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Abstract

Background: Over the last decade, the number of neurostimulator systems
implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are
implanted worldwide annually. The most common type of implantable
neurostimulators is indicated for pain relief. At the same time, commercial use of
other electromagnetic technologies is expanding, making electromagnetic
interference (EMI) of neurostimulator function an issue of concern. Typically reported
sources of neurostimulator EMI include security systems, metal detectors and wireless
equipment. When near such sources, patients with implanted neurostimulators have
reported adverse events such as shock, pain, and increased stimulation. In recent in
vitro studies, radio frequency identification (RFID) technology has been shown to
inhibit the stimulation pulse of an implantable neurostimulator system during low
frequency exposure at close distances. This could potentially be due to induced
electrical currents inside the implantable neurostimulator leads that are caused by
magnetic field coupling from the low frequency identification system.

Methods: To systematically address the concerns posed by EMI, we developed a test
platform to assess the interference from coupled magnetic fields on implantable
neurostimulator systems. To measure interference, we recorded the output of one
implantable neurostimulator, programmed for best therapy threshold settings, when
in close proximity to an operating low frequency RFID emitter. The output contained
electrical potentials from the neurostimulator system and those induced by EMI from
the RFID emitter. We also recorded the output of the same neurostimulator system
programmed for best therapy threshold settings without RFID interference. Using the
Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of
spinal cord fiber excitation for both recorded outputs.

Results: The electric current induced by low frequency RFID emitter was not
significant to have a noticeable effect on electrical stimulation.

Conclusions: We demonstrated a method for analyzing effects of coupled magnetic
field interference on implantable neurostimulator system and its electrodes which
could be used by device manufacturers during the design and testing phases of the
development process.
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Background
Radio frequency identification (RFID) readers are being used for tracking people, ani-

mals, products and goods. Some of the advantages of this technology include proximity

of identification and robust ability to store information. RFID readers can identify tags

within meters away. This technology works by emitting and receiving radio frequency

electromagnetic energy. Since RFID technology has gained popularity in many indus-

tries, an average person could get exposed to the emitted fields from RFID readers

when using public transportation, shopping at a grocery store, picking up a package at

a postal service and driving through a toll booth [1,2].

The United States Food and Drug Administration (FDA) is encouraging use of a

state-of-the-art technology, such as RFID, to allow manufacturers and distributors to

precisely track drug products through the supply chain [3]. Overall, RFID systems offer

a variety of benefits, including fast transactions, real time tracking, contactless data

transfer, large storage capacity and continuous temperature monitoring. Some claim

that RFID technology can change the delivery of patient care [4].

In recent years, the FDA has received a series of adverse event reports suggesting

electromagnetic interference (EMI) with deep brain and spinal cord stimulators from

various electromagnetic sources [5]. Kainz et. al. reported various sources of EMI,

which included a report from a patient with an implantable spinal cord stimulator who

received an electric shock while walking near an article surveillance device [6]. Several

incident reports and published literature culminated in the 1998 FDA advisory to car-

diologists, cardiovascular surgeons, emergency physicians, neurologists and neurosur-

geons warning that the operation of certain medical devices, including spinal cord

stimulators, may be affected by the electromagnetic fields produced by anti-theft sys-

tems and metal detectors [7].

In our recent study, we investigated the EMC of six implantable neurostimulators

and 22 RFID emitters. We found effects of inhibition of one implantable neurostimula-

tor system indicated for incontinence when close to two low frequency RFID emitters.

The effects were determined to be clinically significant only if they occurred for

extended periods of time. There were no observed effects on the other 5 implantable

neurostimulators or during exposures from other RFID emitters [8]. Another publica-

tion reported that magnetic fields can turn the stimulation on or off and varying mag-

netic fields can momentarily inhibit telemetry [9].

A previously published study has shown that magnetic resonance systems are capable

of generating strong magnetic fields that could potentially cause nerve stimulation. The

induced fields inside the patients with implantable leads are much larger than induced

fields inside patients with no implantable systems [10]. To address the concerns posed

by coupling of electromagnetic fields from RFID emitters, we developed a test protocol

to assess the interference from coupled magnetic fields on implantable neurostimulator

systems.

Background Theory

In the 1830s, Michael Faraday proposed a hypothesis that a magnetic field could pro-

duce an electric current in a wire. After 10 years of experiments, Michael Faraday and

Joseph Henry independently discovered that magnetic fields can produce an electric

current in a closed loop, but only if magnetic flux linking the surface area of the loop
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changes with time. This type of process was named electromagnetic induction. The

electric current can be generated under any one of the three conditions:

1. A stationary loop in a time varying magnetic field,

2. A moving loop with a time varying area in a static magnetic field, or

3. A moving loop in a time varying magnetic field [11].

One hundred and eighty years later, the same theory still holds. This relation is now

known as Faraday’s law of induction.

In our work, we chose to focus on the first example of a stationary loop in a time

varying magnetic field since it represents the worst case scenario of magnetic fields

coupling at the minimum separation distance. In our study, the time varying magnetic

field is generated by the RFID emitter and a stationary loop is formed by the implanta-

ble neurostimulator leads.

In the case of a single turn, conducting circular loop with surface area A in a time

varying magnetic field B(t), the electrical potential difference between the ends of leads

is defined as,

V =
∫

∂/∂tB · dA

where,

V: electrical potential difference (V)

∂/∂t B: rate of change of the magnetic field (T/s)

A: surface area of the enclosed loop (m2) [11]

Methods
Probe for measuring electrical potential difference

We designed a probe for measuring the electrical potential difference between two

contacts of the pulse generator. The probe was made of solid conductor copper wires

of American Wire Gauge 26 and a “U” shaped custom modified connector. Two pieces

of copper wire were twisted and soldered to the “U” shaped custom modified connec-

tor. The connector’s bare tips were separated by 5 mm and were approximately 5 mm

long. The dimensions of this probe were defined by the design of the implantable neu-

rostimulator system. The probe was designed to make contact with a set of screws that

secure leads inside the pulse generator can. Figure 1 demonstrates such set up. The

proximal end of the probe was connected to 1 Mega Ohm input impedance oscillo-

scope. The probe was oriented in a straight line parallel to the B field generated by the

RFID antenna and perpendicular to the neurostimulator leads.

RFID Emitter

A commercially available RFID system was used for exposing the implantable neurosti-

mulator system to magnetic fields. The system operated using International Organiza-

tion for Standardization 11785 Standard. The carrier frequency was 134.2 kHz, which

is considered low frequency, or LF RFID. Typically, systems with low carrier frequency

are used in access control of animals and people [12]. The maximum magnetic field

strength was measured to be 269 A/m at 2.5 cm away from the RFID antenna. The

pulse repetition rate of this system is 10.7 Hz. The RFID reader antenna dimensions
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are 20 cm × 20 cm × 2.5 cm. The highest magnetic field measured at close distances

was near the corners.

Implantable Neurostimulator System

A commercially available implantable neurostimulator system was analyzed for cou-

pling of electromagnetic fields. This system was previously approved by the FDA for

intended use of pain relief. The system consisted of an implantable pulse generator

and two implantable leads with platinum/iridium electrodes. Each lead was measured

to be 75 cm long with 8 electrode contacts. The system operated as an open loop sys-

tem and did not require a physiological signal for activation. The unique design of the

pulse generator, that enabled us to record from the electrodes, allowed us to perform

the tests without modifying the pulse generator or leads.

Patient Simulating Tank

We used a commercially available phantom ELI4, SPEAG. The phantom was made

from vinylester, glass fiber reinforced material which is capable of holding up to 30

liters of fluid. The inside of the phantom has oval shape of 40 cm × 60 cm with the 2

mm bottom plate. The phantom was filled with saline solution of electrical conductiv-

ity that represents electrical properties of the body [13].

SENN Model

The Spatially Extended Nonlinear Node (SENN) model was developed by J. Patrick

Reilly and Alan M. Diamant and recently published in Electrostimulation; Theory,

Applications, and Computational Model for modeling various nerve and muscle fibers

[14]. The SENN model is based on a program developed by Donald McNeal in 1976.

Reilly and Diamant have successfully employed this model in studying excitable tissue

Figure 1 Recording probe and pulse generator with leads attached.
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reactions to applied electrical forces. The SENN model accounts for temporal and spa-

tial variations of electrical current in spinal cord fiber which includes variations in sti-

mulus wave shape, duration, repetition pattern, magnitude, means of delivery at

location of electrodes on the body, electrode size and biological and physiological fac-

tors. This model was previously used in analyzing medical applications of electro-sti-

mulation, electric shock, exposure limits to patients in medical applications,

electromagnetic safety standards and human reactions to electric weapons [14]. We

implemented this model in analyzing coupling of electromagnetic fields when in close

proximity to RFID emitters. The SENN model source code, supporting files, sample

executable for PC and Mac platforms and a startup guide are available as free down-

loads at http://www.artechhouse.com/static/reslib/reilly/reilly.html.

Procedure

A non-conductive, non-metallic plastic grid was used as a support grid for the neuro-

stimulator device and the lead system. The height of the grid was 7.7 mm. The plastic

grid with the neurostimulator system attached was placed inside the patient simulation

tank at the bottom. The tank was filled with 5280 μS/cm (0.528 S/m) conductivity sal-

ine to the top surface of the neurostimulator pulse generator. The conductivity value

was selected to match reported 561 Ohm resistance [15] between electrodes which

were 6 mm apart. The holes in the grid filled with the surrounding saline. Figures 2

and 3 demonstrate top and side views of the experimental set up.

Figure 2 Implantable Neurostimulator System configuration. Top View. Each neurostimulator lead is 75
cm long, forming circular loops along RFID antenna. Assume the neuron submerged and is oriented
perpendicular to the electrodes.
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The neurostimulator system was configured so that the leads outline the RFID

antenna and the extra length was looped around the outline of the corners of the

antenna (Figure 2). The magnetic field around the corners of the antenna was pre-

viously recorded to generate the highest magnetic field strengths. This layout repre-

sents the worst case scenario for coupling electromagnetic fields into implantable

leads. The worst case scenario layout was also verified experimentally.

The neurostimulator system was programmed to measure the output impedance

between most distal electrodes of each lead. At the separation distance between edges

of electrodes of 6 mm and saline conductivity of 0.5280 S/m, the measured impedance

was 561 Ohms. This impedance value was within reported values for spinal cord sti-

mulators with dual lead configuration of 562 ± 389 Ohms [15].

Neurostimulator parameters were chosen from a recent study that reported electric

parameters optimized for spinal cord stimulation with conventional non-rechargeable

neurostimulator systems, with a sample size of 73 systems. The average reported para-

meters for best therapy were; amplitude of 5.3 mA, pulse width of 300 μsec and pulse

repetition of 100 Hz (10 msec) [15]. Since our implantable neurostimulator system was

a voltage controlled system, we calculated 5.3 mA (through 561 Ohms impedance) to

be 3 V. We programmed the neurostimulator system to output a waveform of 3 V

amplitude, 300 μsec pulse width and 100 Hz repetition rate.

Next, we connected our recording probe to the pulse generator. Using the oscillo-

scope, we verified programmed parameters and recorded the waveform. The same pro-

cedure was then performed three times to show repeatability.

We placed the RFID antenna underneath the saline-filled neurostimulator tank. The

antenna was oriented parallel to the loop formed by the neurostimulator system’s leads

and perpendicular to the recording probe. Figure 3 demonstrates the side view of the

layout. While the neurostimulator system was on, we turned on the RFID emitter. On

the oscilloscope, we measured and recorded the output waveform which contained the

waveform generated by the neurostimulator system and also the induced voltage

coupled into the implantable neurostimulator leads. The same procedure was then per-

formed three times to show repeatability.

The recorded data was then corrected for direct current (DC) coupling, possibly

causing an offset that was not balanced out. This particular type of offset is considered

to be caused by the recording set of instruments. The offset was determined by

Figure 3 Implantable neurostimulator system configuration inside patient simulation tank with
RFID antenna shown underneath the tank. Side View. The neuron is submerged 1.5 mm and is
oriented perpendicular to the electrodes.
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averaging a non-signal portion of the data and the bias was subtracted from all sample

values [14].

The SENN model was then used to analyze corrected data to compile threshold fac-

tors for excitation of spinal cord fiber. The SENN model required a set of temporal

and spatial parameters. We obtained spinal cord fiber standard parameters for recruit-

ment of dorsal column fibers in spinal cord stimulation from previously published

work by Struijk et. al. [16]. Table 1 demonstrates the parameters in further detail. For

spatial parameters, we considered the worst case scenario (the shortest distance

between electrode and the nerve fiber) along with optimum electrode geometry pub-

lished by Holsheimer and Wesselink [17]. Table 2 defines spatial parameters in further

details.

Results
We recorded two types of output waveforms from the implantable neurostimulator

system. The first type of waveform contained only voltage signals from the implantable

neurostimulator system. The second type of waveform contained voltage signals gener-

ated by the implantable neurostimulator and induced voltage caused by EMI from the

RFID emitter. Figures 4 and 5 show the recorded waveforms respectively.

Next, we generated a time-ordered digital array of (x, y) pairs for each recorded out-

put waveform. In the SENN model, we used the sampled temporal waveform option,

IWAVE 13, which is commonly used to compute thresholds of temporal waveforms

recorded from electrical devices. In our case, we used this model to compute threshold

factors for excitation of spinal cord fiber. In order to process an array of sampled date,

the SENN model traces the waveform by indexing through the array and reading (x, y)

pairs [14].

We recorded the output waveform from implantable neurostimulator three times;

the SENN model generated three threshold multipliers of identical values, which were

0.22198. The reciprocal of 0.22198 is 4.5; this means that the waveform is 4.5 times

larger in amplitude than needed to generate an action potential in spinal cord fiber.

The reciprocal of a SENN threshold multiplier is also knows as a “threshold factor” or

the ratio of applied stimulus to stimulus at threshold of excitation.

Additionally, we recorded three output waveforms from implantable neurostimulator

with induced voltage caused by the RFID emitter. The SENN model generated three

threshold multipliers, 0.2304, 0.2304 and 0.2264. The corresponding threshold factors

are 4.34, 4.34 and 4.42 respectively. This means that the recorded waveform is 4.34

and 4.42 times larger in amplitude than needed to generate an action potential. We

expected all reciprocals of threshold multipliers to be greater than unity in amplitude

Table 1 Spinal Cord Fiber Standard Parameters for Recruitment of Dorsal Column Fibers
in Spinal Cord Stimulation [16]

Parameters Values

diameter of main fiber 6 μm

nodal length 1.5 μm

intra axonal resistivity 0.7 Ohm m

medium resistivity 0.58 Ohm m

membrane conductivity 1280 Ohm-1 m-2

membrane capacitance per unit area 0.02 F m-2
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because the recorded waveforms were of parameters to stimulate a number of nerve

fibers at a time.

Furthermore, one of the objectives of this study was to determine the severity of EMI

caused by an RFID emitter. From the obtained multiplier thresholds, the results show

that a stimulation pulse with EMI from an RFID emitter has an effect that is equivalent

to a smaller in amplitude stimulating waveform. We did further investigation and

determined that the threshold factor of 4.34 in SENN model is equivalent to 5.1 mA

and 300 μsec output waveform from a spinal cord neurostimulator. Referring back to

the study where we obtained best therapy parameters for stimulation [15], the study

additionally lists a perception threshold of 4.6 mA in amplitude and 300 μsec in pulse

width and a discomfort threshold of 6.0 mA in amplitude and 300 μsec in pulse width.

Overall, the output waveform with amplitude of 5.1 mA is higher than the perception

threshold and lower than discomfort threshold.

Discussion
Overall, we recorded waveforms with and without induced voltage from RFID emitter.

The waveforms with induced voltage from RFID emitter received smaller threshold

factors than recorded waveforms without the induced voltage. This could be due to

the dominant set of waveforms generated by the neurostimulator system itself. We

referred to published in literature on strength-duration relationships derived from the

myelinated nerve models. The electric current thresholds for single-cycle biphasic sti-

muli with an initial cathodic phase and a point electrode that is 2 mm distant from 20

μm fiber are as follows. The current threshold for 300 μsec pulse width biphasic pulse

is approximately 0.6 mA, while the current threshold of 7.46 μsec (low frequency RFID

Table 2 Spatial Parameters in Spinal Cord Stimulation

Symbol Parameters Values (cm)

Xc x-coordinate of cathodic electrode 0.0

Yc y-coordinate of cathodic electrode 0.1517

Xa x-coordinate of anodic electrode 0.6

Ya y-coordinate of anodic electrode 0.1517

WireL wire electrode length 0.85

FS spatial field source wire electrodes

S electrode environment electrodes on surface

Figure 4 Recorded implantable neurostimulator output waveform.
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pulse of 134 kHz) sine-wave pulse is approximately 40 mA [[18], Figure 4.16]. The

RFID pulse of 134 kHz in frequency is signification higher in frequency than pulses

generated by spinal cord neurostimulator system and therefore must be much higher

in amplitude in order to generate an action potential.

In our case, the signal generated by the neurostimulator was set at 5.3 mA peak,

which is larger than the reported 0.6 mA peak. The RFID interference was recorded at

approximately 18 mA, which is below the needed amplitude of 40 mA to generate an

action potential. When combined, in this case, the RFID interference caused a subtrac-

tive effect; the dominant waveform is minimized and therefore causes a slight reduc-

tion in threshold factors. This could be due to the way the neurostimulator system is

designed to generate waveforms. In Figures 5, the period between 400 μsec and 2

msec, the interference recorded is at the minimum. This could indicate that the elec-

trodes are connected to a high resistance inside the pulse generator. During switching

times, between 0-20 μsec and 300-400 μsec of Figure 5, the interference is recorded at

its maximum; this indicates that the electrodes are connected to a low impedance load

inside the pulse generator. Between the times of 20 μsec and 300 μsec or when the

pulse generator is outputting the monophasic pulse, it is not very clear how electrodes

are connected internally without knowing the circuitry used for generating waveforms.

If the neurostimulator system was designed differently, for example having a low

impedance connection between electrodes during the pulse output off period, this

would cause a significantly greater voltage across electrodes in saline, therefore causing

a significant addition to the output waveform that could potentially have an additive

effect on the stimulation threshold factor, possibly bringing stimulation parameters to

discomfort level.

Limitations
The study was conducted on a phantom filled with saline solution representing the

average conductivity of a spinal cord. The spinal cord is a complex structure consisting

of various layers of nerve fibers, gray matter, white matter, cerebrospinal fluid and epi-

dural fat; the electrical conductivities of which could vary in three orders of magnitude.

Changes in electrical conductivities could results in changes of electrical current sup-

plied by the neurostimulator system. The neurostimulator lead was configured for the

Figure 5 Recorded implantable neurostimulator output waveform when in close proximity to RFID
emitter.

Pantchenko et al. BioMedical Engineering OnLine 2011, 10:94
http://www.biomedical-engineering-online.com/content/10/1/94

Page 9 of 11



worst case scenario for the specific RFID antenna used in this study. The worst case

scenario represents the maximum coupling of electromagnetic fields into the neurosti-

mulator system leads and therefore the largest induced voltages. Such a configuration

does not represent the way such device would most likely be implanted. In addition,

the SENN model was used to analyze output waveforms of a single spinal cord fiber.

We applied this model to the best therapy stimulation parameters for one specific

nerve fiber and not to all fibers in the spinal cord.

Conclusion
From the results of our analysis, we concluded that electric currents induced by cou-

pling of magnetic fields from a LF RFID emitter to the leads of a neurostimulator do

not bring the best therapy stimulation parameters below perception threshold stimula-

tion parameters or above discomfort threshold stimulation parameters in one implan-

table neurostimulator system indicated for pain relief. Overall, we demonstrated a

method for analyzing effects of coupled magnetic field interference on implantable

neurostimulator systems and its electrodes which could be used by device manufac-

turers during the design and testing phases of the development process. This method

could also be applied to other implantable devices such as pacemakers, implantable

cardioverter defibrillators and other types of active implantable devices. Manufacturers

of active implantable devices need to be aware of the potential risk of EMI from RFID

emitters and design their medical devices appropriately. Additionally, RFID industry

should take into account the potential effects on active implantable medical devices

when designing, configuring and installing their systems. Moreover, patients and physi-

cians should all be aware of the possibility of adverse effects of implantable neurosti-

mulators from RFID emitters. In the future, our goal is to increase the number and

variety of tested implantable neurostimulators.
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