration of the initialization processes is of critical

importance to the use of such controllers in neuroprostheses.

Such a method is needed for the fast determination of stimulation parameters using

multi-contact electrodes to produce the desired effector response. Therefore, we propose a

routine that automatically searches for the combination of CECs and SPVs that will pro-

duce the desired effector response, hereafter referred to as “the automated search routine.”

In order to evaluate the performance of the automated search routine and compare it

with the performance of routines systematically checking all combinations of SPVs and

CECs allowed by the operator, we have also developed another routine that performs

such systematic stimulus–response mapping (hereafter referred to as “the mapping

routine”). Both routines were implemented on a custom-made closed-loop FES plat-

form and preliminary experiments were performed on rat model.
Methods
The manner of measuring the functional output of the stimulation also determines the way

in which the desired response, i.e., the desired effect of the stimulation, is specified. The rou-

tines were developed and implemented to allow for specifying the desired response as either

scalar (e.g., ENG or EMG signals, isometric force of isolated muscles) or vector (e.g., torque

produced in the particular joint or displacement of a particular part of the body) values.

During the experiments, the desired response was defined as the two-dimensional

displacement of rat's paw (i.e., the magnitude and direction of the maximal
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displacement from the initial position in the frontal plane) observed right after the

stimulation. Therefore, we will hereafter use term “desired displacement” when refer-

ring to the desired response. However, other functional outputs, both scalar and vector,

may be used by the routines in a similar way.

The mapping routine

This routine performs systematic mapping of all possible combinations of the allowed

stimulation parameters (i.e., SPV and CEC combinations) and the observed displace-

ments. It operates according to the algorithm presented in Figure 1.

To begin, the operator specifies the stimulation and search criteria, which are:

� Permitted combinations of electrode contacts (CECs): Checking all possible CECs

usually is not needed, and the operator should therefore specify those that should

be investigated. As the CECs that should be investigated will depend on the electrode

geometry, the selection should be made based on the results of computational

modeling or previous experience. For example, the operator may specify that only

longitudinal or tri-polar configurations should be used for the cuff electrode.
The operator defines each permitted CEC by specifying one of four possible states

for each electrode contact in that configuration. These states are: cathode, anode,

grounded, and not connected. The algorithm requires that for each CEC one

cathode and at least one grounded contact, are selected to provide the “main pulse”.

It is also possible to select another contact as an anode or a second cathode. That

second contact would be used to provide the “steering pulse”. The “main pulse” is

the one that is supposed to activate, i.e. to cause initiation of action potential

propagation, in a group of nerve fibers within the nerve. The “steering pulse” is a

pulse that is generated concurrently with the “main pulse” and has the same

duration, but usually a lower charge as it is used for “steering” the excitation region

within the nerve (this technique was first described by Sweeney [13]).

� Type of stimulus that should be used (e.g., monophasic or biphasic rectangular).

� The values allowed for pulse duration, “main pulse” amplitude, and “steering pulse”

amplitude. “Steering pulse” amplitudes are defined as the fractions of the main

pulse amplitude.
� Number of repetitions of each stimulus and minimal delay between the generation

of two consecutive stimuli: The routine repeats each stimulus using the same CEC

and SPV combination a specified number of times in order to determine the

variability in the displacements for a particular stimulus. The typical number of

repetitions of the same stimuli used by other authors is between three [6] and five [14]

and the typical delay between consecutive stimuli is between 0.25 [6] and 2 s [14].

� Permitted variability in the displacements recorded in response to the repeated

stimulus F: This allows skipping those combinations of CEC and SPV that produce

unstable responses. It is computed using the following formula:
F ¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x� xið Þ2 þ �y� yið Þ2
q

n
100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p ð1Þ



Figure 1 The pseudocode representation of the algorithms used by the two routines described in
the paper.
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where:

n - Number of repetitions of the particular stimulus (i.e., the particular

combination of SPV and CEC).

xi, yi - The horizontal (add-/abduction) and vertical (plantar-/dorsiflexion) components

of the maximal displacement recorded during a particular repetition of the stimulus.
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�x;�y - Mean values of the horizontal (add-/abduction) and vertical (plantar-/dorsiflexion)

components of the maximal displacements recorded during n repetitions of the stimulus.
Functionally, the variability F corresponds to the mean distance between each max-

imal displacement recorded during n repetitions of the same stimulus and the mean

value of those maximal displacements. It is expressed as a percentage of the mean value

of the maximal displacements recorded during n repetitions of this stimulus.

After initialization, the routine automatically determines all SPVs that satisfy the criteria

specified by the operator and generates a series of stimuli for each combination of the

determined SPVs and allowed CECs. The maximal value of the displacement produced by

such stimulation is recorded and the mean value and the variability of the values recorded

during n repetitions of a particular combination of SPV and CEC are calculated. If the

variability is too high, the displacements recorded for that particular combination of SPV

and CEC are not included in the results collection. At the end of mapping, all the results

from the results collection are displayed and it is possible to select the combination of

SPV and CEC that caused the paw's displacement closest to the desired one.
The automated search routine

This routine automatically searches for the stimulation parameters producing the desired dis-

placement of the rat's paw. During stimulation, it compares the recorded displacements with

the desired one and, depending on the result of that comparison, decides whether the use of

a particular CEC should be further investigated or skipped. Therefore, the search time may be

significantly reduced. The routine operates according to the algorithm presented in Figure 1.

Before executing this routine, the operator should specify the same parameters as for

the other routine, as well as:

� The magnitude and direction of the desired displacement.

� The maximal allowed difference between the desired and the recorded response that will

be accepted, defined as the percentage of the magnitude of the desired displacement.
� The minimal magnitude of the paw's displacement to be considered as significant.

� The maximal allowed difference in the direction between the observed and the

desired displacement, used to avoid undesired activation of other muscles.

After the parameters are specified, the routine determines all SPVs that satisfy the

criteria specified by the operator and then sorts them according to the pulse charges.

In the next step, pulses are generated starting from those of the lowest charge for each

allowed CEC. However, if for a particular CEC the direction of the observed displace-

ment is significantly different from that of the searched for displacement, or its magni-

tude is higher than that of the desired one, the CEC is excluded from the allowed CECs

and will not be investigated for pulses with higher charge, since it could possibly cause

even stronger undesired displacement. If the variability of the displacements recorded

during the repetition of the particular SPV and CEC combination is higher than what is

allowed, then the results are skipped. Last, if the variability in the displacements is not

higher than the allowed value and the difference between the recorded displacement

and the desired one is less than the accepted error, then the operator is informed that
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the stimulation parameters producing the specified displacement have been found and

the search is terminated.

Alternatively, if all the SPVs have been tested or all CECs have been marked to

be skipped, and the stimulation parameters producing the desired displacement

have not been found, the search is terminated and the operator is informed about the

reason for termination.

The experimental set-up

The two proposed routines were implemented with customized software developed by

our team using the Microsoft Visual Basic Express programming package. After verify-

ing the correct operation of these routines during simulations and laboratory tests, the

initial experiments in rats were performed.

For stimulation and signal acquisition, the programmable current stimulator with

integrated signal analyzer PULSEGEN/ANA-16-10 (Creotech Ltd., Poland) was used. It

has 16 current-controlled outputs and eight inputs for signal acquisition. Pulse duration

and current amplitude on each output channel can be independently adjusted with a

precision of up to 62 ns and 8 μA, respectively. The sampling rate of input channels is

60 kHz with a resolution of 8 bits. The custom software in which the proposed routines

were implemented was installed on a laptop (Dell Studio 1537).

The experimental procedure

The preliminary tests were conducted on one rat (race Wistar C). All procedures were

approved by the Local Ethics Committee of Silesian Medical University. The duration

of each experiment was limited to 2 hours because of the anesthesia.

The schema of the set-up used during that experiment is presented in Figure 2. The

rat was anesthetized with chloral hydrate (0.42 g/kg body weight). A 12-contact cuff

electrode (Fraunhofer IBMT, Germany; Figure 3) was implanted around the right sci-

atic nerve. A triaxial accelerometer (LIS3L06AL, STMicroelectronics, Switzerland) was

attached to the right paw in order to calculate the paw displacement caused by the

stimulation. The rat’s leg was attached to the stereotactic frame just above the ankle in

a way that constrained movements of the leg above the ankle but did not restrict
Figure 2 The schema of the set-up used during the experiments in rat.



Figure 3 A 12-contact cuff electrode. A 12-contact cuff electrode the same as the one used in the
experiments (left), and the symbols of the stimulating contacts used in the paper (right). Arrows indicate
the location of rows A and B in the photograph. Row C is not visible.
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movements of the paw. Because the rat was anesthetized and the leg was not touching

any object but the stereotactic frame, it was assumed that the paw returned to the same

(initial) position after the movement caused by stimulation.

In order to evaluate the effect of the stimulation, the magnitude and direction of the

maximal displacement of the rat's paw in the frontal plane was computed within the

first 80 ms after stimulation by double integration of its acceleration. When performing

the integration, the velocity and the acceleration of the paw at the start of stimulation

was assumed to be equal to 0, since the paw was not moving at that moment.

The experiment consisted of three phases:

Phase 1 – stimulus–response mapping

At the beginning of the experiment, the stimulation parameters were systematically

mapped to the rat's paw displacement using the mapping routine.

The permitted CECs were defined as follow (for symbols see Figure 3):

� One of the electrode contacts in row B was used to provide the “main pulse” (as a

cathode).

� The corresponding contacts in rows A and C (i.e., AI and CI, if contact BI was used

for stimulation) were grounded.

� In addition, one of the contacts in row B, other than the one used to provide the

“main pulse,” could be used to provide the “steering pulse” (either cathodic or

anodic) or be grounded.

In total, 40 CECs satisfying the above criteria were defined.

The following search criteria were used:

� Type of stimulus: monophasic rectangular.

� Permitted stimulus durations: 10, 20 and 40 μs. The short pulse widths were chosen

to increase the threshold differences between nerve fibers of different diameters [15].
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� Permitted “main pulse” amplitudes: 50, 100, 200, 400 μA.
� Permitted “steering pulse” amplitudes: 50 and 100% of the “main pulse.”

� Number of repetitions of each stimulus: 3.

� Minimal delay between stimulus repetitions: 400 ms.

� Allowed variability F in displacements for the same stimulus: 10% of the mean

value of maximal displacements recorded during three repetitions of the same

stimulus (see eq. 1).

Phase 2 – automated determination of stimulation parameters

After the systematic stimulus–response mapping, three displacements of the rat's paw

recorded during this mapping were selected and used as the desired displacements for

the search performed with the automated search routine.

The automated search routine was performed three times, once for each of the

selected displacements. The search criteria and the permitted CECs for these searches

were the same as during the execution of the mapping routine, in order to be able to

compare the results obtained during execution of both routines. In addition, the follow-

ing search criteria were specified:

� Maximal allowed difference between the recorded and the desired

displacements to consider the search successful: 15% of the magnitude of the

desired displacement.

� Minimum magnitude of the displacement to consider it as significant: 0.5 mm

� Maximal allowed difference between the direction of the recorded and

the desired displacements (used to avoid undesired activation of other

muscles): 60°.

There are not much data available about the variability of responses that could be

expected, therefore the values of the above criteria were selected based on the

responses observed during initial tests of the experimental set-up [16].

Phase 3 – verification of the determined stimulation parameters

At the end of the experiment, stimulation was performed once again using the

combination of SPV and CEC determined by the automated search routine for one

of the searched for displacements, in order to verify whether the determined

stimulation parameters allowed it to achieve the desired displacement. The stimulus

was repeated three times and the mean value and variability of the recorded displace-

ments were calculated.

Results
Phase 1 – stimulus–response mapping

During the mapping of stimulation parameters with paw displacements, 768 various

stimuli - i.e., various CEC and SPV combinations - were generated, with each stimuli

repeated three times. The search duration was 27 min 15 s (see Table 1). The rat's paw

displacements recorded during the execution of the mapping routine are presented in

Figure 4A and marked with X. Both plantarflexion and dorsiflexion displacements with

small abduction of the paw can be observed. There is also a high concentration of



Table 1 The execution durations and effective stimulation frequencies during particular
searches

Operation Number of various
stimuli (i.e., SPV and
CEC combinations)

tested

Number of significant
displacements (i.e.,
mean magnitude

> 0.5 mm)

Execution
duration

Effective
stimulation

frequency [Hz]

Phase 1: Mapping of stimulation
parameters with muscle
responses (Figure 4A)

768 362 27 min
15 s

1.41

Phase 2: Search for stimulation
parameters producing response
a (Figure 4B)

133 4 4 min 24 s 1.51

Phase 2: Search for stimulation
parameters producing response
b (Figure 4C)

265 58 8 min 54 s 1.49

Phase 2: Search for stimulation
parameters producing response
c (Figure 4D)

259 52 9 min 38 s 1.34

Each stimulus was repeated three times for each combination of allowed SPVs and CECs.
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displacements corresponding to plantarflexion combined with abduction of the paw

(area indicated by an arrow in Figure 4A). Most of these displacements were observed

for stimuli with a charge higher than 10 nC. Because displacements in other directions

were mostly recorded for stimuli with lower charges, we believe that displacements in

the indicated area were observed mostly when all or almost all fibers within the nerve

were activated and thus all muscles innervated by the sciatic nerve were contracting in

the same time.
Figure 4 Maximal displacements of the rat's paw recorded during the performed experiments.
Maximal displacements of the rat's paw recorded during searches with the mapping routine (A) and the
automated search routine for three different desired responses (B-D). Each X sign corresponds to the mean
displacement of the rat's paw during repetition of the particular stimuli three times. For the explanation of
other symbols, see Table 2.
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Phase 2 – automated determination of stimulation parameters

From the mapping results in phase 1, three significantly different displacements were

selected. They are marked in Figure 4A with squares and a, b and c. When choosing

these displacements, attention was paid to select displacements:

� In different directions – to ensure that these displacements were caused by the

activation of different muscles.

� In directions for which a significant number of displacements was observed during

stimulus–response mapping – to avoid using accidental displacements.

� With both maximal and intermittent magnitude values, as compared with other

displacements observed during stimulus–response mapping – to verify whether the

routine was able to find stimulation parameters corresponding to various muscle

activation levels.

Those displacements were used as the desired ones for three searches performed

using the automated search routine. The displacements recorded during these searches

are presented (X signs) in Figure 4B, C and D for desired displacements a, b and c,

respectively. For comparison, the searched for displacements are presented in these

figures and marked with squares and the appropriate letter (a, b or c). The circles

around the desired displacements in Figure 4 indicate the maximal allowed difference

between the recorded and desired displacements to consider the search successful,

which was set to 15% of the magnitude of the desired displacement. Therefore, the

absolute value of the maximal allowed difference was higher for the desired displace-

ments having higher absolute magnitude (e.g. displacement b).

The routine found the stimulation parameters producing displacements a and c. The

found displacements are marked in Figure 4B and D with blue circles and the symbols

A2 and C2 for the desired displacements a and c, respectively. The stimulation para-

meters producing displacement b were not found. The search was terminated when all

allowed SPVs had been generated for all unskipped CECs.

The search time and number of tested SPV and CEC combinations for each search

are presented in Table 1. The use of the proposed automated search routine allowed us

to reduce the search time and the number of generated stimuli compared with the sys-

tematic stimulus–response mapping routine. During execution of the mapping routine,

768 SPV and CEC combinations were tested and it took more than 27 minutes,

whereas during each execution of the automated search routine no more than 270

stimuli were tested and the routine execution duration was less than 10 minutes each

time (see Figure 5 and Table 1 for comparison).

During the search for stimulation parameters producing displacement a, the first signifi-

cant response with the allowed variability that was observed had already satisfied the search

criteria (see displacement A2 in Figure 4B). However, before the generation of the stimulus

that produced the displacement, 132 other stimuli with lower charge were also generated,

with only three of them producing significant displacement but with too high variability.

Phase 3 – verification of the determined stimulation parameters

At the end of the experiment, to ascertain whether the combination of SPV and CEC

found by the automated search routine had achieved the desired displacement, the



Figure 5 Comparison of the number of various SPV and CEC combinations tested during the
performed experiment. Comparison of the number of various SPV and CEC combinations tested during
execution of the mapping routine and three executions of the automated search routine. Numbers above
bars indicate the total number of configurations tested during all the executions of the particular routine.
Values in parentheses provide a percentage comparison of the configurations tested during particular
searches with the number of configurations tested during stimulus–response mapping.

Maciejasz et al. BioMedical Engineering OnLine 2013, 12:11 Page 12 of 19
http://www.biomedical-engineering-online.com/content/12/1/11
stimulation parameters found by the automated routine to produce displacement c (i.e.,

the combination of SPV and CEC that produced displacement C2) were used to generate

three consecutive stimuli. The mean paw displacement observed during this stimulation

was calculated and is marked as C3 in Figure 4D. There was a significant difference

between displacements C2 and C3, despite the use of the same stimulation parameters.

When a search using the systematic stimulus–response mapping routine was per-

formed, all combinations of permitted SPVs and CECs were tested. The same SPVs and

CECs were permitted when performing a search using the two routines; therefore, it

was possible to compare the displacements recorded for the same combination of SPV

and CEC during the execution of both routines. When displacements A2 and C2

recorded during execution of the automated search routine were compared with displa-

cements recorded for the same combinations of SPV and CEC generated during execu-

tion of the mapping routine (marked in Figure 4B and D with a blue circle and symbols

A1 and C1, respectively), a significant difference between C1 and C2 was observed (see

Figure 4D) and there was a much smaller difference between A1 and A2 (see

Figure 4B). The stimulation parameters and displacements recorded for the stimuli

described above are compiled in Table 2.

The combination of CEC and SPV that produced displacements C (i.e., C1, C2 and

C3) was used for stimulation nine times during the whole experiment – three times

during stimulus–response mapping, three times when performing a search for stimula-

tion parameters producing displacement c, and three times when the parameters deter-

mined by the proposed routine were verified. In each case, the variability in the

displacements observed when repeating this stimulus three times during particular



Table 2 Stimulation parameters and recorded responses for stimuli marked in Figure 4

ID Stimulation parameters Stimulus
charge [nC]

Paw displacement

Magnitude
[mm]

Direction
[º]

Variability
[% of magnitude]

a 40 μs, BI: -400 μA, BII: -200 μA, AI + CI 24 7.05 66.2 2.0

A1 10 μs, BII: -200 μA, none, AII + CII 2 6.81 68.9 17.4

A2 Same as stimulus A1 2 7.02 74.9 8.5

b 20 μs, BIII: -400 μA, BIV: 200 μA, AIII + CIII 12 12.27 −67.1 4.2

c 40 μs, BI: -200 μA, BII: -100 μA, AI + CI 12 7.07 −41.8 4.7

C1 40 μs, BIII: -400 μA, none, AIII + BIV + CIII 16 10.25 −64.3 0.6

C2 Same as stimulus C1 16 6.99 −40.5 3.1

C3 Same as stimulus C1 16 4.77 −31.6 4.4

Responses a, b and c were chosen from the results of the stimulus–response mapping (phase 1 of the experiment) and
used as the desired responses for the search performed using the automated search routine. A2 and C2 are responses
produced using stimulation parameters determined in phase 2 of the experiment by the automated search routine for
responses a and c, respectively. A1 and C1 are the responses recorded for the stimuli with the same parameters as A2
and C2, but generated during phase 1 of the experiment. Response C3 was recorded at the end of the experiment when
verification using the same stimulation parameters as for C2 was performed (phase 3 of the experiment). Mean response
values are provided (each stimulus was repeated three times every 400 μs). The stimulation parameters are provided in
the following order: stimulus duration, electrode contact providing the “main pulse” and its amplitude, electrode contact
providing the “steering pulse” and its amplitude, electrode contacts being grounded. For an explanation of the symbols
for the electrode contacts, see Figure 3.
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phases of the experiment was less than 5% of the mean magnitude of the recorded

displacements (see Table 2). During stimulus–response mapping (displacement C1),

this variability was even less than 1%; however, the difference between the mean values

of C1 and C2 was 69% of the mean magnitude of all nine C displacements and the dif-

ference between C2 and C3 was 32% of the same mean magnitude (see Figure 4C).

Thus, it appears that the delay between executions of these stimuli can have an influ-

ence on the differences between the recorded displacements. During each part of the

experiment, the same stimuli were repeated every 400 ms, whereas the delay between

generations of the same stimuli during various parts of the experiment was much

higher. The delay between the stimuli which produced C1 and C2 was approximately

55 minutes and the one between C2 and C3 was 3 minutes and 20 seconds.

Discussion
The main goal of the proposed routine is to allow fast and reliable determination of the

stimulation parameters needed to achieve the specified response of muscles or other

effectors. The initial tests, the results of which we present in this paper, show that the

routine allowed a rapid determination of stimulation parameters producing the desired

responses (see Table 1) but failed to determine the right stimulation parameters in one

out of three cases. This occurred because of the high variability in the responses, which

caused skipping of the correct stimulation parameters, namely the combination of SPV

and CEC that produced displacement b during phase 1 of the experiment.

The significant variance of the displacements for the same stimuli during various parts

of the experiment indicates that the use of this routine is questionable, since the stimula-

tion parameters that are valid at the moment of determination are not necessarily capable

of achieving reproducible results when repeated. However, the same problem would arise

for any other routine proposed for the same purpose. It is thus necessary to determine the

factors that cause the high variation in responses to a constant stimulus, diminish the in-

fluence of these factors, and determine the remaining essential variability. Only once this
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is accomplished can the routine proposed by our group, or any other routine proposed

for the same purpose, undergo validation procedures that take into account the remaining

variability. The factors that could cause such a high variability will be discussed below.

Although, the results presented in this paper do not allow to validate the method,

they allow us to make propose some improvements that may be introduced to the algo-

rithm. Those improvements will be described at the end of the discussion section. We

believe that improving the experimental conditions in order to reduce the variability of

the observed responses, together with the implementation of the proposed modifica-

tions, will greatly increase the performance of the proposed routine and allow for its

application for fast determination of the stimulation parameters.
The variability in the responses to the constant stimulus

In essence, the factors that could cause variability in the responses to the constant

stimulus may be divided into three categories:

1. Factors related to the change in stimulation conditions (due to stimulator drift,

electrode displacement, nerve drying, or nerve swelling).

2. Factors related to a change in the excitability of the nerve and muscle cells (due to

fatigue, potentiation phenomena, or a change in tissue temperature).

3. Factors related to the measurement method.

Although most of these factors should have had only a minor influence during our

experiment, it is nevertheless worthwhile to discuss them in greater detail.

Factors related to the change in stimulation conditions

Due to technical limitations, the stimuli generated by an electrical stimulator for the same

input parameters may vary within a limited range. However, upon testing the stimulator

used in the experiment, the variability in the amplitude of the rectangular pulses gener-

ated for the constant input parameters was less than 2% and no variability in pulse dur-

ation was observed. Therefore, it can be inferred that the influence of stimulator drift on

the variability in the observed displacements wasn't significant in our experiment.

Another possibility is that even though the stimulation parameters are held constant,

other stimulation conditions may change and thus influence the threshold values for

the activation of particular fibers, thereby causing a change in the responses observed

for the same stimulus. Such change can be brought about by factors such as nerve dry-

ing or swelling or electrode movement. These factors play an especially significant role

in acute experiments such as ours, although in our previous work [16] electrodes were

implanted five days before the experiment and when they were explanted, a stable and

very good contact between electrode and nerve was observed. Nevertheless, consider-

able variability in the displacement responses to the constant stimulus was observed, as

in our current experiment, which suggests that factors related to stimulation conditions

were not the main factors causing the variability of responses.

Factors related to the change in nerve and muscle cell excitability

Other factors like anesthesia, temperature and stimulation frequency may also influence

the excitability of the stimulated nerve and muscles, which could explain the variability
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in muscle response to the same stimulus. The anesthesia used in this experiment

(chloral hydrate) is regularly used in animal research, but we are not aware of any pub-

lished study showing its influence on nerve excitability over time. A thermostat was

used to ensure the constant temperature of the rat's body during the experiment, so

changes in body temperature are also unlikely to explain our results.According to

Wilder [7], a stimulation frequency equal to or higher than 2 Hz may induce muscle

fatigue. During our experiment, the minimum delay between two consecutive stimuli

was set to 400 ms, which is equal to 2.5 Hz. However, due to the time-consuming

transmission, processing and real-time visualization of the recorded signals, the effect-

ive stimulation frequency during execution of the search routine was about 1.5 Hz (see

Table 1). Therefore, muscle fatigue was unlikely to have occurred. On the other hand,

repetitive stimulation, even at low frequency, can increase the force of a muscle con-

traction compared with a single-pulse stimulation, which is known as the “staircase po-

tentiation” phenomenon. As shown by Krarup [17], this potentiation can be observed

during repetitive generation of supra-maximal stimuli with a frequency as low as 2 Hz.

Further studies are thus needed to determine the maximal stimulation frequencies at

which the search can be performed without a potentiation effect being observed.

Factors related to the measurement method

Even for the same responses, the result of the measurement may differ if the measure-

ment method is not sufficiently reliable. In this experiment, the MEMS accelerometer

was used to measure paw displacement because it is easy to apply in practical scenarios.

However, the signals it produces are not always reliable, and the double integration of

these signals in order to calculate displacement may lead to significant errors [18]. In

order to determine the precision of the displacement using our method, we have per-

formed characterization of our experimental set-up. The results showed that the mea-

surements were not precise (the mean error was 23.8% of the measured displacement),

but repeatable (the mean standard deviation of the repeated measurements was 5.3% of

the computed displacement).

Thus, the measurement method chosen for this experiment may have been an im-

portant factor of the variability in the observed displacements. A more reliable method

is thus needed to measure effector response. However, for the binary search routine

developed by Polasek, modifications in the routine were necessary to avoid getting

stuck when the response to a stimulus with a low value was higher than the response

to a stimulus with a high value, due to the variability in response amplitude (for more

details see Appendix II to [6]). This variability was observed, even though EMG signals

were used as input for the routine, the measurement of which is more reliable than the

measurement of displacement using our approach. Thus, application of a reliable meas-

urement method does not guarantee that stable responses will be obtained.

Decreasing search duration

One of the objectives of the proposed method was to determine the parameters of

stimulation relatively quickly. It is not possible to compare the proposed method with

the other existing, because so far no equivalent method has been proposed. It is not

possible to compare these methods with those proposed by Polasek [6] and Wilder [7],

because their methods used only various SPVs for each of the electrode contacts
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separately and did not investigate the possibility of using a few electrode contacts con-

currently. Also in most of the publications in which stimulus–response mapping of

multi-contact electrodes was performed, no information was given on whether the

stimulation parameters were set automatically or manually, the duration of the search

procedure, or the number of the various pulses that were generated during the search

[13,19,20]. Therefore, we decided to compare performance of the proposed automatic

search routine versus performance of the automatic stimulus–response mapping rou-

tine that we have also implemented and tested for the same permitted SPVs and CECs.

The results we obtained (Figure 5) show that the automated search-routine reduced

search duration by at least 66% percent for a single search as compared to systematic

stimulus–response mapping. However, the number of the tests performed is too low to

allow definitive conclusions.
Decreasing pulse charge

The other aim of the proposed method was to decrease the charge of the pulse needed

to achieve the desired displacement. This would help to avoid nerve damage and de-

crease the power demands for prolonged stimulation. Therefore, the proposed routine

first produces stimuli with the lowest charges for all allowed CECs and then increases

the charge in a stepwise fashion. Hence, if the routine succeeds, we can obtain the

parameters of the stimulus with the lowest charge to produce the response. The use of

this routine resulted in a significant reduction in the charge for the stimulus producing

displacement a (see Table 2: 24 nC during stimulus–response mapping and only 2 nC

for the stimulus producing displacement A2, for which the parameters were found

using the proposed routine). However, the charge of stimulus C found using the auto-

mated search routine during phase 2 of the experiment was higher than the charge of

stimulus c during stimulus–response mapping (see Table 2). This was rather unex-

pected since the stimulus with the same parameters as the one that produced displace-

ment c during execution of the mapping routine should have been tested by the

automated search routine before testing stimuli with higher charges. However, the CEC

that produced displacement c during the execution of the mapping routine produced a

significantly different displacement for a pulse with a small charge during execution of

the automated search routine and was therefore skipped during the further search.
Improving search criteria

Skipping the CEC that could have produced the desired response when used with a

SPV of higher charge might have been caused by the high variability in the displace-

ments for the same stimulus. However, it may also have been due to overly strict cri-

teria for CEC exclusion. Therefore, the CEC exclusion criteria should be investigated

and refined to avoid exclusion of CECs producing the desired responses. When choos-

ing the search criteria, there is always some trade-off between search time, number of

unintended activations of other effectors, and the certainty to finding the right stimula-

tion parameters to produce the desired response. Nevertheless, there is room for im-

provement. We observed that it was mainly the displacements with the lowest

amplitudes that had significant variation Therefore, choosing a higher displacement

magnitude to be regarded as significant should be considered.
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Further improvements to the proposed routine

After this initial experiment, proposals to improve the routine can be made:

1. The automated search routine significantly reduced the execution time in

comparison with systematic stimulus–response mapping. However, if the routine is

executed many times in a row in order to find stimulation parameters producing

various responses, the same stimuli may be repeated during each search. This was

the case for responses b and c, because the direction of the desired displacement in

both cases did not differ by much (as can be seen from the comparison of desired

and recorded responses in Figure 4C and D). Therefore, before generating a

stimulus, it should be determined whether this stimulus was generated during

recently performed searches. If this is the case, the stimulus should not be

generated and the previously recorded response for the particular SPV and CEC

combination should be used instead. As may be seen in Figure 5, this would have

reduced the total number of configurations tested during the three executions of

the automated search routine from 657 to 266.

2. During each search, a high number of stimuli was generated before any significant

response was observed. This number would have been even higher if a lower rate

had been selected for the increase in stimulus parameters, because stimulus

amplitude and duration are increased in a stepwise manner starting from the

lowest permitted values and using a constant ratio, irrespective of whether any

significant response is observed. Using two different rates of increase, which would

be considerably higher if the last generated stimulus did not produce a significant

response and lower if the response was significant, would reduce the number of

generated stimuli that produce insignificant responses and thus speed up the

search process.

3. The proposed routine skips the CEC if the recorded response has a magnitude

higher than the desired one, and this occurs irrespective of the direction of

the recorded response. In the case when the rates of increase in the stimulus

parameters are too high, it may happen that, in a series of two consecutive

stimuli using the same CEC, the charge of the first one is too low while the

charge of the second is too high to produce the desired response. As a

consequence, this CEC will be skipped and the stimulation parameters

producing the desired response may not be found. Therefore, when the

response magnitude is too high, but the direction of the recorded response is

similar to the direction of the desired one, the next stimulus using the same

CEC should be generated, but with a charge value in between the values of

the two previous stimuli.

4. The use of the steering current does not always modify the direction of the

observed displacement, but it increases the number of configurations to be tested

and the pulse charge . On the other hand, in some cases an additional grounded

contact can be used to modify the direction of the displacement . Therefore, a

method should be built into the algorithm for fast verification if a particular CEC

allows the achievement of better responses than those obtained using similar

CECs. Such a method could, for example, incorporate the determination of overlap

between effectors activated by various CECs.
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Conclusions
We have proposed a method for the automated determination of stimulation para-

meters to produce a desired effector response. This type of method, in combination

with multi-contact electrodes, may broaden the range of application for selective stimu-

lation techniques in medicine. Our initial tests have proven that the proposed method

determines the desired stimulation parameters much more quickly than systematic

stimulus–response mapping. However, the variability in the responses to the same

stimulus generated in various parts of the experiment was quite high. The factors influ-

encing this variability should be identified, and their influence diminished; the

remaining essential variability can then be identified. In particular, a more reliable

measurement method should be considered. Only once this is accomplished can the

routine proposed by our group, or any other routine proposed for the same purpose,

undergo validation procedures. Thereafter, the criteria influencing the search process

should be investigated and refined. We have also proposed a number of modifications

that may further improve the performance of the search routine.
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