
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Ettefagh and Roshan Fekr  
BioMedical Engineering OnLine           (2024) 23:35  
https://doi.org/10.1186/s12938-024-01228-w

BioMedical Engineering
OnLine

Enhancing automated lower limb 
rehabilitation exercise task recognition 
through multi-sensor data fusion 
in tele-rehabilitation
Alireza Ettefagh1,2* and Atena Roshan Fekr1,2 

Abstract 

Background: Tele-rehabilitation is the provision of physiotherapy services to indi-
viduals in their own homes. Activity recognition plays a crucial role in the realm 
of automatic tele-rehabilitation. By assessing patient movements, identifying exercises, 
and providing feedback, these platforms can offer insightful information to clinicians, 
thereby facilitating an improved plan of care. This study introduces a novel deep learn-
ing approach aimed at identifying lower limb rehabilitation exercises. This is achieved 
through the integration of depth data and pressure heatmaps. We hypothesized 
that combining pressure heatmaps and depth data could improve the model’s overall 
performance.

Methods: In this study, depth videos and body pressure data from an accessible 
online dataset were used. This dataset comprises data from 30 healthy individuals 
performing 7 lower limb rehabilitation exercises. To accomplish the classification task, 
three deep learning models were developed, all based on an established 3D-CNN 
architecture. The models were designed to classify the depth videos, sequences 
of pressure data frames, and combination of depth videos and pressure frames. The 
models’ performance was assessed through leave-one-subject-out and leave-multiple-
subjects-out cross-validation methods. Performance metrics, including accuracy, preci-
sion, recall, and F1 score, were reported for each model.

Results: Our findings indicated that the model trained on the fusion of depth 
and pressure data showed the highest and most stable performance when compared 
with models using individual modality inputs. This model could effectively iden-
tify the exercises with an accuracy of 95.71%, precision of 95.83%, recall of 95.71%, 
and an F1 score of 95.74%.

Conclusion: Our results highlight the impact of data fusion for accurately classify-
ing lower limb rehabilitation exercises. We showed that our model could capture 
different aspects of exercise movements using the visual and weight distribution 
data from the depth camera and pressure mat, respectively. This integration of data 
provides a better representation of exercise patterns, leading to higher classification 
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performance. Notably, our results indicate the potential application of this model 
in automatic tele-rehabilitation platforms.

Keywords: Tele-rehabilitation, Exercise recognition, Classification, Data fusion, 
Convolutional neural network, Deep learning

Introduction
Background

Regular rehabilitation services are essential for patients who suffer from musculoskeletal 
disorders (MSDs). MSDs encompass a wide range of conditions that can cause chronic 
pain, mobility impairment, falls, and a decreased quality of life. These disorders primar-
ily affect the muscles, tendons, nerves, ligaments, and other tissues of the body, often 
leading to inflammation, pain, discomfort, or tingling sensations. Among the various 
types of MSDs, Lower Limb Disorders (LLDs) specifically target different regions of the 
lower body, including the hip, thigh, knee, calf, ankle, and foot [1]. These LLDs nega-
tively impact an individual’s ability to move and perform activities of daily living.

Following cancer and cardiovascular diseases, MSD stands as the third leading cause 
of disease burden in Canada [2]. According to [2], the all-age prevalence of various mus-
culoskeletal conditions increased from 23% in 1990 to 27.8% in 2017. As a result, in 2017, 
Canada ranked among the top 10 countries globally for the prevalence of several MSDs, 
such as osteoarthritis and gout. Regular exercise in rehabilitation programs plays a vital 
role in the management of musculoskeletal conditions [3–6]. This highlights the need 
for automatic rehabilitation solutions to address the consequences of this growing issue.

Tele-rehabilitation (tele-rehab) is the delivery of medical or rehabilitative services to 
patients using tele-communication or the internet [7]. Tele-rehab tools reduce distance 
barriers for patients and researchers, enabling improved access and opening avenues 
for optimizing intervention strategies in healthcare [8]. In the 1990s, e-health and tele-
rehab gained prominence due to advancements in technology [9–11]. In 1998, the U.S. 
Department of Education’s National Institute for Disability and Rehabilitation Research 
(NIDRR) initiated the first Rehabilitation Engineering Research Center (RERC) on tele-
rehab [12]. This landmark funding aimed to bridge a service delivery gap resulting from 
managed-care policies limiting the duration of inpatient rehabilitation [8].

Despite the existence of tele-rehab for several decades, its adoption in clinical prac-
tice has been limited due to various factors. These include concerns regarding the costs, 
complexity of implementation, low accuracy, and high incidence of false alarms [8, 13]. 
These challenges have inhibited the widespread use of tele-rehab solutions and have pre-
vented their full potential from being realized in healthcare settings [8, 13–16].

As defined by RERC on tele-rehab, there is a need for development and evaluation of 
technologies for assessment and monitoring of progress and outcome of rehabilitation 
at a distance [13, 17]. One important component of exercise monitoring in an automatic 
tele-rehab platform is activity recognition, which refers to the process of automatically 
identifying human activities based on sensor data or visual inputs. In essence, analyz-
ing and understanding movements performed by individuals during their rehabilitation 
therapy offer valuable insights to clinicians for developing their care plans. These plat-
forms should have the capability to recognize and evaluate different exercises. This is 
only possible when the computer vision task of activity recognition is accurate, enabling 
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the delivery of meaningful feedback to the users. Consequently, this could potentially 
assist patients in refining their movements and optimizing their plan of care. To address 
the exercise recognition problem, this paper proposes a novel deep learning approach 
that uses an available online dataset to classify different lower limb rehabilitation exer-
cises using privacy-preserving depth information and pressure data. Notably, our 
approach outperforms the state-of-the-art performance on this dataset.

Related work

Several studies have also employed different machine learning techniques to perform 
exercise recognition based on various input data. For instance, Anton et al. developed a 
system using Kinect technology to monitor and evaluate the type and quality of physi-
cal rehabilitation exercises in real time [18]. Their system employed two methods: pos-
ture classification and exercise recognition. By capturing the spatial coordinates of body 
joints, the algorithm calculated relative positions, joint angles, and limb angles. These 
measurements were used to create a posture descriptor consisting of 30 features. Pos-
ture classification was performed by comparing the captured descriptor with prestored 
posture descriptors using Dynamic Time Warping (DTW). For exercise recognition, the 
system identified the starting and ending postures of each exercise and utilized DTW-
based trajectory recognition to assess the accuracy of movement patterns. The proposed 
algorithm was evaluated through clinical trials involving 15 patients with shoulder disor-
ders. They obtained an accuracy of 95.16% in recognizing 4 different shoulder exercises.

Barriga et al. introduced a vision-based system for telecare and tele-rehab using a 
depth camera and neural networks [19]. They claimed that their system has the capa-
bility to automatically classify 7 static postures and falls. The system’s performance was 
validated using data collected from 6 participants. The researchers also investigated vari-
ous parameters, including the number of hidden neurons, maximum error, learning rate, 
and learning function, in the design of their neural network. Additionally, they explored 
the impact of distance from the camera and the angle between the camera and subjects 
in the skeleton tracking system. Through their experiments, they achieved an accuracy 
of 96% for classifying static postures and detecting falls.

Decroos et al. developed a machine learning pipeline using Kinect to monitor and 
assess the correctness of physiotherapy exercises performed by patients at home [20]. 
Their pipeline involved three main steps: identifying individual exercise repetitions, rep-
resenting time-series data with statistical features about joint angles, and detecting the 
exercise’s type, correctness, and possible mistakes. To evaluate the performance of their 
method, they recorded 10 healthy participants performing 3 rehab exercises (squats, for-
ward lunges, and side lunges) while tracking joint movements with Kinect. For exercise 
recognition, they used 5 learners, including Linear Regression, Naïve Bayes, Decision 
Tree, Random Forest, and XGBoost. The input feature vector to the learners consisted of 
150 summary statistics (30 joint angles × 5 statistics - min, max, mean, median, std) for 
each exercise repetition. The best accuracy achieved was 99% using XGBoost algorithm 
with Leave-One-Subject-Out (LOSO) cross-validation.

Bijalwan et al. proposed a heterogeneous deep learning model to identify lower limb 
rehabilitation exercises [21]. To this end, they considered a total of 10 exercises involv-
ing abduction, flexion, rotation, and dorsi-flexion of the lower limb on both the left 
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and right sides. These exercises were performed by 25 healthy and 10 crouch walking 
subjects. Depth data were collected from a Kinect v2 sensor. To classify the exercises, 
they employed Convolutional Neural Network (CNN) and CNN-LSTM models, where 
LSTM, short for Long Short-Term Memory, is a type of recurrent neural network archi-
tecture known for its ability to retain long-term dependencies in data sequences [22]. 
For validation, a hold-out validation approach was employed, with the dataset split into 
50% for training, 20% for validation, and 30% for testing. Their experimental results 
demonstrated both accuracies and F1 scores of 96% for the CNN model and 98% for the 
CNN-LSTM model.

Barzegar  Khanghah et al. proposed a vision-based system to assess the quality of 
rehabilitation exercises [23]. They used an open dataset consisting of 16 patients and 14 
healthy participants performing 9 different rehabilitation exercises. Data were depth vid-
eos recorded from a Kinect 1 sensor. They used a pretrained 3D convolutional neural 
network to perform exercise recognition on correctly executed data as a part of their 
assessment system. They obtained average accuracies of 96.62% and 86.04% in identify-
ing the exercises using tenfold and LOSO cross validations, respectively.

Wijekoon et al. introduced the Multi-modal Exercises Dataset (MEx) as a multi-
sensor Human Activity Recognition (HAR) dataset [24]. The data collection involved 
a pressure mat and a depth camera, both operating at 15 Hz, and two accelerometers 
operating at 100 Hz. One accelerometer was positioned on the thigh, while the other 
was placed on the wrist. The dataset includes 7 lower limb exercises performed by 30 
healthy participants. Through Leave-Multiple-Subjects-Out (LMSO) cross-validation, 
the average F1 scores for exercise recognition were 86.34%, 88.92%, 64.99%, and 71.95% 
using depth data, thigh accelerometer data, wrist accelerometer data, and pressure data, 
respectively. This study concluded that vision data such as depth provided better results 
than the time-series data from accelerometers. In subsequent work, the authors pro-
posed a multi-modal Hybrid Attention Fusion (mHAF) deep learning architecture [25]. 
With a combination of pressure mat, depth camera, and thigh accelerometer data, they 
achieved an F1 score of 96.24% for exercise recognition using LOSO cross-validation. 
When pressure and depth data were used without the accelerometer data, the perfor-
mance was reduced to 90.41%.

Wearable technology shows great potential for lower limb tele-rehab systems. For 
example, Lai et al. achieved 99% accuracy in recognizing 6 lower limb exercises using 
one Inertial Measurement Unit (IMU). The IMU was attached to the knee for 4 exercises 
and instep for the other two [26]. García-de-Villa et al. classified 8 exercises (5 lower 
limbs) with 96.2% accuracy [27]. Kim et al. also detected Sarcopenia patients with 95% 
accuracy using IMUs mounted on the left and right feet [28]. Albeit useful, using weara-
bles would be challenging for seniors. One primary obstacle in using wearable technol-
ogy for seniors is the difficulty they may face in accurately positioning the sensors on 
their body. They may require external help to properly place the sensors at the appropri-
ate location, angle, and direction. Additionally, research suggests that many older adults 
are not keen on using such technology. They prefer their usual routines without elec-
tronic devices [29]. As a result, they might hesitate to wear sensors on their bodies.

Vision-based technology as a contactless approach offers a great alternative to wear-
ables. These systems often use skeleton tracking models to locate body joints. Such 
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models require Red-Green-Blue (RGB) data to capture body limb movements, which 
involves recording images or videos of users. This raises potential privacy concerns, as it 
involves capturing and processing visual information of individuals within their private 
living spaces. Patients may feel uncomfortable knowing that their movements and activi-
ties are being monitored through RGB cameras. This may lead to potential reluctance 
in using such technologies [30, 31]. Researchers have used depth cameras to mitigate 
this challenge [32]. The depth data captures only an outline of the body, ensuring com-
plete anonymity. One challenge with vision-based systems is occlusion, where the joints 
and body parts are hidden from the camera [33]. This is even more likely to happen for 
exercises that should be performed in lying down positions, i.e., lower limb exercises. 
The presence of occlusion can negatively impact the performance of exercise recognition 
models, leading to a decrease in accuracy and reliability.

Given the potential challenges discussed above, we aim to fill these gaps using the 
fusion of depth and pressure heatmaps. Depth data can provide information about the 
pattern of body movements without the need for intrusive RGB visuals. Additionally, 
pressure data can offer insights into the patterns of body limbs and the force exerted on 
the ground by them during exercises. Our hypothesis is that the combination of pressure 
distribution data and depth data can enhance a deep learning model’s ability to differen-
tiate between various types of exercises. By leveraging these alternative data sources, we 
strive to create a more user-friendly and privacy-conscious approach for exercise recog-
nition in lower limb tele-rehab.

Evaluation
Methodology

The models were validated using two cross-validation techniques: LOSO and LMSO 
with 6 groups of 5 individuals. LOSO cross-validation mimics the practical situation 
where our models encounter new individuals, one at a time, during its application. In 
addition, the LMSO cross-validation goes beyond LOSO by simulating scenarios where 
the model is exposed to completely new groups of subjects. To determine the optimal 
training hyperparameters, including batch size, learning rate, and number of epochs, we 
employed 5-fold cross-validation with grid search. The performance of the models was 
evaluated using Eq. (1, 2, 3) as follows:

The macro F1 score is computed by taking the average of the F1 scores for each exercise. 
The F1 score for each exercise is determined by calculating the harmonic mean of preci-
sion and recall:

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

(3)F1Score = 2×
Precision× Recall

Precision+ Recall
,
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where TP, TN, FP, and FN are the number of true positives, true negatives, false posi-
tives, and false negatives in the classification of each exercise, respectively.

Results and discussion
Classification performance

Among all models, a batch size of 4 yielded the best results. The learning rate was set to 
5e-5 for the models trained with depth videos (DC) and pressure data (PM), and 1e-4 
for the model trained with concatenated inputs (DC-PM). For the DC and PM models, 
the best epoch size was found to be 76, while this was 60 for the DC-PM model. These 
hyperparameter settings were found to be optimal for both LMSO and LOSO cross-val-
idations. Table 1 presents the classification performance of all three models with both 
LOSO and LMSO.

This table shows that the PM model consistently provides the lowest performance 
among the other models. When considering classification accuracy, there is a relatively 
large variance across different subjects. This difference might arise from the pressure 
mat’s capability to capture individual characteristics, such as weight distribution and 
body shape [24]. This model identifies exercises by analyzing the pattern of body parts in 
contact with the ground and the force applied to the ground by the active limbs. It uses 
pressure patterns to determine the exercise type, focusing on how the body engages with 
the ground during the movement.

While pressure data could be indicative of exercise type based on pressure patterns, 
they do not capture the same level of detailed information about body movements as the 
depth camera. As shown in Figures 5 and 6, depth data provide a better view of the body 
during exercise and capture the entire movement sequence. It includes information 
about all body parts and their positions relative to the camera. As shown in Table 1, the 
DC model could better classify the 7 types of exercises with approximately 94% accuracy.

The DC-PM model, which combines both depth camera and pressure mat data, was 
the most accurate model in identifying the exercises in LOSO. In LMSO, all models 
experience a decrease in performance compared to LOSO, which is expected due to the 
reduced subject-specific data for training. Despite the drop in performance, the DC-PM 
model still provided the highest performance among the other two models. The DC-PM 
model also demonstrates the most consistent outcomes, as indicated by its low standard 

Table 1 Classification performance for each model

a Standard deviations of accuracies are between-subject, and between-class for other metrics

Model LOSO

Accuracya (%) Precision (%) Recall (%) F1 Score (%)

DC 93.81 ± 7.98 93.85 ± 8.45 93.81 ± 8.48 93.8 ± 7.7

PM 81.43 ± 16.14 81.75 ± 8.56 81.43 ± 8.36 81.45 ± 7.12

DC-PM 95.71 ± 7.51 95.83 ± 6.32 95.71 ± 5.35 95.74 ± 5.19

 LMSO

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

DC 90.95 ± 4.49 91.35 ± 8.77 90.95 ± 11.17 90.83 ± 8.28

PM 75.71 ± 5.89 75.48 ± 8.58 75.71 ± 14.49 75.28 ± 10

DC-PM 94.76 ± 1.96 94.84 ± 6.72 94.76 ± 6.34 94.77 ± 5.84
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deviation in Table 1. This improvement in performance can be attributed to the comple-
mentary nature of the two data modalities and how they, as a group, address the limita-
tions of the individual models. More specifically, the combination of visual and weight 
distribution information from the depth camera and pressure mat allows the model to 
capture different aspects of exercise movements. This fusion of data provides a richer 
representation of exercise patterns, leading to higher classification performance.

Confusion matrices, misclassification charts, and F1 scores

Figure 1 (a-c, j-l) presents the confusion matrices for the DC, PM, and DC-PM models, 
respectively. The misclassified data by each model can be found in Figure 1 (d-f, m-o). 
The F1 scores for all exercises are displayed in Figure 1 (g-i, p-r).

In most cases, the Bridging (BG) and Pelvic Tilt (PT) exercises were misclassified by 
each other. This is likely due to their similar starting positions and body trajectories, as 
evident in Figures  5 and 6. Additionally, the Prone Punches (PP) and Superman (SM) 
exercises were almost perfectly classified when using depth data; however, considering 
the pressure data, they were misclassified by the other. Looking at Figures 5 and 6, it is 
evident that the Repeated Extension in Lying (EL) exercise has distinctive patterns in 
both depth and pressure data. This exercise, thus, had the lowest misclassification rate 
when considering the DC and PM models individually.

Fig. 1 a–c Confusion matrices, d–f the proportion of misclassified labels, and g–i f1 score per exercise 
for the DC, PM and DC-PM models, respectively, considering the LMSO technique. j–l Confusion matrices, 
m–o the proportion of misclassified labels, and p–r f1 score per exercise for the DC, PM and DC-PM models, 
respectively, considering the LOSO technique
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Gradient‑weighted class activation mapping

To further analyze the results, we used the Gradient-weighted Class Activation Map-
ping (Grad-CAM) [34] as a technique to visualize and understand the decision-
making process of deep learning models. This technique uses the gradients of the 
classification score flowing into the final convolutional layer of the network to con-
struct a heatmap highlighting the regions of the input that most impact the model’s 
prediction [34, 35].

To achieve this, we started by inputting a sample into the model, generating both the 
feature map of the final convolutional layer and the corresponding output prediction. 
Subsequently, we computed the gradient of the top predicted class with respect to the 
feature map of the last convolutional layer. This gradient has the same dimensions as the 
feature map. Applying global average pooling across spatial and temporal dimensions 
yields scalar weights for each channel. The weighted average of the channels within the 
feature map is then computed based on these weights, resulting in the heatmap. This 
heatmap is then scaled and extrapolated to match the input video size. Finally, each 
heatmap frame is superimposed onto the corresponding video frame, creating the Grad-
CAM frames.

Figure  2(a-c) displays a sample Grad-CAM frame for EL, TC, and BG exercises, 
respectively. The more intense red colors represent the areas of the body heatmap that 
the model was more focused on and considered significant for the prediction. For the EL 
exercise in Figure 2(a), the model predominantly focused on the depth part of the input 
to make a prediction. Conversely, in the BG exercise (Figure 2(c)), the model relied more 
on the pressure data for the prediction. For the TC exercise in Figure 2(b), the model’s 
attention was distributed across both the depth and pressure parts of the input data.

Fig. 2 GradCAM visualization for a EL, b TC, and c BG exercises

Table 2 Comparison with the state of the art

Model Cross validation Data modality Network architecture F1 score (%)

[24] and [25] LOSO DC-PM Hybrid Attention Fusion 90.41

LMSO DC 2D-CNN 87.2

PM 1D-CNN-LSTM 74.08

This study LOSO DC-PM I3D 95.74

LMSO DC I3D 90.83

PM I3D 75.28
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Comparison with the state of the art

Table  2 presents a comparison between the findings of previous studies and our own 
study. We included only the results matching the data type and cross-validation methods 
used in previous studies.

In our comparison with the work of Wijekoon et al., we found that the I3D model 
outperforms both the 1D-CNN-LSTM and 2D-CNN models used in their study. Wije-
koon et al. employed a 1D-CNN-LSTM for PM data, where each frame was flattened to 
form a vector and frames from a time window were appended together to create a sin-
gle-dimension input feature vector. For DC data, they used a 2D-CNN, where flattened 
frames within a time window were appended to form a 2D vector [24]. Given that both 
1D-CNN and 2D-CNN use flattened data, there is a potential for loss of spatial informa-
tion. However, the I3D model analyzes the data in both spatial and temporal dimensions, 
allowing it to effectively capture patterns and dynamics in the exercise sequences. While 
our approach uses early fusion by concatenating sensor data at the input layer, Wijekoon 
et al. used a late fusion approach with a multimodal hybrid attention fusion architec-
ture [25]. They employed the models previously used in their single modality analysis to 
independently learn feature representations for each modality, subsequently integrating 
them through a hybrid attention mechanism. Our early fusion approach, however, dem-
onstrated superior performance.

Multimodal fine‑tuning of the I3D model

In our study, we employed the concept of transfer learning using an Inflated 3D Con-
vNet (I3D) model which was pretrained on RGB data from ImageNet [36] and Kinetics 
[37] datasets. This pre-training phase allowed the model to learn a diverse set of features 
related to color and texture. We then fine-tuned this pre-trained model on depth data, 
pressure mat data, and a concatenation of both. The depth data, providing information 
about the distance of objects from the camera, and the pressure mat data, indicating the 
pressure applied at different points, offered different types of information compared to 
the RGB data. However, the models were able to adjust the learned features from the 
RGB data to better fit these new types of data during the fine-tuning process. When 
depth and pressure inputs were concatenated, the model had access to a richer set of 
information for making predictions. This approach leveraged the initial understanding 
of feature extraction from the RGB data, providing the model with a head start and lead-
ing to improved performance on the new task.

Quality of movement vs. classification results

Evaluating our models using data from individuals with disabilities (patients) or older 
adults (seniors) will influence our classification results. We anticipate a decrease in per-
formance accuracy and increased variability, as our models were originally trained on 
data from a healthy population and may struggle to generalize effectively to exercises 
performed with diverse movement qualities. The movement quality among patients 
and seniors is expected to exhibit lower or more variable characteristics compared to 
the healthy population, likely attributed to factors such as experiences of pain or lim-
ited range of motion. However, this challenge can be mitigated by fine-tuning the model 
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with data specifically from patients and seniors. This approach will enable the models to 
adapt and generalize to lower movement qualities. We propose that our exercise recog-
nition model, initially trained on healthy population data, serves as a promising starting 
point for training on patient’s data and initiating the fine-tuning process.

Generating a quality of movement metric

A similar transfer learning approach can be applied to generate a Quality Of Movement 
(QOM) metric. If our models have effectively learned feature patterns from the data, 
they can be used to initiate a transfer learning process for exercise assessment. This may 
involve transitioning to a binary classification task, distinguishing between correct and 
incorrect movements, a multi-classification task with categorical labels such as excellent, 
good, fair, poor, or a regression task to generate a continuous score within the range of 0 
to 100. An alternative approach involves combining the exercise recognition model with 
another model to predict exercise quality scores. For instance, the output of an exercise 
recognition model (including class probabilities or assigned labels) could serve as a met-
ric to assess the QOMs [23, 38]. The implementation of these approaches needs a com-
prehensive dataset with well-defined annotations by a trained observer. In the future, we 
plan to collect data to explore and investigate these approaches further.

Conclusion
In this study, we present a state-of-the-art 3D-CNN model capable of recognizing lower 
limb rehabilitation exercises using privacy-preserving depth information and pressure 
data from an available online dataset. The dataset consisted of a total of 210 videos of 30 
healthy individuals performing 7 exercises. We evaluated the effectiveness of this model 
with three different inputs: depth data, pressure data, and concatenated depth and pres-
sure data. With LOSO cross-validation, the model demonstrated macro F1 scores of 
93.80%, 81.45%, and 95.74% for depth data, pressure data, and concatenated data, respec-
tively. Similarly, with LMSO cross-validation, the performance was 90.83%, 75.28%, and 
94.77% for depth data, pressure data, and concatenated data, respectively. This outcome 
highlights the impact of data fusion for accurately classifying the exercises, both in the 
LOSO and LMSO scenarios. The proposed 3D-CNN model outperforms the previous 
models as it can analyze data in both spatial and temporal dimensions. Due to its high 
accuracy, our model is well-suited for recognizing the seven aforementioned exercises in 
automatic tele-rehab applications. It is essential to recognize that this study focused on 
a narrow subset of the tele-rehab field. Further research can explore the applicability of 
our approach to a broader range of exercises.

Methods
Proposed approach

We created three exercise recognition models to classify the following: 1—depth videos 
(DC), 2—sequences of pressure data frames (PM), and 3—concatenated depth videos 
and pressure frames (DC-PM). We opted for input concatenation, a form of early fusion, 
for its simplicity and efficiency. It allows us to use a single architecture and access all 
available information in both data modes simultaneously, potentially to learn features 
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that involve interactions between the modalities. These models were developed to clas-
sify all 7 exercises in the dataset. We used a pretrained 3D-CNN model proposed by 
Carreira et al. [39]. This state-of-the-art network, known as “Inflated 3D ConvNets” 
(I3D), was trained on the Kinetics dataset, which comprises a total of 240,000 training 
videos of 400 different human actions, including person actions, e.g., drawing; actions 
involving interactions between individuals and objects, e.g., washing dishes; and actions 
involving interactions between individuals, e.g., hugging. This model achieved an accu-
racy of 74.1% when applied to the RGB data from the Kinects dataset. Also, after pre-
training on both ImageNet and Kinetics, it demonstrated accuracies of 97.9% and 96.9% 
when tested on UCF-101 [40] and HMDB-51 [41] datasets, respectively [39]. This archi-
tecture has shown promise in multi-modal classification settings [42].

The I3D model uses 3D convolution to learn spatiotemporal information directly from 
input videos [43]. More specifically, the architecture consists of a series of 3D Incep-
tion modules followed by 3D max pooling and batch normalization layers. The Inception 
module, as depicted in Figure 3, operates with parallel 1 ×1× 1 and 3 ×3× 3 3D convolution 
kernels and a 3 ×3× 3 max pooling operation using the same input data, merging their 
outputs into a single output. Incorporating 1 ×1× 1 convolution layers reduces the dimen-
sions of the input data within the network and, therefore, reduces the computational 
cost. The 3 ×3× 3 convolution layer enables the network to learn spatiotemporal features 
at a different scale. The dimensions of the input data are reduced by the 3 ×3× 3 max-
pooling layer while allowing the extraction of different features simultaneously. Max-
pooling is thus employed to extract more features from the input data [44]. A dropout 
layer was also used to prevent overfitting of the models.

The input for the 3D models consists of videos with a size of N × R × C × 3, where N 
represents the number of frames in the video. Each frame has a resolution of R × C × 3, 
where R and C are the number of rows and columns, respectively. Also, 3 indicates the 
number of channels.

For preprocessing, each depth video was downsampled to 158 frames, which is the 
shortest length of depth videos in the dataset. Each frame was zero-padded to 32× 32 
pixels. Likewise, the pressure videos were downsampled to 252 frames, and each frame 
was zero-padded to 32×32 pixels. To create the concatenated input video, the pressure 
videos were also downsampled to 158 frames to be consistent with the depth data. Cor-
responding depth and pressure frames were zero-padded and concatenated next to each 

Fig. 3 Schematic representation of the 3D Inception module. The activation function, Rectified Linear 
Unit (ReLU), introduces non-linearity to the model. This non-linearity makes the model capable of learning 
complex spatio-temporal patterns from the video data, in light of the presence of 3D convolutions
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other to form 32 × 64 input frames. An example of input videos for PM (top frames) and 
DC of knee-rolling exercise is depicted in Figure 4.

To classify the performed exercises, we used categorical cross entropy as the loss func-
tion in our classification task. The categorical cross-entropy loss function is defined as 
follows:

The summation is performed over N observations (the training sample size), where i 
iterates over the observations and c iterates over the number of classes (exercises). The 
term 1yi∈Cc represents an indicator function that equals 1 if the ith observation belongs 
to the cth category and 0 otherwise. The logarithm of the predicted probability by the 
model for the ith observation belonging to the cth category is calculated. The objective 
was to minimize this loss function during the training phase. To optimize the model, we 
employed the Adam optimizer [45]. The Adam optimizer adapts the learning rate for 
each weight of the neural network using estimations of the first moment and the second 
moment of the gradient. This adaptive learning rate scheme aids in effectively updating 
the weights during the training process.

Dataset

This study used depth video recordings and body pressure data from the dataset pub-
lished by Wijekoon et al. [24]. The data were collected from 30 healthy participants, 
comprising 18 females and 12 males. Fourteen subjects were aged 18 to 24, while the 
rest of the individuals were aged 24 to 54. It is noteworthy that 8 participants had some 
background in physiotherapy, either as physiotherapists or physiotherapy students, thus 
having a good knowledge of the exercises. The participants performed the 7 different 
lower-limb rehabilitation exercises listed in Table 3. These exercises are frequently rec-
ommended by clinicians for the prevention or management of musculoskeletal pain [24].

The participants performed all exercises while lying down on the pressure mat. A 
depth camera on top of the participants recorded their body movements from an aerial 
perspective. To ensure alignment, the top of the depth frames matched the top of the 
pressure mat. As a result, body parts above the shoulders were not visible to the depth 
camera. The participants were asked to perform each exercise for 60 seconds without 
any instruction. This approach aimed to mimic a natural setting where participants, 

(4)f (x) = −
1

N

N∑

i=1

C∑

c=1

1yi∈Cc log(pmodel[yi ∈ Cc]).

Fig. 4 Visualization of pressure and depth data (subject #1, knee-rolling exercise)
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Table 3 List of exercises in the MEx dataset [24]

Exercise Starting Position Action

Knee-rolling (KR) Lying on back, knees bent Roll knees side to side, keeping upper body 
still

Bridging (BG) Lying on back, knees bent Lift hips off floor, hold for 5 seconds, and 
lower

Pelvic tilt (PT) Lying on back, knees bent Tighten stomach muscles, press lower back 
to floor, rise bottom, hold for 5 seconds, 
relax

The Clam (TC) Lying on side, knees bent Rotate leg and open knee while keeping 
hips aligned, return to starting position

Repeated Extension in Lying (EL) Lying face down, palms on floor Straighten elbows, push upper body up for 
2 seconds, and lower back down

Prone punches (PP) On all 4s Punch arms forward while keeping the core 
stable

Superman (SM) On all 4s Extend the opposite arm and leg for 5 sec-
onds while keeping the core stable

Fig. 5 Seven exercises performed by Subject #1 and their corresponding depth frames, adapted with 
permission from [25]
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acting as patients, performed the exercises independently at home without the guidance 
of a physiotherapist [24].

The depth data were captured by an Obbrec Astra depth camera at 15 Hz with a 
resolution of 320×240 resized to 12×16. The pressure data were captured by a Sens-
ingTex pressure mat at 15 Hz with a resolution of 32×16. The depth and pressure data 
were simultaneously recorded from each participant. Overall, we had 210 (30 partici-
pant × 7 exercises) single-channel grayscale videos from each data source. The data 
values in each video were normalized using min–max scaling, ranging between 0 and 
1. Some examples of depth and pressure frames from subject #1 for all 7 exercises are 
depicted in Figure 5 and Figure 6, respectively [24].
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