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Abstract

Background: Most studies on biodegradable magnesium implants published
recently use magnesium-calcium-alloys or magnesium-aluminum-rare earth-alloys.
However, since rare earths are a mixture of elements and their toxicity is unclear, a
reduced content of rare earths is favorable. The present study assesses the in vivo
biocompatibility of two new magnesium alloys which have a reduced content
(ZEK100) or contain no rare earths at all (AX30).

Methods: 24 rabbits were randomized into 4 groups (AX30 or ZEK100, 3 or 6
months, respectively) and cylindrical pins were inserted in their tibiae. To assess the
biodegradation μCT scans and histological examinations were performed.

Results: The μCT scans showed that until month three ZEK100 degrades faster than
AX30, but this difference is leveled out after 6 months. Histology revealed that both
materials induce adverse host reactions and high numbers of osteoclasts in the
recipient bone. The mineral apposition rates of both materials groups were high.

Conclusions: Both alloys display favorable degradation characteristics, but they
induce adverse host reactions, namely an osteoclast-driven resorption of bone and a
subsequent periosteal formation of new bone. Therefore, the biocompatibility of
ZEK100 and AX30 is questionable and further studies, which should focus on the
interactions on cellular level, are needed.

Keywords: Magnesium, In vivo, Biocompatibility, Degradation, ?μ?-computed tomo-
graphy, Histology

Background
Recently, magnesium alloys returned to the focus of research as potential material for

degradable metallic implants [1-10]. Besides problems like rapid corrosion, accumula-

tion of subcutaneous gas and insufficient mechanical stability, adverse host reactions

and toxic effects had also been limiting factors of the magnesium implants used by

first researchers [11-15] and were reasons why magnesium had been abandoned. In

modern magnesium alloys ligands are used to modify the corrosion properties and the

mechanical characteristics of the alloy [5,6,16,17] and that is why modern magnesium

alloys have favorable mechanical characteristics [1,3]. The magnesium alloys most

commonly researched on are magnesium-calcium-alloys and magnesium-aluminum-
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rare earth-alloys [3,18-21]. They were shown to be of good in vivo biocompatibility

[1,3,22]. Recent studies proved that they have no allergenic or sensitizing potential

[23,24]. Furthermore, it has been published that magnesium has osteoinductive effects

[1,3,7,25,26].

Although for some of the rare earth elements (RE) used as alloying components of

magnesium unwanted effects have been reported, their toxicity is still widely unknown

[27-29]. Thus, despite favorable mechanical properties, a magnesium alloy can only be

considered suitable, if the released elements during the degradation of a magnesium

implant are of acceptable biocompatibility [30,31]. Although good biocompatibility is

mandatory for future uses [24], according to a recent study most studies on degradable

magnesium alloys focus on material science and engineering aspects [30].

An assessment of the in vivo reactions, such as foreign body or immunologic reac-

tions should be done in the recipient tissue [32]. Since rare earths are possibly toxic, a

reduced content in the alloys might be favorable. ZEK100 and AX30 are two novel

magnesium alloys, that have a reduced content of RE (ZEK100) or contain no rare

earths at all (AX30) and which were shown to be in vitro promising [33].

The present study is a primary assessment of the in vivo host reactions to the two

novel magnesium alloys ZEK100 and AX30 in the same in vivo setup as the prelimin-

ary studies [8,9].

Methods
Implant material

The two magnesium alloys used in this study were especially designed and made by

the Institute of Material Science, University of Hanover, Germany.

ZEK100 consists of magnesium with 1 wt% of zinc, less than 1 wt% of zirconium as

well as less than 1 wt% of rare earths and AX30 consists of magnesium with 3 wt% of

aluminum and less than 1 wt% of calcium. They were both named in accordance with

the ASTM standard B275-90 [34].

The ZEK100 and AX30 billets were manufactured by gravity die-casting. Due to the

high reactiveness of liquid magnesium, it was melted and cast under a protective argon

atmosphere, which was achieved by dynamically circulating argon around the crucible at

a volumetric flow rate of 3 l/min. Both alloys were melted at a temperature of 760°C.

The die used for the casting was heated to 600°C for ZEK100 and to 560°C for AX30.

The billets were further processed by direct extrusion. For this purpose, their diameter

was reduced to 120 mm by turning on a lathe. Then the billets were soaked at 350°C in

a furnace for two hours, while the extrusion die (orifice diameter of 30 mm) and its reci-

pient were heated to a temperature of 380°C for ZEK100 and to 400°C for AX30. After-

wards the billet was extruded at a ram speed of 1 mm/s for ZEK100 and 1.5 mm/s for

AX30. The final implants were 2.5 mm in diameter and 25 mm in length.

All implants were washed in acetone and distilled water in an ultrasonic bath and

then separately packed. They were sterilized with gamma radiation at 25 kGy for 8 h

by a commercial provider (BBF Sterilisationsservice, Kernen, Germany) [1,3].

Animal model

The animal experiments carried out in this study were in accordance with a protocol

approved by the ethic committee in charge as well as with § 8 of the German Animal
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Welfare Act. They were legitimized by the Office for Consumer Protection and Food

Safety under the approval number 33.9-42502-04-07/1363.

For the experiment 24 female, adult New Zealand White Rabbits (Charles River, Kis-

slegg, Germany) with a body weight of 3.5 to 4.5 kg were used. The rabbits were

housed in separate cages in a controlled environment.

The animals were randomized into four groups of six animals each differing in time

and/or material (AX30 3 months, AX30 6 months, ZEK100 3 months and ZEK100 6

months). The implants were placed in the right tibiae of the animals. Within each

group there was one animal without an implant, which served as negative control,

resulting in 20 implants in total and two negative controls for three months as well as

two for six months.

Before the operation procedure all rabbits received subcutaneous injections of melox-

icam (0.15 mg kg-1, Metacam®, Boehringer Ingelheim, Ingelheim, Germany) and enro-

floxacin (10 mg kg-1, Baytril® 2.5%, Bayer HealthCare, Leverkusen, Germany). This

medication was continued orally during the following ten days post operatively. To

induce anaesthesia, the rabbits received intramuscular injections of s-ketaminehy-

drochloride (10 mg kg-1, CP-Pharma, Burgdorf, Germany) and medetomidine (0.125

mg kg-1, Domitor®, Pfizer GmbH, Berlin, Germany). After endotracheal intubation, the

anaesthesia was continued by administering a mixture of isoflurane and oxygen (2 to 3

vol% isoflurane, oxygen airflow 0.4 to 0.6 l min-1, Isoba®, Essex Pharma GmbH,

Munich, Germany) under spontaneous respiration. Furthermore, the rabbits received

an infusion of Paediafusin© (10 ml kg-1 h-1, Baxter, Unterschleissheim, Germany). The

right hind legs were clipped and the rabbits were placed on a heating pad. Shortly

before the incision fentanyldihydrogencitrate (10 μg kg-1, Fentanyl-Janssen®, Janssen-

Cilag GmbH, Neuss, Germany) was given intravenously and from that time the rabbits

were ventilated artificially if necessary.

An incision of the skin and the fascia underneath was made on the medial side of

the tibia, just mediodistal of the tibial tuberosity. After the periosteum had been

detached from the tibia, a 2.5 mm wide hole was drilled through the cortex, so that

the implant could be placed in the middle third of the medullary cavity using a sterile

plastic push. The soft tissue layers were closed separately. After the operation the posi-

tion of the implants was confirmed radiographically in two projections.

In the control animals the operation procedure was performed as described above,

including the insertion of the push, except for no implant was inserted.

During the follow up the animals were examined clinically on a daily basis. Special

attention was paid to the occurrence of pain, lameness, subcutaneous accumulation of

gas or swellings. Four fluorochromes (Calcein green, Xylenol orange, Calcein blue and

Tetracycline) were administered subcutaneously according to a protocol shown in

Table 1.

After three or six months the animals were anaesthetized and then euthanized by

intracardiaic injections of narcobarbital (230 mg kg-1) and their right tibiae were

explanted and fixated in buffered 4% formaldehyde.

Postmortem micro computed tomography (μCT) scans

Scans of the isolated tibiae were performed using a cone beam μCT scanner (μCT80,

Scanco Medical, Zurich, Switzerland), with a maximum resolution of 5 μm and
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maximum image matrix of 4096 × 4096 pixels. The scanner uses a 2D and true 3D

multi-planar reformatting evaluation and visualization software (Scanco Medical, Zur-

ich, Switzerland), which allows volume registration and 2D and 3D density measure-

ments of user defined regions of interest. 3D analysis scripts allow further processing

of irregularly shaped three-dimensional volumes of interest (VOI).

For the scans the tibiae were fixated in cylindrical tubes filled with 4% formaldehyde

using small sponges. The tubes could be placed in the μCT scanner. Topograms of the

legs were made and then a scan area from 5 mm above to 5 mm below the implant

was determined for the tomogram. The slice thickness was 36 μm and the integration

time used was 1 sec per slice. The electron energy used was set to be 55 kVp and the

intensity was 72 μA.

The parameters to be analyzed were: volume, density and 3D thickness of the

implant and the 3D thickness variation. For evaluation the implant was manually con-

toured in the 2D images. A threshold, specific for the two different alloys (ZEK100

threshold 204 and AX30 threshold 185), was determined and used for all evaluations.

This procedure defined a three-dimensional VOI, which could be further evaluated. In

order to assess the extents of the degradation of the implants, volumetric and density

measurements of the VOI were performed. The average density of the VOI was mea-

sured and stated in arbitrary units (AU), because the μCT was calibrated using a

hydroxyapatite phantom for bone density measurements. The direct 3D determinations

of thickness of the VOIs were calculated by filling the structure with overlapping

spheres of maximal diameter. The diameter of the spheres at each location resembles

the local thickness and the average thickness was determined by averaging them over

the whole VOI.

This led to histograms of bin sizes with an average 3D thickness and a standard

deviation for each implant. A low average bin size with a low standard deviation indi-

cates a high degree of uniform corrosion. A high standard deviation of the histogram

is caused by an irregular shape of the remaining implant and therefore it is an indica-

tor for the extent of pitting corrosion. Additionally to the volumetric method described

above, per animal nine images, evenly distributed over the 2D images of the topo-

grams, were made. They were used for the measurements of the cross sectional areas

of the implants, which were done with the AxioVision Release 4.8.2 (Carl Zeiss AG,

Jena, Germany) in accordance to a protocol published previously [9,35], by manually

contouring the implant in the 2D images with the area measurement tool of the

software.

Furthermore, to assess bone changes as a measure for the biocompatibility, the nine

2D images obtained of the topograms were scored using a semiquantitative scoring

system (Table 2), modified after one used in a previous study [9]. The scores of each

Table 1 Scheme of Fluorochrome staining

Fluorochrome Dose [a] 3 month groups [b] 6 month groups [b]

Calcein green (1%) 1 3 and 6 93 and 96

Xylenol orange (10%) 1 33 and 36 120 and 123

Calcein blue (2%) 1.5 60 and 63 150 and 153

Tetracycline (10%) 0.3 89 and 92 179 and 182

[a] Dose in ml per kg bodyweight [b] Numbers indicate the day postoperatively at which the respective Fluorochrome
was administered
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animal were summed up to a total score. The scoring allocated values between 0 and 3

for defined features in the 2D images of the μCT scans.

Histological preparation and analysis

After the fixation of the bone-implant-complex in formaldehyde and the examinations

in the μCT80, the tibia was embedded in methyl-methacrylate (Technovit 7200 VLC,

Heraeus Kulzer GmbH, Wehrheim, Germany) in accordance with the instructions of

the manufacturer. Slices were produced using the sawing and grinding technique

described by Donath [36].

Slices that were to be stained with Toluidine blue (n = 48) or Tartrate-resistant acid

phosphatase (TRAP) (n = 24) were cut to a thickness of about 100 μm and then

ground and polished to a final thickness of approximately 50 μm. Additionally one

native slice per animal, with a final thickness of 100 μm, was subject to histomorpho-

metrical analyses of in vivo fluorochrome labels.

For the TRAP staining the slices were etched in 1% acetic acid and then rinsed with

deionised water. After that they were bathed in 0.2 M acetate buffer for 45 min. The final

staining was done by immersion in TRAP staining solution (naphthol AS-MX phosphate

and Fast Red TR Salt, Sigma-Aldrich, St. Louis, USA) in 80 ml 0.2 M acetate buffer) for 90

min at 37°C. After that the slices were again rinsed with deionised water. Osteoclasts were

stained in bright red while the rest of the slice remained unstained [37]. In the stained

slices the osteoclasts were counted by an indirect method. Since the osteoclasts did not

stain in the thick undecalcified slices and often were detached from the osseous surfaces,

instead of the osteoclasts themselves, the intensely reddish stained bone areas in the How-

ship-lacunas (Figure 1) were counted. This indirect osteoclast counting was done three

times for each slice and averaged. For the Toluidine blue staining the slices were etched in

0.7% formic acid for 4 min, then patted dry and stained for 15 min at 60°C in the Tolui-

dine blue staining solution (0.1% Toluidine blue O (Chroma, Muenster, Germany)

Table 2 Score for the 2D images in the μCT80

Feature Score

Bone structure (cavities) regular 0

minor irregularities (< 30% of the area) 1

distinct irregularities (30 to 60% of the area) 2

severe irregularities (< 60% of the area) 3

Bone implant contact (trabeculae) none 0

< 1/3 of the implant surface 1

1/3 to 2/3 of the implant surface 2

> 2/3 of the implant surface 3

Endosteal formation of new bone none 0

< 1/3 of the endosteal surface 1

1/3 to 2/3 of the endosteal surface 2

> 2/3 of the endosteal surface 3

Periosteal formation of new bone none 0

< 1/3 of the periosteal surface 1

and < 1/3 of the cortical thickness

1/3 to 2/3 of the periosteal surface 2

or 1/3 to 2/3 of the cortical thickness

> 2/3 of the periosteal surface
or > 2/3 of the cortical thickness

3
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solution in the phosphate buffer) and then rinsed with deionised water and dried at ambi-

ent air. Toluidine blue stained slices are coloured in shades of blue. The mature bone

appeared in light blue, while new bone was of dark blue [38].

All histological analyses were done using a Zeiss AxioImager Z1 and the AxioVision

software release 4.8.2. (Carl Zeiss AG, Jena, Germany). For the Toluidine blue stained

slices a semiquantitative scoring was used to quantify the bone features observed in the

slices (Table 3). A total score for the bone reactions was calculated by adding up the dif-

ferent scores given for each animal. The histomorphometrical measurements were done

with native slices on the basis of previous studies on fluorochrome labeling, but modified

to the needs of the present study [39-41]. Distances between the double labels of the suc-

cessionally administered fluorochromes were measured in the periosteally formed bone at

twelve defined locations (Figure 2). For each animal the mineral apposition rates (MAR)

[42] of the respective time spans were calculated as average of the twelve locations.

Statistics

All statistical tests were done with the programs Microsoft Office Excel®, Version 2003

(Microsoft Cooperation, Redmond, USA) and SPSS® Version 17.0 (SPSS: An IBM

Company, Chicago, USA).

Figure 1 Details of osteoclasts in TRAP staining. [a] Osteoclast on endosteal surface [b] Cortical cavity
with osteoclasts. Black arrows: TRAP positive bone of Howship-lacunes, black star: TRAP positive staining of
cement lines, black bar: scale bar 50 μm.
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For statistical analyses all results were checked for normal distribution. The results of

the direct 3D evaluations and the area measurements of the implants in the μCT

turned out to be normally distributed and therefore Student’s t-tests were used for

comparisons between materials and time points. For the numbers of osteoclasts in the

TRAP-stained slices and the MAR mean values and standard deviations were calcu-

lated and an ANOVA analysis with subsequent post hoc tests (Games-Howell) was

performed. The scores of the 2D μCT images and the Toluidine blue stained slices

were averaged for each animal and then the minimum, median and maximum of each

group was determined. For each time point Kruskal-Wallis-tests with subsequent

Table 3 Semiquantitative scoring of Toluidine blue stained slices

Feature Score

Assessment of the bone structure (cavities) regular 0

minor irregularities (< 30% of surface) 1

distinct irregularities (30 to 60% of surface) 2

severe irregularities (< 60% of surface) 3

Periosteal remodelling none 0

thickness equals 1 osteon 1

thickness equals 2 osteons 2

thickness equals 3 osteons 3

Endosteal remodelling none 0

thickness equals 1 osteon 1

thickness equals 2 osteons 2

thickness equals 3 osteons 3

Endosteal formation of new bone none 0

< 1/3 of the endosteal surface 1

1/3 to 2/3 of the endosteal surface 2

> 2/3 of the endosteal surface 3

Periosteal formation of new bone none 0

< 1/3 of the periosteal surface 1

and < 1/3 of the cortical thickness

1/3 to 2/3 of the periosteal surface 2

or 1/3 to 2/3 of the cortical thickness

> 2/3 of the periosteal surface 3

or > 2/3 of the cortical thickness

Figure 2 Fluorochrome labeling for histomorphometry. [a] Labels of the four fluorochromes used (1
Calcein green, 2 Xylenol orange, 3 Calcein blue, 4 Tetracycline) [b] Positions for the measurement of the
distance between the labels (same slices)
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Mann-Whitney-U-tests were done. The level of significance for all statistical analyses

was p ≤ 0.05.

Results
In the clinical examinations performed during the follow up period in all animals

minor swellings and mild wound reactions surrounding the incision could be found for

up to the first ten days. No lamenesses were seen.

The results of the direct 3D measurements of the implants are displayed in Table 4

and the corresponding p-values are shown in Table 5. The volume and the direct 3D

thickness of both materials decreased time dependently, although not significantly. The

standard deviation of the 3D thickness was higher in the 6 months groups of both

materials than in the respective 3 months groups, but only for AX30 this difference

was significant. The implants of the AX30 3 months group had a significantly higher

volume and 3D thickness as well as a significantly lower density and 3D variation than

the ZEK100 3 months implants. After six months the volume and 3D thickness of the

AX30 6 months group was still higher than that of the ZEK100 group and the 3D var-

iation lower than that of the ZEK100, though not significantly. Significant differences

in implant density could only be found between AX30 and ZEK100 after six months.

The average cross sectional areas are displayed in Table 6. Since there were no initial

μCT investigations of the implants, origin cross sectional areas were calculated to be

4.91 mm2. Compared to this the implants of both materials had a markedly reduced

diameter after three months. However, statistical analyses between calculated initial

values and measured values after three and six months were not performed due to dif-

ferent evaluation methods. The implants of the AX30 6 months group had a signifi-

cantly lower (p = 0.019) cross sectional area than those of the AX30 3 months group,

while for the ZEK100 6 months group it was lower than that of the ZEK100 3 months

group, but not significantly. The average cross sectional area of the ZEK100 3 months

group was significantly lower than that of the AX30 3 months group (p = 0.014). But

after six months this difference was equalized and both materials had about the same

average cross sectional areas.

The results of the scoring of the 2D μCT images are presented in Table 7. There

were no statistically significant differences between the two materials and the control

group except in the parameter endosteal formation of new bone after three months (p

= 0.032), although the median scores of the material groups were markedly higher

than those of the respective control groups. For the two time groups of each material

there were also no significant differences. In contrast to the control, the magnesium

implant groups were found to have diffusely distributed cavities in the cortical bone,

which appeared to be located rather close to the endost than the periost. Although in

Table 4 Results of the 3D measurements of the μCT scans

Group n Volume Density 3D thickness 3D variation

[mm3] [1/cm] [mm] [mm]

MV SD MV SD MV SD MV SD

AX30 3 months 5 116.52 1.36 2.14 0.08 2.25 0.06 0.25 0.06

AX30 6 months 4 102.34 14.62 2.23 0.19 1.87 0.42 0.38 0.10

ZEK100 3 months 5 105.90 10.62 2.62 0.12 1.99 0.21 0.33 0.07

ZEK100 6 months 3 99.22 5.69 2.57 0.62 1.82 0.15 0.43 0.60
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both materials there were more cavities after six months than after three months the

difference was not significant due to higher standard deviations.

The results of the scoring of the Toluidine blue stained slices are displayed in Table

8 and examples of the features that were scored are shown in Figure 3. The p-values

of the differences between the respective scores are displayed in Table 9. After three as

well as six months the ZEK100 and the AX30 implants (total score 8.5 to 11.5)

induced a higher degree of host reactions than in the control groups (total score 1.5 to

2). This difference was significant for the total score and most of the single parameters.

The only significant difference between the different parameters of the respective

implant groups was the periimplant fibrosis, which could not be seen in the AX30 3

months group. The parameters bone structure (cavities), periosteal remodelling and

periosteal formation of new bone had high score values while the parameters bone

implant contact, endosteal remodelling and endosteal formation of new bone had

lower values.

The histological preparation caused losses of material from the medullary cavities.

Therefore a quantification of the cells found could not be done. Furthermore, the slice

thickness of 50 μm made morphological evaluations difficult. In the control groups the

medullary cavities were homogenously filled with a bone marrow of mainly fat-con-

taining cells, while in the implant groups a cell-rich bone marrow was found that con-

tained fibrous tissue as well as implant- and cell debris. (Figure 4) In areas of the bone

marrow adjacent to the implant cells of an inflammatory reaction, such as macro-

phages and foreign body cells, were observed. (Figure 5) At sites of osteoneogenesis or

remodelling linings of osteoblasts on layers of unmineralized osteoid were frequently

found. (Figure 5)

In the TRAP staining it was differentiated whether osteoclasts were located endoste-

ally or cortically (Figure 1). For both materials the TRAP staining revealed higher

numbers of osteoclasts in the 3 months groups than in the 6 months groups (Table

10). In the control groups there were no or only very few osteoclast. No statistically

significant differences existed between the implant and the control groups.

The results of the histomorphometrical measurements are displayed in Table 11.

Although the ZEK100 groups generally had a higher MAR, due to the high standard

variations no significant differences between the two materials at the respective time

spans were found (Figure 6). Both materials had a comparable average MAR during

Table 5 p-values of the 3D measurements in the μCT scans

Material Time point Volume Density 3D thickness 3D variation

AX30 3 vs. 6 months p = 0.043

ZEK100 3 vs. 6 months

AX30 vs. ZEK100 3 months p < 0.001 p < 0.001 p = 0.001 p = 0.011

AX30 vs. ZEK100 6 months p = 0.007

Table 6 Results of the cross sectional area measurements

Group n MV [mm2] SD [mm2]

AX30 3 months 5 4.73 0.07

AX30 6 months 5 3.95 0.56

ZEK100 3 months 5 4.13 0.44

ZEk100 6 months 5 3.91 0.34
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the first month postoperatively. After three months the MAR of both material groups

reduced. In the control groups only a very moderate periosteal mineral apposition was

found and there was only little cortical remodeling.

Discussion
The present study was designed to assess the in vivo host reactions to the biodegrada-

tion of the two new magnesium alloys ZEK100 and AX30 in an animal experiment.

The authors of the present study chose this in vivo approach, with an intramedullar

implant mimicking an intramedullar fixation device, for two reasons: First, it is known

that the clinical tolerance and reaction of the bone to a magnesium implant are indica-

tors for its biocompatibility [9,32] and that they depend on the receptor tissue, organ

and species, as well as the size and shape of the implant [43]. Secondly, an adequate

evaluation of the biocompatibility of degradable implants must take the extent of their

degradation into account [7,43,44] and that the degradation rates also depend on the

location [7,45,46].

In accordance with other studies examining the in vivo degradation of magnesium

implants the clinical tolerance of the implants was good [8,9,17,43,47], but contrary to

these clinical results, the μ computertomographical and histological examinations

revealed severe osseous reactions to the degrading implant.

The basic methods to determine the extent of degradation, like weight or volume

measurements, need the bone implant complex to be destroyed and make histological

analyses impossible. In cross sectional area measurements of radiographic or

Table 7 Resulting scores of the 2D μCT images

Group n Overall bone
structure
(cavities)

Bone implant
contact

(trabaeculae)

Endosteal
formation of new

bone

Periosteal
formation of new

bone

Total
score

AX30 3
months

5 Min 0.22 0.00 0.00 0.22

Med 1.22 0.00 0.11 1.67 3.00

Max 2.89 0.11 0.44 3.44

AX30 6
months

5 Min 0.11 0.00 0.00 1.00 1.11

Med 2.11 0.00 0.22 2.44 4.77

Max 3.00 0.44 0.67 3.00 7.11

ZEK100 3
months

5 Min 0.00 0.00 0.00 0.00 0.00

Med 1.11 0.00 0.00 2.67 3.78

Max 2.67 0.00 0.00 3.00 5.67

ZEK100 6
months

5 Min 1.00 0.00 0.00 1.00 2.00

Med 2.67 0.00 0.00 2.22 4.89

Max 3.00 0.00 0.00 3.00 6.00

Control 3
months

2 Min 0.00 - 0.00 0.00 0.00

Med 0.00 - 0.00 0.00 0.00

Max 0.00 - 0.00 0.00 0.00

Control 6
months

2 Min 0.00 - 0.00 0.00 0.00

Med 0.00 - 0.00 0.00 0.00

Max 0.00 - 0.00 0.00 0.00
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histological 2D images the true implant volume has to be extrapolated and therefore

they are considered to be not exact [48].

Therefore, in the present study a μCT scanner was used to determine the extent of

degradation by direct 3D measurements of the implant. A μCT based method requires

a user to define a VOI by contouring and determining thresholds. Since methodic

errors may arise from this [49,50], the extent of degradation was also assessed by cross

Figure 3 Details of Toluidine blue stained slices. [a] slice of an animal of the 6 months control group.
[b] slice of the ZEK100 6 months group. [c] slice of the ZEK100 6 months group (yellow star: artefact due
to preparation, white arrow: periosteal remodelling, red arrow: endosteal remodelling, black arrow:
periosteal formation of new bone, green arrow: periimplant fibrosis)
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sectional area measurements in 2D images to verify the results and to allow compari-

sons to previous studies.

The direct 3D measurements of the implant volume revealed a time dependency of

the degradation. It was shown, although only significantly after three months, that

ZEK100 had degraded to a greater extent than AX30. After six months the implants of

both 6 months groups had degraded to about the same extend. This relation was also

found in the cross sectional area measurements. The results of the 3D thickness and

3D thickness variation did not only show that AX30 had a more uniform degradation

than ZEK100, but they also supported the results of the volumetric measurements.

Presumably the surface of the AX30 implants showed a better initial corrosion resis-

tance than ZEK100, which could be due to possible differences in the distribution of

the alloying elements within the implant.

The magnesium alloys LAE442, WE43 and MgCa0.8 were analyzed in the same

experimental setup as ZEK100 and AX30, where ZEK100 implants showed a degrada-

tion behavior like the favorable LAE442. In the first three months AX30 showed a

slower degradation than LAE442 and ZEK100 but after six months it was comparable

[8].

As in a previous study, the host reactions were assessed by a scoring of 2D μCT

images [9]. The scores for the overall assessment of the osseous structure at three and

six months showed, that both alloys induced distinct time dependant host reactions, in

the form of structural changes of the bone, while the control groups did not show any

of such reactions. After six months both materials had induced about the same degree

of host reaction, while after three months in the ZEK100 animals the degree of host

reactions was higher than in the AX30 animals. Since, as discussed above, ZEK100

Table 9 p-values for the results of the Toluidine blue stained histological slices

Group
[a]

Time
point

Assessment of
bone structure

(cavities)

Periosteal
remodelling

Endosteal
formation of
new bone

Periosteal
formation of
new bone

Periimplant
fibrosis

Total
score

AX30
and

ZEK100

3 - - - - 0.002 0.003

AX30
and

control

3 0.008 0.002 - 0.002 - 0.002

ZEK100
and

control

3 0.002 0.003 - 0.003 0.002 0.002

AX30
and

ZEK100

6 - - - - - -

AX30
and

control

6 0.002 0.002 - 0.002 0.024 0.002

ZEK100
and

control

6 0.024 0.024 - 0.008 0.004 0.002

AX30 3 and
6

- - - - < 0.001 -

ZEK100 3 and
6

- - - - - -

[a] p-values at respective time points in the Mann-Whitney tests of the parameters with significant differences in the
Kruskal-Wallis test
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degraded faster than AX30 in the first three months, a relation of the host reaction

and the extent of the degradation seems likely. The parameters for endosteal and peri-

osteal formation of new bone showed the same tendency.

A six months study on MgCa0.8 with and without fluoride coating assessing 2D μCT

images revealed bone formation endosteally and around the implant, which was

assigned to a good biocompatibility [51]. Contrary to that, in the present study no

bone implant contact was found and the score for the endosteal formation of new

bone was low.

For examinations of the host reactions to magnesium implants histology is the

method of choice [52] and a requirement for the biological evaluation of medical

implants [53]. In the assessment of implants for bones the two aspects of the host

reactions to be examined are morphological changes of the bone and cellular or

inflammatory reactions [52].

Therefore, in the present study the morphological changes of the bone and the cellu-

lar reactions were assessed histologically and histomorphometrically. Additionally,

osteoclasts were quantified in TRAP staining.

The results of the scoring of the Toluidine blue stained slices revealed host reactions

and therefore they are contradictional to those of the 2D μCT scoring. Some of the

Figure 4 Details of cortical bone and adjacent bone marrow. [a] 3 months control group [b] ZEK100 3
months group.
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studies on implants made of magnesium or its alloys reported about the absence of

inflammatory reactions adjacent to the implant [13,14]. Von der Hoeh et al. [54] found

the inflammatory reactions, namely foreign body giant cells, macrophages, lymphocytes

and plasma cells and fibrous reactions near by the implant, to depend on the corrosion

Figure 5 Details of a Toluidine blue stained slice of the ZEK100 3 months group. [a] Bone marrow
between endost and implant (red arrows: foreign body giant cells) [b] Bone marrow close to endost with
trabecular formation of new bone (green arrows: osteoneogenesis, layer of osteoblasts on light
unmineralised osteoid and dark blue mineralised bone, red arrow: endosteal remodelling, yellow arrow:
macrophage)

Table 10 Numbers of osteoclasts in TRAP staining

Group n Endosteal Cortical Total

AX30 3 months 5 MV 7.4 41.0 48.4

SD 6.7 29.0 34.8

AX30 6 months 5 MV 7.5 14.7 22.2

SD 6.3 10.4 15.4

ZEK100 3 months 5 MV 15.3 35.5 50.9

SD 20.3 8.2 23.3

ZEK100 6 months 5 MV 7.1 25.9 33.0

SD 8.4 22.7 27.2

control 3 months 2 MV 0.0 0.3 0.3

SD 0.0 0.3 0.3

control 6 months 2 MV 0.0 0.0 0.0

SD 0.0 0.0 0.0
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rate of MgCa0.8 cylinders in the cancellous bone, but no morphological changes of the

bone [54]. Analogous to that, a recent study found similar moderate inflammatory and

fibrous reactions in soft tissues adjacent to MgCa0.8 implants [43]. Contrary, a study

examining Toluidine blue stained histological slices of rabbit tibiae with degrading

magnesium hydroxide cylinders found no inflammation histologically and clinically

[26]. Most studies published on magnesium implants report about beneficial osteoin-

ductive effects of magnesium alloys [1,7,9,26,51,55]. In contrast to the studies pub-

lished in the first half of the last century, in the recent years of magnesium research,

there is only one study published that found severe adverse reactions to be induced by

magnesium implants [56]. However, in some of the in vivo studies on the degradation

of magnesium implants, there were synchrotron-, μCT- or histological images pub-

lished, that show cortices with diffusely distributed cavities of uncommented origin

[48,51,57].

In the present study the TRAP staining was used to quantify osteoclasts. The high

numbers of osteoclasts in the tibiae with implants and the absence of osteoclasts in the

control groups show that the degradation of the magnesium implants must have lead

to an activation or chemotaxis of osteoclasts. Surprisingly the tests for significance

between the numbers of osteoclast between the implant groups and the control groups

were not significant, which might be due to the small size of the respective control

group. The high numbers of osteoclasts in the implant group are a likely explanation

for the formation of cavities in the cortices. Verbrugge et al. [12] described lyses of the

bone in reaction to degrading magnesium. Janning et al. [26] also used the TRAP

staining to quantify numbers of osteoclasts around cylinders made of magnesium

hydroxide. They reported an initial inhibition of osteoclasts, which lasted for four

Table 11 Average periosteal mineral apposition rate (MAR)

MAR [μm/day] n 3 months group 6 months group

1. 2. 3. 4. 5. 6.

ZEK100 5 MV 2.55 3.38 3.37 2.27 0.90 1.27

SD 1.67 1.39 1.81 1.87 1.32 1.02

AX30 5 MV 2.50 1.77 2.23 0.92 0.73 0.33

SD 0.96 0.76 1.88 1.13 0.92 0.40

control groups 2 MV 0.13 0.00 0.00 0.00 0.00 0.00

SD 0.13 0.00 0.00 0.00 0.00 0.00

Figure 6 Average periosteal mineral apposition rate (MAR).
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weeks postoperatively, and a distinct activation of osteoclasts at six weeks after opera-

tion. Unfortunately, six weeks was the longest group in their study, so the further pro-

gression of osteoclast numbers remains unclear. In the present study, there were more

osteoclasts found in the 3 months groups of both materials than in the 6 months

groups, which might be a hint that the osteoclastic activity is time dependant.

The MAR measurements showed that already one month after the implantation a

periosteal apposition takes place. It has its peak about two to three months postopera-

tively and gradually reduces until month six. Since all rabbits used in the study were

adult and since the control group showed only a minimal mineral apposition, the

increased MAR can be attributed to the implants. The mineral apposition in the first

month postoperatively found in the control groups is likely to have been caused by the

operation routine, but since it was so minor it can be neglected for the implant groups.

In other studies that assessed the MAR in bones with degrading magnesium implants

also an enhanced MAR was found, in comparison to the control [1,26]. Janning et al.

[26] discussed the MAR to be at its highest two weeks postoperatively and to decrease

over the course of week four to six.

The appearance of comparable adverse reactions in all implants groups shows, that

the rare earths, as an alloys component of 1 wt%, have no pronounced effect on the in

vivo biocompatibility.

As a possible explanation for the activation of osteoclasts and the subsequent forma-

tion of cavities in the cortical bone it is hypothesized as follows. It is known that metal

debris and ions released from conventional implants cause, when being phagocytised

by macrophages, an increased osteoclastic activity, that is mediated by various inflam-

matory, macrophage derived mediators (interleukin 6 among others) [58-61]. Corrosion

products from magnesium implants and their debris could have the same effect.

Released Mg2+ can possibly inhibit the osteoclastic activity, for it is likely to have the

same effect as Ca2+ has [62-64], which is a membrane receptor mediated inhibition of

osteoclasts in a dose dependant manner [59,62,65]. But later on this inhibition is over-

ridden by the effects of other mediators, such as interleukins or the RANK/RANKL

system [62,66,67]. For IL6 a high osteoclastogenic potential was proven [68] and that it

fully reverses the inhibitory effect of Ca2+ on osteoclasts [62,63]. Furthermore, Ca2+

was described to potently enhance the synthesis and secretion of IL6 [69].

Mechanical strain is believed to induce the formation of new bone, for it is sensed by

osteocytes and stimulates them to release transmitters, which induce the formation of

new bone periosteally [70,71]. Resorption cavities cause locally heightened strain levels

in the remaining adjacent bone [70] and thereby stimulate the formation of new bone

[72,73].

The exact mechanisms of interactions between degrading magnesium alloys espe-

cially on cellular level is widely unknown and further research is mandatory.

Conclusions
ZEK100 and AX30 display degradation characteristics which are, from an engineering

point of view, favorable. But the degrading ZEK100 and AX30 implants caused adverse

host reactions by inducing an unfavorable osteoclastogenic resorption of bone and a

rushed reactive formation of new bone periosteally. Therefore the biocompatibility of

ZEK100 and AX30 is questionable and has to be further critically examined. No
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pronounced influence of the rare earths on the in vivo biocompatibility could be

found. A closer assessment of the possible interactions of released degradation pro-

ducts of magnesium alloys has to be done. This should include the interactions on cel-

lular level, especially those with the bone metabolism and the immune system.
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