Skip to main content

Table 1 Data about the elastic and viscoelastic properties of different muscle tissues

From: How muscle stiffness affects human body model behavior

Source Elastic properties (kPa) Viscosity (Pa * s) Sample Measurement technology
Basford et al. (2002) [65] Shear modulus G
16.16 ± 00.19 kPa (tissue stiffness defined as equal to G in study)
No data Musculus gastrocnemius (human) Magnetic Resonance Elastography (MRE)
Chen et al. (1996) [66] Young’s modulus
2.12 ± 0.91 kPa (ultrasound)
1.53 ± 0.31 kPa (Instron)
No data Musculus longissimus (bovine) Ultrasound and Instron methods
Chen et al. (2009) [67] 29 kPa (along the muscle fiber)
12 kPa (across the muscle fiber)
9.9 Pa*s (along fiber)
5.7 Pa*s (across fiber)
Striated muscle fibers [in vitro] (bovine) Shearwave dispersion ultrasound vibrometry (SDUV)
Debernard et al. (2013) [68] Shear modulus G
3.67 ± 0.71 kPa (VM, passive)
11.29 ± 1.04 kPa (VM, 20% activity)
6.89 ± 1.27 kPa (SR, passive)
1.61 ± 0.37 kPa (adipose)
4.5 ± 1.64 Pa*s (VM, passive)
12.14 ± 1.47 Pa*s (VM, 20% activity)
6.63 ± 1.27 Pa*s (SR, passive)
Musculus vastus medialis (VM)
Musculus sartorius (SR)
Subcutaneous (connective) and adipose tissue
Multifrequency magnetic resonance elastography (MMRE)
Dresner et al. (2001) [69] Shear stiffness G
23.8 ± 6.68 kPa (bovine)
Ø 27.3 kPa (range: 8 – 34 kPa) (human)
No data Muscle tissue (ex vivo) (bovine)
Musculus biceps brachii (human)
MRE
Eby et al. (2013) [70] Shear modulus G
5.81 kPa (at 90° elbow angle)
No data Musculus brachialis (porcine, whole muscle specimen) Shear wave elastography (SWE)
Gennisson et al. (2010) [71] (referenced by Eby et al. (2013) [70]) 5.4 kPa (at 90° elbow angle)
29.54 kPa (at 165° elbow angle)
No data Musculus biceps (human) Noninvasive supersonic shear imaging technique
Hoyt et al. (2008) [72] Shear modulus G
5.87 kPa (relaxed, RF, V1)
11.17 kPa (contracted, RF, V1)
5.33 kPa (relaxed, RF, V2)
9.70 kPa (contracted, RF, V2)
6.09 kPa (relaxed, BB, V1)
8.42 kPa (contracted, BB, V1)
8.68 kPa (relaxed, BB, V2)
11.88 kPa (contracted, BB, V2)
4.45 kPa (BF, V1)
4.98 kPa (MG, V1)
9.14 Pa*s (relaxed, RF, V1)
11.88 Pa*s (contracted, RF, V1)
9.72 Pa*s (relaxed, RF, V2)
11.60 Pa*s (contracted, RF, V2)
10.55 Pa*s (relaxed, BB, V1)
11.90 Pa*s (contracted, BB, V1)
9.73 Pa*s (relaxed, BB, V2)
13.22 Pa*s (contracted, BB, V2)
9.13 Pa*s (BF, V1)
9.26 Pa*s (MG, V1)
Musculus rectus femoris (RF)
Musculus biceps femoris (BF)
Musculus gastrocnemius (MG)
Musculus biceps brachii (BB) (human)
Two volunteers (V1, V2)
Sonoelastography
Myers et al. (1998) [25] Young’s modulus E
1750 ± 1180 kPa (passive, 1/s)
2450 ± 800 kPa (passive, 10/s)
2790 ± 670 kPa (passive, 25/s)
970 ± 340 MPa (active, average strain rates)
No data Musculus tibialis anterior (New Zealand white rabbit)
Active: 19.3 N, nerve excitation, resulting tetanic true stress level
1750
Actuator displacement measured via linear variable differential transformer
Optical data recorded
Krouskop et al. (1987)[26] Young ‘s modulus
6.21 ± 0.48 kPa (relaxed)
35.85 ± 1.38 kPa (mild, supporting 2.26 kg weight)
108.94 ± 2.07 kPa (maximum)
No data (human adult missing his lower right leg, from above knee)
Six volunteers
Measurement at the femur
M. vastus intermedius/M. rectus femoris
Doppler ultrasonic system and Instron
Levinson et al. (1995)[27] Young’s modulus
30 Hz measurement: 79 ± 29 kPa
103 ± 26 kPa 126 ± 26 kPa
For corresponding loads of 0 kg, 7.5 kg and 15 kg
60 Hz measurement: 25 ± 6.75 kPa
75 ± 61 kPa 127 ± 65 kPa
For corresponding loads of 0 kg, 7.5 kg and 15 kg
Unable to quantify viscosity Musculus quadriceps femoris
Ten volunteers 30 Hz measurement: (human)
Sonoelastography
Ringleb et al. (2007) [73] Shear stiffness
3.7 kPa (1D) and 4.4 kPa (2D) (relaxed)
9.5 kPa (1D) and 9.22 kPa (2D) (20% of maximum voluntary contraction)
No data Musculus vastus medialis
Five volunteers (human)
MRE correlated to electromyographic data
1D and 2D measurement techniques
Shinohara et al. (2010) [29] Young’s modulus
40.6 ± 1.0 kPa (relaxed)
258.1 ± 15.0 kPa (30% voluntary contraction)
16.5 ± 1.0 kPa (relaxed)
225.4 ± 41.0 kPa 30% voluntary contraction)
14.5 ± 2.0 kPa (relaxed)
55.0 ± 5.0 kPa (30% voluntary contraction)
No data Human volunteer (age 42)
Musculus tibialis anterior
Musculus gastrocnemius
Musculus soleus
Ultrasound shear wave imaging
Urban and Greenleaf (2009) [74] Shear elasticity
12.65 kPa (along the fiber)
5.32 kPa (across the fiber)
Shear viscosity
2.91 Pa*s (along the fiber)
1.05 Pa*s (across the fiber)
Muscle fibers of muscle tissue (Porcine, ex vivo) Ultrasonic pulse-echo method
Tonebursts of 3.0 MHz with lengths of Tb = 200 µs repeated at a rate of 100 Hz
Urban et al. (2009) [75] Shear elasticity
11.98 ± 0.43 kPa (200 µs)
12.50 ± 0.17 kPa (400 µs) (along fibers)
5.11 ± 0.11 kPa (200 µs)
4.99 ± 0.06 kPa (400 µs) (across fibers)
Shear viscosity
3.51 ± 0.21 Pa*s (200 µs)
2.92 ± 0.09 Pa*s (400 µs) (along fibers)
1.26 ± 0.11 Pa*s (200 µs)
1.57 ± 0.05 Pa*s (400 µs) (across fibers)
Muscle fibers of muscle tissue (porcine, ex vivo) Ultrasonic pulse-echo method
Tonebursts of 3.0 MHz with lengths of Tb = 200 µs and Tb = 400 µs repeated at a rate of 100 Hz
  1. A variety of measurement technologies that can all be assigned to the field of ‘Elasticity Imaging’ or ‘Elastography’ [16] were used to obtain this data. Data were collected and assembled from publications listed in the column ‘Source’ by the author of this work