Skip to main content

Table 2 Comparison between the energy harvesting methods and there challenges

From: Energy harvesting for the implantable biomedical devices: issues and challenges

Energy harvesting method Technique Reference Generated power Advantage Disadvantage
Human energy harvesting Kinetic energy Piezoelectricity [14] 1 W - No separate voltage source - Difficult to integrated with Micro-system
[15] 8.3 & 1.3 mW -Voltage of 2–12 volts
[17] 2.3 mW
[19] 4.8 mW -No mechanical stops
[20] 1.2 mW
[21] 1.81 mW -Highest energy density
Electrostatic generator [23] 8 μW -Easier to integrate with electronics and micro-systems - Separate voltage source needed
[24] 58 μW
[26] 80 μW
[27] 40 μW -Voltage of 2–12 volts - Mechanical stops needed
[28] 60 μW
Magnetic induction generator [33] 400 μW No separate voltage source -Maximum voltage is 0.1 volts
[34] 10 μW No mechanical stops -Difficult to integrate with micro-systems
[35] 0.3 μW
[36] 3.9 μW   -Energy generated only during walking
Thermal energy   [39] 1.5 μW   Quite low power harvesting
[40] 1 μW
[41] 30 μW
Environment energy harvesting Solar energy   _ _   Not suitable for implanted devices
Infrared radiation   [43] 4 mW High power Large dimension
Wireless Harvest. energy Ultrasonic [48] 100 pW   Low power harvesting
[49] 21.4 nW
Capacitive _ _   For far range distance and having big size
Inductive link [57] 11 mW High data rate and power transmission and batteries no needed Limited carrier frequency due to tissue absorptions
[72] 150 mW
[73] 10 mW
[74] 50 mW
[58] 22 mW