Skip to main content

Table 2 Comparison between the energy harvesting methods and there challenges

From: Energy harvesting for the implantable biomedical devices: issues and challenges

Energy harvesting method

Technique

Reference

Generated power

Advantage

Disadvantage

Human energy harvesting

Kinetic energy

Piezoelectricity

[14]

1 W

- No separate voltage source

- Difficult to integrated with Micro-system

[15]

8.3 & 1.3 mW

-Voltage of 2–12 volts

[17]

2.3 mW

[19]

4.8 mW

-No mechanical stops

[20]

1.2 mW

[21]

1.81 mW

-Highest energy density

Electrostatic generator

[23]

8 μW

-Easier to integrate with electronics and micro-systems

- Separate voltage source needed

[24]

58 μW

[26]

80 μW

[27]

40 μW

-Voltage of 2–12 volts

- Mechanical stops needed

[28]

60 μW

Magnetic induction generator

[33]

400 μW

No separate voltage source

-Maximum voltage is 0.1 volts

[34]

10 μW

No mechanical stops

-Difficult to integrate with micro-systems

[35]

0.3 μW

[36]

3.9 μW

 

-Energy generated only during walking

Thermal energy

 

[39]

1.5 μW

 

Quite low power harvesting

[40]

1 μW

[41]

30 μW

Environment energy harvesting

Solar energy

 

_

_

 

Not suitable for implanted devices

Infrared radiation

 

[43]

4 mW

High power

Large dimension

Wireless Harvest. energy

Ultrasonic

[48]

100 pW

 

Low power harvesting

[49]

21.4 nW

Capacitive

_

_

 

For far range distance and having big size

Inductive link

[57]

11 mW

High data rate and power transmission and batteries no needed

Limited carrier frequency due to tissue absorptions

[72]

150 mW

[73]

10 mW

[74]

50 mW

[58]

22 mW