Skip to main content

Table 1 Data about the elastic and viscoelastic properties of different muscle tissues

From: How muscle stiffness affects human body model behavior

Source

Elastic properties (kPa)

Viscosity (Pa * s)

Sample

Measurement technology

Basford et al. (2002) [65]

Shear modulus G

16.16 ± 00.19 kPa (tissue stiffness defined as equal to G in study)

No data

Musculus gastrocnemius (human)

Magnetic Resonance Elastography (MRE)

Chen et al. (1996) [66]

Young’s modulus

2.12 ± 0.91 kPa (ultrasound)

1.53 ± 0.31 kPa (Instron)

No data

Musculus longissimus (bovine)

Ultrasound and Instron methods

Chen et al. (2009) [67]

29 kPa (along the muscle fiber)

12 kPa (across the muscle fiber)

9.9 Pa*s (along fiber)

5.7 Pa*s (across fiber)

Striated muscle fibers [in vitro] (bovine)

Shearwave dispersion ultrasound vibrometry (SDUV)

Debernard et al. (2013) [68]

Shear modulus G

3.67 ± 0.71 kPa (VM, passive)

11.29 ± 1.04 kPa (VM, 20% activity)

6.89 ± 1.27 kPa (SR, passive)

1.61 ± 0.37 kPa (adipose)

4.5 ± 1.64 Pa*s (VM, passive)

12.14 ± 1.47 Pa*s (VM, 20% activity)

6.63 ± 1.27 Pa*s (SR, passive)

Musculus vastus medialis (VM)

Musculus sartorius (SR)

Subcutaneous (connective) and adipose tissue

Multifrequency magnetic resonance elastography (MMRE)

Dresner et al. (2001) [69]

Shear stiffness G

23.8 ± 6.68 kPa (bovine)

Ø 27.3 kPa (range: 8 – 34 kPa) (human)

No data

Muscle tissue (ex vivo) (bovine)

Musculus biceps brachii (human)

MRE

Eby et al. (2013) [70]

Shear modulus G

5.81 kPa (at 90° elbow angle)

No data

Musculus brachialis (porcine, whole muscle specimen)

Shear wave elastography (SWE)

Gennisson et al. (2010) [71] (referenced by Eby et al. (2013) [70])

5.4 kPa (at 90° elbow angle)

29.54 kPa (at 165° elbow angle)

No data

Musculus biceps (human)

Noninvasive supersonic shear imaging technique

Hoyt et al. (2008) [72]

Shear modulus G

5.87 kPa (relaxed, RF, V1)

11.17 kPa (contracted, RF, V1)

5.33 kPa (relaxed, RF, V2)

9.70 kPa (contracted, RF, V2)

6.09 kPa (relaxed, BB, V1)

8.42 kPa (contracted, BB, V1)

8.68 kPa (relaxed, BB, V2)

11.88 kPa (contracted, BB, V2)

4.45 kPa (BF, V1)

4.98 kPa (MG, V1)

9.14 Pa*s (relaxed, RF, V1)

11.88 Pa*s (contracted, RF, V1)

9.72 Pa*s (relaxed, RF, V2)

11.60 Pa*s (contracted, RF, V2)

10.55 Pa*s (relaxed, BB, V1)

11.90 Pa*s (contracted, BB, V1)

9.73 Pa*s (relaxed, BB, V2)

13.22 Pa*s (contracted, BB, V2)

9.13 Pa*s (BF, V1)

9.26 Pa*s (MG, V1)

Musculus rectus femoris (RF)

Musculus biceps femoris (BF)

Musculus gastrocnemius (MG)

Musculus biceps brachii (BB) (human)

Two volunteers (V1, V2)

Sonoelastography

Myers et al. (1998) [25]

Young’s modulus E

1750 ± 1180 kPa (passive, 1/s)

2450 ± 800 kPa (passive, 10/s)

2790 ± 670 kPa (passive, 25/s)

970 ± 340 MPa (active, average strain rates)

No data

Musculus tibialis anterior (New Zealand white rabbit)

Active: 19.3 N, nerve excitation, resulting tetanic true stress level

1750

Actuator displacement measured via linear variable differential transformer

Optical data recorded

Krouskop et al. (1987)[26]

Young ‘s modulus

6.21 ± 0.48 kPa (relaxed)

35.85 ± 1.38 kPa (mild, supporting 2.26 kg weight)

108.94 ± 2.07 kPa (maximum)

No data

(human adult missing his lower right leg, from above knee)

Six volunteers

Measurement at the femur

M. vastus intermedius/M. rectus femoris

Doppler ultrasonic system and Instron

Levinson et al. (1995)[27]

Young’s modulus

30 Hz measurement: 79 ± 29 kPa

103 ± 26 kPa 126 ± 26 kPa

For corresponding loads of 0 kg, 7.5 kg and 15 kg

60 Hz measurement: 25 ± 6.75 kPa

75 ± 61 kPa 127 ± 65 kPa

For corresponding loads of 0 kg, 7.5 kg and 15 kg

Unable to quantify viscosity

Musculus quadriceps femoris

Ten volunteers 30 Hz measurement: (human)

Sonoelastography

Ringleb et al. (2007) [73]

Shear stiffness

3.7 kPa (1D) and 4.4 kPa (2D) (relaxed)

9.5 kPa (1D) and 9.22 kPa (2D) (20% of maximum voluntary contraction)

No data

Musculus vastus medialis

Five volunteers (human)

MRE correlated to electromyographic data

1D and 2D measurement techniques

Shinohara et al. (2010) [29]

Young’s modulus

40.6 ± 1.0 kPa (relaxed)

258.1 ± 15.0 kPa (30% voluntary contraction)

16.5 ± 1.0 kPa (relaxed)

225.4 ± 41.0 kPa 30% voluntary contraction)

14.5 ± 2.0 kPa (relaxed)

55.0 ± 5.0 kPa (30% voluntary contraction)

No data

Human volunteer (age 42)

Musculus tibialis anterior

Musculus gastrocnemius

Musculus soleus

Ultrasound shear wave imaging

Urban and Greenleaf (2009) [74]

Shear elasticity

12.65 kPa (along the fiber)

5.32 kPa (across the fiber)

Shear viscosity

2.91 Pa*s (along the fiber)

1.05 Pa*s (across the fiber)

Muscle fibers of muscle tissue (Porcine, ex vivo)

Ultrasonic pulse-echo method

Tonebursts of 3.0 MHz with lengths of Tb = 200 µs repeated at a rate of 100 Hz

Urban et al. (2009) [75]

Shear elasticity

11.98 ± 0.43 kPa (200 µs)

12.50 ± 0.17 kPa (400 µs) (along fibers)

5.11 ± 0.11 kPa (200 µs)

4.99 ± 0.06 kPa (400 µs) (across fibers)

Shear viscosity

3.51 ± 0.21 Pa*s (200 µs)

2.92 ± 0.09 Pa*s (400 µs) (along fibers)

1.26 ± 0.11 Pa*s (200 µs)

1.57 ± 0.05 Pa*s (400 µs) (across fibers)

Muscle fibers of muscle tissue (porcine, ex vivo)

Ultrasonic pulse-echo method

Tonebursts of 3.0 MHz with lengths of Tb = 200 µs and Tb = 400 µs repeated at a rate of 100 Hz

  1. A variety of measurement technologies that can all be assigned to the field of ‘Elasticity Imaging’ or ‘Elastography’ [16] were used to obtain this data. Data were collected and assembled from publications listed in the column ‘Source’ by the author of this work