Skip to main content

Table 2 Parameter values used in the simulation

From: Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy

Parameter

Value

Description

Reference

Δl

10 μm

Lattice constant

 

R0

4 μm

Origin radius of the capillary

 

De

10−9 cm−3 s−1

EC diffusion coefficient

[20]

\(\upphi_{\text{c}}\)

2.6 × 103 cm−3 M−1 s−1

EC chemotaxis coefficient

[20]

\(\upphi_{\text{h}}\)

103 cm−3 M−1 s−1

EC haptotaxis coefficient

[20]

\({\text{L}}_{\text{p}}^{\text{T}}\)

2.8 × 10−7 cm (mmHg s)−1

Vessel permeability in tumour tissue

[31]

\({\text{L}}_{\text{p}}^{\text{N}}\)

0.36 × 10−7 cm (mmHg s)−1

Vessel permeability in normal tissue

[31]

Pc

3 mmHg

Vessel collapse pressure

[26]

E

6.5 mmHg

Vessel compliance coefficient

[26]

b

0.1

Vessel compliance index

[26]

Dm

10−9 cm−3 s−1

MDE diffusion coefficient

[24]

δ

1.3 × 102 cm−3 M−1 s−1

ECM degradation coefficient

[23]

μT

1.7 × 10−18 Mcells−1 s−1

MDE production by TC

[23]

μE

0.3 × 10−18 Mcells−1 s−1

MDE production by EC

[23]

λ

1.7 × 10−8 s−1

MDE decay coefficient

[24]

Dv

2.9 × 10−7 cm−3 s−1

VEGF diffusion coefficient

[20]

χ

10−17 Mcells−1 s−1

VEGF production by TC

[32]

ξ

10−3 cm−3 s−1

VEGF production in ECM

[23]

ε

10−20 Mcells−1 s−1

VEGF consumption by EC

[32]

θ

10−8 s−1

VEGF decay coefficient

[32]

e0

2.0 × 10−9 mol L−1

Initial EC density

[33]

ɛmax

1

Max inhibiting effect of ES on ECs

[33]

CES50

2.288 × 10−8 mol L−1

ES concentration that induces 50% of the maximum inhibiting effect

[33]

DES

2.9 × 10−7 cm−3 s−1

Diffusion coefficient of ES

[33]

RES

5.54 × 10−5 L s−1

ES elimination rate in the plasma

[33]

UI,ex

20 mg (kg × day)−1

ES injection rate

[33]

Vp

10−3 L

Volume of the plasma

[33]

λES

10−8/s

ES decay coefficient

Estimated