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Abstract 

Background: The timely identification and management of ovarian cancer are critical 
determinants of patient prognosis. In this study, we developed and validated a deep 
learning radiomics nomogram (DLR_Nomogram) based on ultrasound (US) imaging 
to accurately predict the malignant risk of ovarian tumours and compared the diag-
nostic performance of the DLR_Nomogram to that of the ovarian-adnexal reporting 
and data system (O-RADS).

Methods: This study encompasses two research tasks. Patients were randomly 
divided into training and testing sets in an 8:2 ratio for both tasks. In task 1, we assessed 
the malignancy risk of 849 patients with ovarian tumours. In task 2, we evaluated 
the malignancy risk of 391 patients with O-RADS 4 and O-RADS 5 ovarian neoplasms. 
Three models were developed and validated to predict the risk of malignancy in ovar-
ian tumours. The predicted outcomes of the models for each sample were merged 
to form a new feature set that was utilised as an input for the logistic regression (LR) 
model for constructing a combined model, visualised as the DLR_Nomogram. Then, 
the diagnostic performance of these models was evaluated by the receiver operating 
characteristic curve (ROC).

Results: The DLR_Nomogram demonstrated superior predictive performance in pre-
dicting the malignant risk of ovarian tumours, as evidenced by area under the ROC 
curve (AUC) values of 0.985 and 0.928 for the training and testing sets of task 1, respec-
tively. The AUC value of its testing set was lower than that of the O-RADS; however, 
the difference was not statistically significant. The DLR_Nomogram exhibited the high-
est AUC values of 0.955 and 0.869 in the training and testing sets of task 2, respectively. 
The DLR_Nomogram showed satisfactory fitting performance for both tasks in Hos-
mer–Lemeshow testing. Decision curve analysis demonstrated that the DLR_Nomo-
gram yielded greater net clinical benefits for predicting malignant ovarian tumours 
within a specific range of threshold values.
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Conclusions: The US-based DLR_Nomogram has shown the capability to accurately 
predict the malignant risk of ovarian tumours, exhibiting a predictive efficacy compara-
ble to that of O-RADS.

Keywords: Ultrasound, Ovarian tumour, O-RADS, DLR_Nomogram

Background
Ovarian tumours are common diseases of the female reproductive system and can be 
categorised into benign and malignant types according to their characteristics [1]. 
Benign ovarian tumours exhibit an extended disease trajectory and gradual growth rate, 
enabling the exploration of conservative treatment options. Conservative treatment 
circumvents superfluous expenditures and aggressive interventions while safeguarding 
the reproductive potential of young patients. Conversely, the management of malignant 
ovarian tumours requires the expertise of a gynaecologic oncologist, entailing special-
ised diagnostic processes and treatment regimens that include accurate staging and radi-
cal surgical procedures [2]. The timely identification and management of ovarian cancer 
are critical determinants of patient prognosis. The 5-year overall survival rate for ovar-
ian cancer is 46%, with a significant disparity between late-stage (29%) and early-stage 
(92%) diagnoses [3]. Consequently, an accurate distinction between benign and malig-
nant ovarian tumours is paramount for devising tailored and efficacious treatment strat-
egies [4].

The detection and management of ovarian cancer rely heavily on blood serum tumour 
markers, with carbohydrate antigen 125 (CA125) widely acknowledged as a crucial bio-
marker for monitoring epithelial ovarian cancer. However, its sensitivity and specificity 
are relatively low. CA125 levels may increase due to various physiological or pathologi-
cal factors, including menstruation, pregnancy, endometriosis, and peritoneal inflamma-
tory diseases [5]. Inflammation is widely acknowledged as a prominent feature of cancer 
advancement and evolution [6]. Numerous risk factors linked to the aetiology of ovarian 
cancer are directly or indirectly associated with inflammation, indicating the potential 
involvement of inflammation in ovarian cancer development [3, 7–9]. The prognostic 
factors associated with inflammation, including the platelet-to-lymphocyte ratio (PLR), 
neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), 
lymphocyte-to-monocyte ratio (LMR), systemic immune-inflammation index (SII), and 
C-reactive protein–albumin ratio (CAR), have been assessed for their prognostic value 
in diverse cohorts of patients with solid cancers [10–13]. Studies have demonstrated the 
significance of these factors in predicting the malignancy potential, staging, and progno-
sis of ovarian tumours [14, 15].

Ultrasound (US) is the primary imaging technique for enhancing the precision of 
ovarian or adnexal mass diagnoses [1]. However, the diagnosis accuracy of US is con-
tingent on the subjective interpretation and expertise of US experts. Regrettably, pro-
ficient US specialists are scarce, resulting in inconsistent diagnostic accuracy among 
technicians with different experience levels [16]. The American College of Radiology 
(ACR) has formally published the consensus guidelines for ovarian-adnexal report-
ing and data system (O-RADS) US risk stratification and management to establish a 
standardised terminology for describing the characteristics of ovarian-adnexal masses 
in US reports and enhance the accuracy of assessing the malignant risk associated 
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with such tumours [17]. Cao et  al. [18] conducted a study to validate the O-RADS 
US risk stratification consensus by analysing 1054 adnexal masses. Their findings 
suggested that this consensus is a valuable tool for effectively stratifying the malig-
nancy risk of adnexal tumours, even among experts with varying experience levels. 
The study also revealed that the O-RADS categories 4 and 5 had the highest propor-
tions of malignant adnexal tumours, accounting for 34.46% and 89.57%, respectively. 
The O-RADS classification’s area under the ROC curve (AUC) in predicting malig-
nant adnexal tumours was 0.960, with an optimal cut-off value greater than O-RADS 
3. However, a significant number of patients presented with benign lesions in the 
O-RADS 4 category. Therefore, it is crucial to accurately identify the malignancy risk 
of ovarian tumours classified as O-RADS 4 and O-RADS 5 categories to deliver pre-
cise diagnoses and treatment alternatives.

Recently, radiomics has emerged as an evolving and crucial domain in the analysis of 
medical images, offering a novel approach for transforming these images into quanti-
tative characteristics that reveal tumour-related biological information. These charac-
teristics can be scrutinised to enhance clinical decision-making [19]. Manual radiomic 
methods extract only clearly defined and surface-level image features that inadequately 
capture the heterogeneity of tumours, thereby constraining the potential of radiomics 
[20]. Deep learning (DL) has recently attracted considerable interest in the medical field. 
DL is a technology encompassing multiple layers rather than being a singular algorithm. 
The convolutional neural network (CNN) is the most frequently employed DL network 
in medical image research and exhibits remarkable efficacy in image segmentation and 
classification [21]. Previous studies have indicated that CNNs can provide diverse high-
level semantic features of images relevant to specific clinical outcomes [22]. However, 
the effective implementation of DL requires a substantial amount of training data, which 
is often lacking in medical datasets owing to their limited size or scale. Consequently, 
many practical applications currently employ pre-trained CNN, a transfer learning (TL) 
technique, as an alternative to DL to mitigate the issue of overfitting caused by inad-
equate training data [23, 24]. Integrating deep transfer learning (DTL) classification 
networks with conventional manual radiomics frameworks has gained popularity in 
medical research [25, 26]. However, limited research exists on applying this approach to 
ovarian tumours, primarily on computed tomography imaging [27].

This study aimed to develop and validate a US-based combined model, the deep learn-
ing radiomics nomogram (DLR_Nomogram), as a decision-support tool for the pre-
operative discrimination of the malignant risk of ovarian tumours. Furthermore, the 
predictive performance of the DLR_Nomogram was compared with that of the O-RADS.

Results
The clinical baseline data

Eight hundred forty-nine patients diagnosed with ovarian tumours were enrolled for 
task 1. The study cohort was randomly divided into training and testing sets at a ratio of 
8:2. The distribution of patients with benign and malignant ovarian tumours remained 
relatively consistent across the entire study population and within the training and test-
ing sets. The baseline characteristics of task 1 are shown in Additional file 1: Table S1.
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The O‑RADS predicted the malignant risk of ovarian tumours

The AUC of the O-RADS classification for predicting the malignancy risk of ovar-
ian tumours was 0.960 (95% CI: 0.947–0.972, P < 0.05), with the optimal cut-off value 
being > O-RADS 3. Based on the statistical analysis, O-RADS 4 and 5 lesions showed 
malignancy, with an accuracy, sensitivity, and specificity of 88.1%, 98.3%, and 82.5%, 
respectively, as depicted in Additional file 2: Fig. S1.

As shown in Fig. 7, benign tumours accounted for a larger percentage (48.65%) of 
ovarian-adnexal lesions categorised as O-RADS 4. To tackle this problem, we devised 
task 2, which entailed developing and validating a DLR-Nomogram for predicting the 
probability of malignancy in O-RADS 4 and O-RADS 5 ovarian lesions. Out of 391 
people studied, 96 (24.55%) had benign ovarian tumours, and 295 (75.45%) had malig-
nant ovarian tumours. The study population was randomly divided into training and 
testing sets in an 8:2 ratio. The baseline characteristics of the participants are pro-
vided in Additional file 1: Table S2.

Construction of clinical signature

Additional file  1: Tables S1 and S2 display the clinical parameters and US semantic 
features that exhibited significant differences between benign and malignant ovar-
ian tumours in tasks 1 and 2 of the training set. No evident linear relationship was 
observed among these parameters through spearman correlation analysis (Addi-
tional file 3: Fig. S2). These parameters were selected to create the clinical signature 
(Clinic_Sig).

The extraction and selection of manual radiomics features and construction of radiomics 

signature

A total of 1476 handcrafted radiomics features were extracted from tasks 1 and 2, 
including the first-order features, shape features, gray-level dependence matrix 
(GLDM), gray-level size zone matrix (GLSZM), gray-level run length matrix 
(GLRLM), and gray-level co-occurrence matrix (GLCM). The number and propor-
tion of handcrafted radiomics features are presented in Additional file 4: Fig. S3. The 
P-value results for all features are shown in Additional file 5: Fig. S4.

An initial screening of features with an intra-/inter-class correlation coefficient 
(ICC) ≥ 0.85 and retained features with P < 0.05 was conducted using t-tests or Mann–
Whitney U tests, and 1161 and 1105 features were included for tasks 1 and 2, respec-
tively. Subsequently, spearman correlation analysis and the greedy recursive feature 
removal strategy were conducted, and 301 and 254 features were retained for tasks 1 
and 2, respectively. Next, the least absolute shrinkage and selection operator (LASSO) 
regression was applied with a tenfold cross-validation using the minimum criterion to 
identify the optimal λ values of 0.003556 and 0.039069 for tasks 1 and 2, respectively. 
These λ values yielded the minimum cross-validation errors, as shown in Fig. 1. Subse-
quently, 99 and 16 nonzero coefficient features were employed for tasks 1 and 2, respec-
tively (Additional file 6: Fig. S5). Finally, the best features were input into the LR model, 
and the radiomics signature (Rad_Sig) was constructed using fivefold cross-validation.
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Construction of deep transfer learning radiomic signature

The two-dimensional US images of the maximum section of ovarian tumours were 
cropped and input into a pre-trained CNN. The hidden layer algorithm of the CNN 
was applied, and the resulting predicted probability of malignancy risk for each ovar-
ian tumour was labelled deep transfer learning radiomic signature (DTL_Sig). A test-
ing set was used to determine the optimal training outcomes. Ultimately, the resnet50 
and densenet121 models were selected to predict the malignancy risk of ovarian 
tumours in tasks 1 and 2, respectively.

However, the DTL algorithm is commonly regarded as a “black box” owing to its 
opaque internal processes. Gradient-weighted class activation mapping (Grad-CAM) 
was employed to visually represent the network’s inner workings and elucidate the 
CNN algorithm’s decision-making process. It involved generating a rudimentary 
localisation map highlighting the pivotal focus areas for CNN’s decision to predict 
the malignancy probability of ovarian tumours, denoted by red regions. It is accom-
plished by extracting the feature layer at the end of the network model and per-
forming a weighted sum of all feature maps to obtain a final heatmap [28]. The last 

Fig. 1 Coefficients and MSE of tenfold cross-validation. a and b: task 1; c and d: task 2. Note: MSE, mean 
square error
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convolutional layer of the final res-block was made transparent to predict the malig-
nancy risk of ovarian tumours, as shown in Fig. 2.

The images in Fig.  2 demonstrate a cystic and solid mixed echoic mass measuring 
100 mm in diameter in one patient’s pelvis. The CA125 level was 601 U/mL. Contrast-
enhanced ultrasound (CEUS) revealed the contrast agent perfusion into the solid por-
tion of the lesion, with early and high enhancement observed in the ovarian lesions 
compared with the adjacent myometrium at the same level. The US expert considered 
that it was a malignant ovarian tumour (O-RADS 5). Nevertheless, there was a 91.8% 
probability that the lesions were benign, according to the DTL_Sig analysis. The histo-
pathological findings confirmed a benign ovarian tumour, struma ovarii with ossifica-
tion. Remarkably, the predicted probability obtained from the DTL_Sig analysis strongly 
aligned with the histopathological diagnosis.

Construction of the DLR_Nomogram

The predicted probabilities of Rad_Sig, DTL_Sig, and Clinic_Sig for each sample were 
aggregated and used as input variables for the LR model to develop a composite model 
for the training dataset. Subsequently, the combined model was graphically represented 
as the DLR_Nomogram (Fig. 3), with the primary objective of discerning the malignancy 
risk of ovarian tumours.

Model evaluation

The AUC, accuracy, precision, recall, and F1 score of O-RADS, Clinic_Sig, Rad_Sig, 
DTL_Sig, and DLR_Nomogram for the prediction malignancy risk of ovarian tumours 
are presented in Table 1, with the corresponding receiver operating characteristic curve 
(ROC) shown in Fig. 4. In task 1, the AUC value of O-RADS was higher than that of the 

Fig. 2 The CNN model with Grad-CAM was used on the ovarian tumour. a and d: Two-dimensional 
US image; b: Grad-CAM, the red area displayed the basis of decision-making of CNN; c: CEUS; e and f: 
histopathological results: struma ovarii (20× and 40×, respectively). Note: Grad-CAM, gradient-weighted class 
activation mapping; CNN, convolutional neural network; CEUS, contrast-enhanced ultrasound
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DLR_Nomogram in the testing set, however, the Delong test (Table 2) did not show a 
statistically significant difference between the two groups (P > 0.05). In task 2, the AUC 
values of the DLR_Nomogram were the highest both for the training and testing sets.

The Hosmer–Lemeshow (HL) test was used to evaluate the degree of concordance 
between the projected and observed values of the model, as shown in Table 3. The P-val-
ues of the DLR_Nomogram in the training and testing sets > 0.05 in tasks 1 and 2, indi-
cating that the DLR_Nomogram exhibited a strong level of concordance in predicting 
the malignancy risk of ovarian tumours, as evidenced by the calibration curves depicted 
in Fig. 5.

Decision curve analysis (DCA) results are shown in Fig. 6. In task 1, the DLR_Nom-
ogram exhibited a greater net benefit, with risk threshold probabilities ranging from 
0.15–0.80 for both the training and testing sets. In task 2, the DLR_Nomogram demon-
strated a higher net benefit within the risk threshold probabilities between 0.10–0.90 for 
the training dataset and 0.65–0.85 for the testing dataset.

Fig. 3 The DLR_Nomogram integrating the prediction results of Clinic_Sig, Rad_Sig and DTL_Sig. a task 
1; b task 2. Note: DLR, deep learning radiomics; Clinic_Sig, clinical signature; Rad_Sig, radiomics signature; 
DTL_Sig, deep transfer learning radiomic signature
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Discussion

This study aimed to develop and validate a DLR_Nomogram, a non-invasive US-
based tool, for the preoperative prediction of malignancy risk in 849 patients with 
ovarian tumours. The combined model incorporated Clinic_Sig, Rad_sig, and DTL_
Sig and demonstrated superior diagnostic performance compared with one or two 
pre-fusion models. Furthermore, we conducted a comparative analysis between the 
predictive capabilities of the DLR_Nomogram and O-RADS. The DLR_Nomogram 
and O-RADS demonstrate notable diagnostic performance in forecasting ovarian 
malignancy risk in the testing set. Moreover, no statistically significant differences 
were observed between the two methods. Therefore, the predictive capabilities of 

Table 1 The performance of models predicting the malignancy risk of ovarian tumours

Abbreviations: O-RADS ovarian-adnexal reporting and data system, CI confidence interval, Clinic_Sig clinical signature, 
Rad_Sig radiomics signature, DTL_Sig deep transfer learning radiomic signature, DLR_Nomogram deep learning radiomic 
nomogram, AUC  area under the curve of ROC

O‑RADS Clinic_Sig Rad_Sig DTL_Sig DLR_Nomogram

Task 1

 Training set

  AUC 0.960 0.977 0.952 0.915 0.985

  2.5%CI 0.948 0.967 0.938 0.893 0.977

  97.5%CI 0.971 0.987 0.967 0.938 0.993

  Accuracy 0.881 0.925 0.884 0.860 0.948

  Precision 0.754 0.895 0.843 0.819 0.925

  Recall 0.983 0.892 0.825 0.775 0.929

  F1 score 0.854 0.894 0.834 0.797 0.927

 Testing set

  AUC 0.960 0.916 0.735 0.890 0.928

  2.5%CI 0.948 0.864 0.661 0.839 0.885

  97.5%CI 0.971 0.967 0.809 0.941 0.971

  Accuracy 0.881 0.859 0.671 0.841 0.871

  Precision 0.754 0.875 0.530 0.800 0.880

  Recall 0.983 0.700 0.583 0.733 0.733

  F1 score 0.854 0.778 0.556 0.765 0.800

Task 2

 Training set

  AUC 0.896 0.877 0.937 0.955

  2.5%CI 0.857 0.835 0.911 0.931

  97.5%CI 0.936 0.919 0.963 0.980

  Accuracy 0.872 0.789 0.879 0.888

  Precision 0.889 0.917 0.896 0.900

  Recall 0.949 0.792 0.949 0.958

  F1 score 0.918 0.850 0.922 0.928

 Testing set

  AUC 0.829 0.695 0.853 0.869

  2.5%CI 0.728 0.546 0.749 0.765

  97.5%CI 0.930 0.845 0.956 0.974

  Accuracy 0.808 0.714 0.844 0.779

  Precision 0.867 0.846 0.926 0.815

  Recall 0.881 0.759 0.862 0.914

  F1 score 0.874 0.800 0.893 0.862
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Fig. 4 The ROC of the O-RADS, Clinic_Sig, Rad_Sig, DTL_Sig and DLR_Nomogram. a and b: The training and 
testing sets of task 1, respectively; c and d: the training and testing sets of task 2, respectively. Note: ROC, 
receiver operating characteristic curve; Clinic_Sig, clinical signature; Rad_Sig, radiomics signature; DTL_Sig, 
deep transfer learning radiomic signature; DLR_Nomogram, deep learning radiomic nomogram

Table 2 The DeLong test of models

Abbreviations: O-RADS ovarian-adnexal reporting and data system, Clinic_Sig clinical signature, Rad_Sig radiomics signature, 
DTL_Sig deep transfer learning radiomic signature, DLR_Nomogram deep learning radiomic nomogram; vs versus

Task 1 Task 2

Training set Testing set Training set Testing set

O-RADS vs Clinic_Sig P < 0.001 P > 0.05

O-RADS vs Rad_Sig P > 0.05 P < 0.001

O-RADS vs DTL_Sig P < 0.001 P < 0.05

O-RADS vs DLR_Nomogram P < 0.001 P > 0.05

Clinic_Sig vs Rad_Sig P < 0.05 P < 0.001 P > 0.05 P > 0.05

Clinic_Sig vs DTL_Sig P < 0.001 P > 0.05 P > 0.05 P > 0.05

Clinic_Sig vs DLR_Nomogram P < 0.05 P > 0.05 P < 0.001 P > 0.05

Rad_Sig vs DTL_Sig P < 0.001 P < 0.001 P < 0.05 P < 0.05

Rad_Sig vs DLR_Nomogram P < 0.001 P < 0.001 P < 0.001 P < 0.05

DTL_Sig vs DLR_Nomogram P < 0.001 P > 0.05 P > 0.05 P > 0.05
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the DLR_Nomogram and O-RADS in assessing the malignant propensity of ovarian 
tumours may be considered comparable.

Compared to alternative models, the DLR_Nomogram exhibited the most ele-
vated AUC value in the training and testing sets, showcasing outstanding diagnostic 

Table 3 The HL test of models

Abbreviations: Clinic_Sig clinical signature, Rad_Sig radiomics signature, DTL_Sig deep transfer learning radiomic signature, 
DLR_Nomogram deep learning radiomic nomogram, HL Hosmer–Lemeshow

Task 1 Task 2

Training set Testing set Training set Testing set

Clinic_Sig P > 0.05 P < 0.001 P < 0.001 P > 0.05

Rad_Sig P > 0.05 P < 0.001 P < 0.001 P < 0.001

DTL_Sig P < 0.05 P > 0.05 P > 0.05 P > 0.05

DLR_Nomogram P > 0.05 P > 0.05 P > 0.05 P > 0.05

Fig. 5 Calibration curves of the four models. a and b: The training and testing sets of task 1, respectively; 
c and d: the training and testing sets of task 2, respectively. Note: Clinic_Sig, clinical signature; Rad_Sig, 
radiomics signature; DTL_Sig, deep transfer learning radiomic signature; DLR_Nomogram, deep learning 
radiomic nomogram
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competence and strong generalisability in predicting the malignant risk of O-RADS 
category 4 and 5 ovarian lesions.

Radiomics is an emerging tool in medical imaging that facilitates the extraction of 
high-dimensional imaging features. This tool captures more detailed tumour hetero-
geneity, surpassing the limitations of human visual perception and providing a more 
comprehensive depiction of tumour-related information [29]. Zhang et al. evaluated 
the diagnostic performance of magnetic resonance imaging-based radiomics in dif-
ferentiating between benign and malignant adnexal tumours. The results of this study 
showed excellent accuracy of 0.90 in the leave-one-out cross-validation cohort and 
0.87 in the independent validation cohort [30]. Similarly, Chiappa et al. examined the 
performance of a decision support system that utilised radiomics and machine learn-
ing to predict the risk of malignancy in ovarian tumours. This study revealed mean 
accuracies of 88% and 91% in the training and independent validation cohorts, respec-
tively [31]. However, our investigations in tasks 1 and 2 revealed that handcrafted 

Fig. 6 Decision curve analysis of the four models. a and b: Training and testing sets of task 1, respectively; c 
and d: training and testing sets of task 2, respectively. Note: Clinic_Sig, clinical signature; Rad_Sig, radiomics 
signature; DTL_Sig, deep transfer learning radiomic signature; DLR_Nomogram, deep learning radiomic 
nomogram



Page 12 of 21Du et al. BioMedical Engineering OnLine           (2024) 23:41 

Rad_Sig did not exhibit notable benefits in discerning the malignancy risk of ovarian 
tumours.

DL has become increasingly common in image-pattern recognition [32]. A conven-
tional CNN comprises numerous layers of neurons that can autonomously enhance its 
proficiency in identifying abstract image characteristics using a hierarchical analysis 
approach [21]. Given the constraints imposed by the limited size of medical datasets, 
a CNN pre-trained on ImageNet, referred to as TL, can be utilised to address related 
tasks effectively and mitigate the issue of overfitting resulting from inadequate training 
data [33]. TL has proven to be a valuable technique in current research since it leverages 
prior knowledge acquired from a similar classification task to enhance the performance 
of models trained on small samples [34].

Gao et al. developed a deep convolutional neural network (DCNN) model to automate 
the evaluation of US images and improve the diagnostic accuracy of ovarian cancer. The 
findings revealed that the DCNN model performed at a level comparable to US image 
experts and surpassed radiologists’ average diagnostic proficiency, thereby enhancing 
radiologists’ accuracy [35]. Similarly, Christiansen F. et  al. reported that deep neural 
networks demonstrated accuracy comparable to that of US image experts in predicting 
ovarian malignancy [36]. Chen et  al. devised a DL algorithm utilising multimodal US 
images and showed a diagnostic performance in distinguishing malignant from benign 
ovarian tumours that were on par with the subjective assessments of experts and the 
O-RADS system [37]. These findings indicate that CNN can play a significant role in 
accurately identifying different classifications of ovarian tumours. In this study, we 
used the ResNet50 and DenseNet121 models to assess the malignancy risk of ovarian 
tumours in tasks 1 and 2. In task 1, the AUC values for the training and testing sets were 
0.915 and 0.890, respectively. In task 2, the AUC values for the training and testing sets 
were 0.937 and 0.853, respectively. These findings suggest that DTL_Sig has excellent 
predictive performance and robust generalisation capabilities.

The current area of interest in the field of tumour research involves the application of 
a model known as DLR, which combines manual radiomics with DTL. This model dem-
onstrated its ability to improve the accuracy and reliability of predictions significantly. 
Numerous studies have consistently shown that DLR outperforms Rad_Sig and DTL_Sig 
when used individually [38–41]. The fusion of radiomics and DL in this model involved 
two distinct methods: feature and result fusion. However, feature fusion can often result 
in overfitting due to including more features [42]. Therefore, the fusion of the prediction 
results of Clinic_Sig, Rad_Sig, and DTL_Sig for the malignancy risk of individual ovar-
ian tumours was performed in this study to create a new feature set. This new feature 
set was utilised as input for constructing a combined model using the logistic regression 
technique and subsequently visualised as a nomogram, referred to as the DLR_Nomo-
gram. The DLR_Nomogram exhibited higher AUCs in the training and testing sets in 
tasks 1 and 2, and its predictive performance remained consistent with that in prior 
studies, surpassing that of one or two of the three individual models prior to fusion.

This study had several limitations. First, the study design was retrospective and 
conducted at a single centre, which may limit the generalisability of the findings. 
Additionally, the sample size was insufficient, warranting large-scale prospective mul-
ticenter studies to assess the applicability of the DLR_Nomogram in clinical practice 
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comprehensively. Second, strict inclusion and exclusion criteria may have introduced a 
sample selection bias, potentially affecting the model’s training. Third, the extraction of 
features was limited to two-dimensional US images in single modes. However, including 
multimodal images such as colour Doppler images, spectral Doppler images, and CEUS 
could offer an incredible wealth of predictive information. Fourth, borderline ovarian 
tumour (BOT) was classified as malignant in this study owing to its malignant potential; 
however, it lacks interstitial invasion and exhibits a favourable prognosis. So, treatment 
and management strategies for BOT differ from those employed for malignant ovarian 
tumours. However, this study did not include further classification predictions. Fifth, the 
manually delineated region of interest (ROI) utilised in this study merely captured a sin-
gle portion of the lesion, failing to account for the heterogeneity in the entire tumour. 
Last, the Grad-CAM solely elucidated the ROI of the deep neural networks without 
providing a comprehensive explanation of its underlying algorithmic principles. Conse-
quently, the research foundations of DL should be explored further to expedite its inte-
gration into clinical practice.

Conclusion

A DLR-Nomogram incorporating Rad_Sig, DTL_Sig, and Clinic_Sig was formulated and 
verified. The DLR_Nomogram exhibited a notable predictive accuracy comparable to 
that of the O-RADS and holds substantial potential in the preoperative assessment of 
the malignant propensity of ovarian tumours.

Materials and methods
Study population

This study included 849 patients diagnosed with ovarian tumours, confirmed by patho-
logical examination, who underwent surgical resection at our hospital between July 2014 
and October 2022.

The inclusion criteria were as follows: (1) completion of a US examination within one 
month before surgery and (2) availability of clear and definitive US images depicting the 
target lesion.

The exclusion criteria were as follows: (1) poor quality US images; (2) insufficient 
information in US images or clinical records; (3) simultaneous pregnancy; (4) presence 
of coexisting tumours in other locations or metastatic ovarian cancer; (5) prior treat-
ment before US examination or surgery; and (6) uncertain or inconclusive pathological 
diagnosis results of the tissue obtained using a needle biopsy.

The primary objective of this study was to investigate the DLR_Nomogram model in 
assessing the malignancy risk of ovarian tumours. We set up two tasks in this study. We 
predicted the malignancy risk of 849 patients with ovarian tumours and compared the 
predictive performance with that of O-RADS in task 1. Concurrently, we predicted the 
malignant risk of 391 ovarian lesions categorised as O-RADS 4 and 5 in task 2. The study 
process is illustrated in Fig. 7.

In this study, the reference standard for histopathological diagnosis was obtained 
using tumour resection surgery. The primary epithelial tumour, BOT, has a slow clinical 
course and lacks invasiveness. The cytological characteristics of BOT resemble those of 
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malignant tumours, despite its non-invasive nature [18], leading to its malignant classifi-
cation for statistical analysis in this study.

Clinical data collection

The preoperative clinical characteristics of all patients were obtained from their electronic 
medical records, including age, menopausal status, height, weight, body mass index (BMI), 
CA125, red blood cell (RBC) count, white blood cell (WBC) count, neutrophil (N) count, 
lymphocyte (L) count, monocyte (M) count, platelet (PLT) count, and haemoglobin (Hb) 
levels. BMI and several inflammation-related risk factors, such as NLR, dNLR, PLR, LMR, 
and SII, were calculated using straightforward formulas:\begin{equation}\begin{aligned} 
& BMI=\frac{weight(kg)}{height^{2}(m^{2})}\\ & NLR={\frac{N(10^{9})}{L(10^{9})}}\\ 
& dNLR=\frac{N(10^{9})}{(WBC-N)(10^{9})}\\ & PLR=\frac{PLT(10^{9})}{L(10^{9})}\\ 
& LMR={\frac{L(10^{9})}{M(10^{9})}}\\ & SII=\frac{N(10^{9})\times PLT(10^{9})}
{L(10^{9})}\end{aligned}\end{equation}

BMI =
weight

(

kg
)

height2
(

m2
) ,

NLR =

N
(

109
)

L
(

109
) ,

dNLR =

N
(

109
)

(WBC− N )
(

109
) ,

PLR =

PLT
(

109
)

L
(

109
) ,

Fig. 7 The flowchart depicting the process of this study. Note: US, ultrasound; O-RADS, ovarian-adnexal 
reporting and data system
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Ultrasound examination

All participants underwent transvaginal ultrasonography whenever feasible. Transab-
dominal ultrasonography was performed in cases where the tumour size prevented com-
plete visualisation using transvaginal ultrasonography. Transrectal or transabdominal 
ultrasonography was performed if the patient was unsuitable for a transvaginal ultra-
sound examination. Some ultrasound equipment, such as GE Voluson E10, GE Volu-
son E8, GE Healthcare (GE Medical Systems, Zipf, Austria), and Mindray Resona R9, 
was used for data collection. The transducers used in this study included the RIC5-9-D 
and V11-3HU transvaginal probes and the C1-5-D and SC6-1U transabdominal probes. 
Various ultrasound semantic features were recorded, such as the maximum diameter of 
the lesion and its classification (≤ 50 mm, 50–100 mm, and ≥ 100 mm), the character-
istics of the mass (cystic, mixed cystic and solid, and solid), the colour flow score (1, no 
flow signal; 2, small amount of blood flow signal; 3, moderate blood flow signal; and 4, 
enriched blood flow signals), the side of the lesion (unilateral or bilateral), and the pres-
ence or absence of ascites. The mass with the most complex morphological structure or 
the largest volume was selected when multiple ovarian-adnexal masses were present [18, 
37, 43].

O‑RADS classification

The ACR formally published consensus guidelines for O-RADS US risk stratification and 
management in 2020. These guidelines classify the adnexal mass observed on US into 
six categories for risk classification: O-RADS 0, an incomplete evaluation; O-RADS 1, 
normal premenopausal ovary; O-RADS 2, almost undoubtedly benign lesion with < 1% 
risk of malignancy; O-RADS 3, low-risk lesion with 1–10% risk of malignancy; O-RADS 
4, intermediate risk lesion with 10–50% risk of malignancy; and O-RADS 5, high-risk 
lesion with ≥ 50% risk of malignancy [17]. Ovarian-adnexal masses were categorised 
based on the O-RADS guidelines by Doctor A, a highly experienced gynaecology 
and obstetrics ultrasound specialist with a decade of professional practice. Doctor B, 
another gynaecology and obstetrics ultrasound expert with over 15 years of work expe-
rience, subsequently validated the classification. A senior gynaecology and obstetrics 
ultrasound expert with more than two decades of experience was consulted when the 
abovementioned doctors held differing opinions on establishing a consensus on catego-
risation. These doctors were unaware of the patient’s clinical and biochemical indicators 
or pathological results.

LMR =

L
(

109
)

M
(

109
) ,
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)
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) .



Page 16 of 21Du et al. BioMedical Engineering OnLine           (2024) 23:41 

Data preprocessing and delineation of the region of interest

Two-dimensional US images acquired from various US devices demonstrated notable 
dissimilarities in their grayscale ranges. We employed a sorting technique to arrange all 
grayscale values within each US image to counteract the biases arising from these dis-
parities, subsequently limiting the range to the 0.5–99.5 percentile range for this inves-
tigation. Furthermore, the voxel spacing of US images obtained using different devices 
varied, necessitating the implementation of spatial standardisation techniques to allevi-
ate the influence of such discrepancies. In this study, we employed a fixed-resolution 
resampling method to address the concerns above effectively.

Doctor A employed the ITK-SNAP 3.8.0 software (http:// www. itksn ap. org) to manu-
ally delineate the complete boundary of ovarian masses and identify the ROI. The ROI 
was validated by Doctor B. In cases of disagreement, consultation with a senior phy-
sician was sought to facilitate collaborative discussions and achieve consensus. Fifty 
patients were randomly selected from the dataset to ensure the reliability and replica-
bility of the extracted radiomic features, and Doctor A re-delineated the ROIs after a 
two-week interval. Furthermore, Doctor C, a gynaecology and obstetrics ultrasound 
specialist with 12 years of work experience, autonomously delineated the ROIs. None 
of those mentioned above doctors had access to the patient’s clinical and biochemical 
parameters or pathological findings.

The maximum US image section depicting the ovarian lesion in each patient was cho-
sen for this study to facilitate their input into the CNN. The grayscale values were nor-
malised using the min–max transformation, resulting in a range of [−1, 1]. Subsequently, 
the resolution of each cropped subregion of the US image was adjusted to 224 × 224 
using the nearest interpolation. The resulting US images were saved in the "PNG" format 
to adhere to the model’s input requirements.

Extraction and selection of manual radiomics features

PyRadiomics is a software platform that is openly accessible and specifically designed to 
extract features from medical images. The process involved importing manually deline-
ated ROI images into the PyRadiomics platform, where the features were extracted using 
an internal feature analysis program. Z-score normalisation was employed to address the 
issue of varying scales in manual radiomic features.

We assess the robustness and repeatability of radiomics features using the ICC. Fea-
tures with an ICC ≥ 0.85 were deemed highly robust and suitable for further analysis. 
All radiomic features underwent T-tests or Mann–Whitney U tests, and only the fea-
tures with a P-value < 0.05 were retained. Spearman correlation analysis was conducted 
to determine the correlation coefficients of features exhibiting high repeatability. If the 
correlation coefficient between the two features exceeded 0.9, then either feature was 
retained [44]. Feature filtering was performed using a greedy recursive deletion strategy, 
eliminating the features with the highest redundancy in the current dataset.

The training set underwent feature selection using LASSO regression from the 
scikit-learn package in Python. LASSO regression effectively reduces the regression 
coefficients toward zero and accurately assigns zero coefficients to irrelevant features, 
depending on the regularisation weight λ. A tenfold cross-validation was performed to 

http://www.itksnap.org
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determine the optimal λ, and the final value of λ was chosen based on the minimal cross-
validation error. Features with nonzero coefficients were retained for subsequent devel-
opment of the Rad_Sig.

The deep transfer learning radiomics procedure

In this study, the pre-trained CNN model, TL, trained on the ImageNet dataset, was 
employed to mitigate the overfitting problem arising from the training dataset’s con-
strained size. The presence of imbalanced or inadequate data when applying DTL for 
image classification frequently requires the implementation of data augmentation. In 
the study, we employed horizontal flipping and random cropping to augment the sample 
size, enhance the model’s accuracy, and improve its generalisation capacity.

Signature building

Following feature selection using LASSO regression, the resultant features were utilised 
as inputs for the logistic regression model to establish manual Rad_Sig.

The US image encompassing the largest section of the ovarian tumour was fed into 
the CNN. Following an intricate internal algorithm, the resulting prediction probability 
for each sample was referred to as the DTL_Sig. Grad-CAM was used to visualise the 
hidden layer network algorithm and elucidate the decision-making process of the CNN 
model.

Statistical analysis was conducted on the baseline clinical data. Clinical parameters 
and US semantic features with a P value < 0.05 were chosen. Spearman correlation 

Fig. 8 The workflow of US-based DLR_nomogram. Note: DLR, deep learning radiomics; US, ultrasound; 
ROI, region of interest; ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and selection 
operator; Grad-CAM, gradient-weighted class activation mapping; AUC, area under the curve; DCA, decision 
curve analysis; GLDM, gray level dependence matrix; GLSZM, gray level size zone matrix; GLRLM, gray level 
run length matrix; GLCM, gray level co-occurrence matrix
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analysis was employed to ascertain the linear association among these parameters, 
whereas parameters lacking significant linear relationships were input into the logistic 
regression model to construct the Clinic_Sig.

We integrated the predictive results of Rad_Sig, DTL_Sig, and Clinic_Sig for each 
sample to create a new feature set to intuitively and efficiently assess the incremental 
prognostic value of Rad_Sig and DTL_Sig for clinical risk factors. The new feature set 
was input into the logistic regression model to construct a combined model based on the 
training set, which was visualised as a nomogram, namely, the DLR_Nomogram.

Model evaluation

The models’ performances were evaluated using ROC and the AUC. Additionally, quan-
titative measures such as accuracy, precision, recall, and F1 scores were employed. The 
DeLong test was used to compare the models’ diagnostic performance differences [45]. 
Model fit was assessed using the HL test [46]. A calibration curve was constructed to 
visualise the results of the HL test. DCA [47] was used to quantitatively evaluate the 
overall benefit of the predictive model across various threshold probabilities.

The procedure for constructing the DLR-Nomogram is depicted in Fig. 8.

Statistical methods

We employed statistical analysis to compare differences in continuous variables, such as 
t-tests or Mann–Whitney U tests, whereas Chi-squared or Fisher’s exact tests were used 
for categorical variables. Statistical analyses and data visualisation were performed using 
SPSS (version 27.0; IBM Corp.) and Python (https:// www. python. org/). Two-tailed tests 
with a P value of < 0.05 were considered statistically significant.

The testing set and machine learning algorithm employed were held constant to con-
duct an impartial and equitable comparison of the disparities between the models, and 
the hyperparameters utilised in the model training procedure were kept as consistent as 
possible.
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