Skip to main content
Fig. 2 | BioMedical Engineering OnLine

Fig. 2

From: New pediatric vision screener, part II: electronics, software, signal processing and validation

Fig. 2

A simplified diagram of the pediatric vision screener (shown is one eye only). Linearly polarized light emitted continuously by a 785-nm laser diode is transmitted by a plate polarizing beamsplitter (PBS) toward a half-wave-plate (HWP) that is spun by a motor using a pulley ratio to achieve a rotation 9/16ths as fast as the scan. After passage through the rotating HWP, the beam of continuously rotating linearly polarized light enters the scanning unit that consists of two gold-plated plane mirrors. The retina is scanned by the spot of laser light in a circle subtending a visual angle of 3° in diameter. A small percentage of light reflected from each ocular fundus is re-imaged back, following the same light path it originally came from, via the principle of conjugacy. The unchanged part of the returning light, in other words the part with the same polarization as the original light, is transmitted through the PBS, back toward the light source, thus never making it to the detection unit. The changed part of the returning light, on the other hand, is reflected by the PBS toward the photodetector assembly, consisting of a bull’s-eye photodetector (BEPDs). A band pass filter assures that only light in the desired wavelength range reaches the detectors. The graph in the right-hand bottom corner shows the generated frequencies for central and paracentral fixation

Back to article page