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Abstract 

Purpose: Convolution operator-based neural networks have shown great suc-
cess in medical image segmentation over the past decade. The U-shaped network 
with a codec structure is one of the most widely used models. Transformer, a technol-
ogy used in natural language processing, can capture long-distance dependencies 
and has been applied in Vision Transformer to achieve state-of-the-art performance 
on image classification tasks. Recently, researchers have extended transformer to medi-
cal image segmentation tasks, resulting in good models.

Methods: This review comprises publications selected through a Web of Science 
search. We focused on papers published since 2018 that applied the transformer archi-
tecture to medical image segmentation. We conducted a systematic analysis of these 
studies and summarized the results.

Results: To better comprehend the benefits of convolutional neural networks 
and transformers, the construction of the codec and transformer modules is first 
explained. Second, the medical image segmentation model based on transformer 
is summarized. The typically used assessment markers for medical image segmenta-
tion tasks are then listed. Finally, a large number of medical segmentation datasets are 
described.

Conclusion: Even if there is a pure transformer model without any convolution 
operator, the sample size of medical picture segmentation still restricts the growth 
of the transformer, even though it can be relieved by a pretraining model. More often 
than not, researchers are still designing models using transformer and convolution 
operators.
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Introduction
Medical image segmentation is a significant study area in computer vision, to classify 
medical pictures at the pixel level and then precisely segment the target item. Segmen-
tation datasets are created from unimodal or multimodal pictures obtained by pro-
fessional medical equipment such as magnetic resonance imaging (MRI), computed 
tomography (CT), and ultrasonography (US). Traditional nondeep learning medical 
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picture segmentation approaches depend mostly on thresholding [1], region growth [2], 
border detection [3], and other techniques. To produce superior segmentation results, 
picture features must be manually extracted before segmentation. The feature extraction 
methods for various datasets are frequently diverse, and some professional experience 
is necessary [4–6]. The deep learning-based segmentation approach can automatically 
learn the feature that represents the picture, but it requires a high-performance com-
puter and takes a long time to train the network.

With the continual advancement of computer equipment such as Graphic Process-
ing Units (GPU) in recent years, training most deep learning models is no longer con-
strained. At present, the segmentation model-based convolutional neural network 
(CNN) is extensively employed in a variety of medical picture segmentation applica-
tions [7, 8], including tumor segmentation [9], skin lesion region segmentation [10], left 
and right ventricular segmentation [11], and fundus blood vessel segmentation [12]. 
U-Net [13] is one of the most extensively utilized models. Through skip connections, 
U-Net integrates the multiscale detail information in the picture downsampling pro-
cess with the global properties of low-resolution images. This encoder–decoder design, 
which combines information at multiple scales, considerably enhances segmentation 
model performance and is frequently utilized in the field of medical picture segmenta-
tion. However, CNN can only employ very tiny convolution kernels to balance model 
accuracy and computational complexity, limiting it to a relatively restricted perceptual 
domain. It excels at obtaining local characteristics but falls short of capturing long-
distance dependencies. Similar to domains such as autonomous driving, satellite image 
analysis, and pedestrian recognition, medical image analysis also encounter challenges 
like unclear boundaries [14], low contrast, varying object sizes, and complex patterns. 
Addressing these challenges often hinges on incorporating a broader contextual per-
spective, encompassing global background information.

Through the self-attention process, the popular transformer [15] in machine transla-
tion and sentiment analysis may gather global context information. Following the suc-
cessful application of pure transformer architecture to the field of computer vision by 
ViT [16], an increasing number of transformer-based models have been developed to 
optimize medical picture segmentation approaches (Fig. 1). We analyzed articles pub-
lished in the last 5 years on web of science using two sets of keywords, as shown in Fig. 2. 
The first set of keywords included ’medical image’ and ’segmentation,’ while the second 
set consisted of ’medical image,’ ’segmentation,’ and ’transformer.’ As depicted in Fig. 2a, 
medical image segmentation has consistently remained a prominent research area, 
with nearly 5000 publications each year. The introduction of Vision Transformer (ViT) 
in 2020 marked the beginning of increased interest in using transformers for medical 
image segmentation, leading to rapid growth. The number of articles surged by more 
than 400%, particularly in 2021 and 2022. The finding from Fig. 2b also demonstrates the 
growing proportion of the second group, which is a subset of the first group of literature. 
These statistical findings underscore the significant potential of transformers in the field 
of medical image segmentation.

Currently, several review articles have summarized literature related to Transform-
ers in the field of medical image segmentation. However, these reviews are often con-
text-specific, focusing on different medical applications, such as categorization based 
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on disease types [17], task-oriented summaries [18, 19], or aggregations based on spe-
cific medical images or diseases [20–22]. The synthesis and categorization based on 
network structures are crucial for optimizing deep learning models for diverse tasks, 
yet research in this domain is currently limited. This paper explores recent advance-
ments in research on medical image segmentation tasks using transformer and 
encoder–decoder structural models. It provides a comprehensive study and analysis 
of relevant deep learning network structures, aiming to further uncover the potential 
of transformer and encoder–decoder structural models in medical image segmenta-
tion tasks. The objective is to guide researchers in designing and optimizing network 
structures for practical applications.

Fig. 1 Combining CNN with Transformer improves various medical image segmentation tasks

Fig. 2 Using web of science to retrieve and statistically analyze literature. a Statistics of literature quantity for 
two sets of keywords. b The proportion of literature related to transformers in medical image segmentation 
literature
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In the "Basic model structure" section, we will delve into the pertinent information 
regarding the encoder–decoder structure and transformer. "Medical Image Segmenta-
tion Method Based on Transformer" section will present a comprehensive summary 
of transformer segmentation methods, considering four perspectives: Transformer in 
the encoder, Transformer in the codec, Transformer in the skip connections, and the 
application of the pure Transformer structure. Each subsection within "Medical Image 
Segmentation Method Based on Transformer" section sequentially elaborates on the 
optimization and enhancement details of various models. Detailed evaluation metrics 
for medical image segmentation are outlined in "Evaluation Indicators" section. "Data-
set" section systematically organizes the medical image segmentation datasets suitable 
for reproducing model results. Finally, "Summary and Outlook" will encapsulate the 
conclusion and provide insights for future developments.

Basic model structure
Codec structure in medical image segmentation

Because of the codec structure, the entire network is made up of an encoder module 
and a decoder module. The encoder is primarily responsible for extracting features from 
the input, while the decoder is responsible for additional feature optimization and job 
processing on the encoder’s output. Hinton [23] initially presented this architecture in 
Science in 2006, with the primary goal of compressing and denoising rather than seg-
mentation. The input is an image, which is downsampled and encoded to generate fea-
tures that are smaller than the original picture, a process known as compression, and 
then sent through a decoder, which should restore the original image. For each image, 
we need to save only one feature and one decoder. Similarly, this concept may be applied 
to picture denoising, which involves adding fake noise to the original image during the 
training stage and then inserting it into the codec to restore the original image. This con-
cept was then used for the picture segmentation problem. Encoders in medical picture 
segmentation tasks are often based on existing backbone networks such as VGG and 
ResNet. The decoder is often constructed to meet the job requirements, labeling each 
pixel progressively by upsampling. In 2015, Long introduced a groundbreaking approach 
called the Fully Convolutional Neural Network (FCN) [24] for semantic segmentation, 
as illustrated in Fig. 3a. The FCN converts the CNN’s final fully connected layer to a con-
volutional layer and merges features from multiple layers using simple skip connections. 
Finally, deconvolution restoration is used to achieve end-to-end picture segmentation. 
The FCN segmentation results are far from comparable to the manual segmentation 
results because of upsampling and fusing features of various depths. There are still many 
locations with segmentation faults, particularly around the edges. At the same time, the 
architecture of the FCN’s single-path topology makes it impossible to preserve meaning-
ful spatial information in upsampled feature maps and lacks network space consistency.

One of the most often used models in medical picture segmentation tasks is the U-Net 
model, which is built on the principle of FCN to extract multiscale features. As shown 
in Fig.  3c, the U-Net network initially executes four downsampling operations on the 
input picture to extract image feature information, followed by four sets of upsampling. 
To assist the decoder in repairing the target features, a skip connection with a symmet-
ric structure is inserted between the downsampling and upsampling procedures. On the 
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right, the output of the downsampled convolutional block is concatenated with the input 
of the deconvolutional block with the same depth. The initial difference between U-Net 
and FCN is that U-Net is extremely symmetric, and the decoder is very similar to the 
encoder, but FCN’s decoder is quite simple, simply utilizing a deconvolution operation 
and no convolutional structure thereafter. The skip connection is the second distinction. 
FCN uses summation, whereas U-Net employs concatenation. In MICCAI 2016, Cicek 
et  al. expanded 2D U-Net to 3D U-Net and utilized 3D U-Net [25] to segment dense 
collective pictures from sparse annotations. nnU-Net [26] is an adaptive framework for 
any dataset based on U-Net, 3D U-Net, and U-Net Cascade. It can automatically adjust 
all hyperparameters according to the properties of a given dataset without human inter-
vention throughout the process, achieving advanced performance in six well-recognized 
segmentation challenges. U-Net has quickly become an essential network model in med-
ical picture segmentation due to its great performance and unique topology.

Transformer

Benjio’s team proposed the attention mechanism in 2014, and it has since been widely 
used in various fields of deep learning, such as computer vision to capture the recep-
tive field on an image, or NLP to locate key tokens or features. The multihead attention 
mechanism, position encoding, layer regularization [27], feedforward neural network, 
and skip connection are the main components of the encoder. The decoder differs from 
the encoder in that it includes an additional masked multihead attention module in the 

Fig. 3 Codecs and transformer architectures. a FCN network structure [24]. b A transformer block [15]. c 
Classical U-Net architecture [13]
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input layer, but the rest of the components are the same. The self-attention mechanism is 
an important part of the transformer, and its unique design allows it to handle variable-
length inputs, capture long-distance dependencies, and seq2seq.

where q, k, and v are vectors of input X after linear mapping, and dk is the dimension of 
the vector. After parallel computing, the multihead attention mechanism extracts fea-
tures from multiple self-attention mechanism modules and concatenates them in the 
channel dimension. Various groups of self-attention mechanisms can learn various types 
of feature representations from subspaces at various locations.

where Q, K, and V are matrices made up of multiple q, k, and v vectors. 
i = 1, 2, . . . ,H; dk = dv = dmodel/H ; WQ

i  and WK
i  are matrices in the form of ( dmodel , 

dk ), WV
i  is matrices in the form of ( dmodel , dv ), and the three matrices are parameter 

matrices used to map input.
The decoder’s masked multihead attention mechanism takes into account the fact 

that during the testing and verification phases, the model can only obtain information 
before the current position. To avoid the model’s reliance on information after the cur-
rent position in the testing phase, the information after the current position is masked in 
the training phase, ensuring that only information before the position is used to infer the 
current result. Because of the unique design of self-attention, it is insensitive to sequence 
position information, which is important in both natural language processing and com-
puter vision tasks, so position information must still be incorporated into transformers. 
Transformers frequently use sine and cosine functions to learn position information.

Layer regularization overcomes batch regularization’s shortcoming of making it dif-
ficult to handle tasks with variable input sequences. It shifts the scope of regularization 
from across samples to within the same sample’s hidden layer, so that regularization is 
independent of input size. Skip connection is a widely used technique for improving the 
performance and convergence of deep neural networks, as it alleviates the convergence 
of nonlinear changes via the linear components propagated through the neural network 
layers. If the patch is too small in the transformer, there will be a false-gradient explosion 
or disappearance.

Vision transformer

In 2020, Google introduced the ViT [16], a model that leverages the transformer archi-
tecture for image classification. ViT innovatively partitions input images into multiple 
patches, each measuring 16x16 pixels. These patches are then individually transformed 
into fixed-length vectors and integrated into the Transformer framework, as illustrated 
in Fig.  4a. Subsequent encoder operations closely mirror the original Transformer 

(1)Attention(q, k , v) = softmax

(

qkT
√

dk

)

v,

(2)
MultiHead (Q,K ,V ) = Concat

(

Attention
(

QW
Q
i ,KWK

i ,VWV
i

)

,

· · · ,Attention
(

QW
Q
H ,KWK

H ,VWV
H

))

Wo
,



Page 7 of 22Pu et al. BioMedical Engineering OnLine           (2024) 23:14  

architecture, as depicted in Fig. 4b. While not the pioneer in exploring transformers for 
computer vision, ViT stands out as a seminal contribution due to its “simple” yet effec-
tive model, robust scalability (larger models demonstrating superior performance), and 
its groundbreaking influence on subsequent research in the field. With sufficiently large 
pretraining datasets, ViT surpasses CNN, overcoming the limitation of transformers 
lacking inductive bias and showcasing enhanced transfer learning capabilities in down-
stream tasks.

In March 2021, Microsoft Research Asia proposed a universal backbone network 
named Swin Transformer [28]. The Swin Transform Block is constructed differently 
from ViT, employing Window Multihead Self-Attention (W-MSA) and Shifted Window 
Multi-head Self-Attention (SW-MSA). When computing W-MSA, an 8x8 feature map is 
divided into 2x2 patches, each with a size of 4x4. For SW-MSA, the entire set of patches 
is shifted by half the patch size, creating a new window with non-overlapping patches. 

Fig. 4 Key components of the ViT and Swin Transformer. a The ViT architecture, showcases the 
transformation of input feature maps into patches, followed by linear mapping and processing through the 
Transformer. The result undergoes classification via an MLP. b The details of the ViT encoder, emphasizing the 
integration of multihead attention modules. c The feature map evolution in Swin Transformer during W-MSA 
and SW-MSA computation, highlighting the cyclic shift operation for integrating shifted window feature 
maps. d Swin Transformer Block, outlining its computational process
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This approach introduces connections between adjacent non-overlapping windows, sig-
nificantly increasing the receptive field. However, it also raises the issue of increasing the 
number of patches within the window from 4 to 9. To maintain the original patch count, 
the authors employ a cyclic shift operation, as illustrated in Fig. 4c. W-MSA calculates 
attention within each window, while SW-MSA utilizes global modeling, akin to ViT, to 
establish long-distance dependencies. As depicted in Fig. 4d, Swin Transformer’s unique 
design not only introduces local feature extraction capabilities similar to convolution 
but also substantially reduces computation. Swin Transformer achieves state-of-the-art 
performance in machine vision tasks such as image classification, object detection, and 
semantic segmentation.

Medical image segmentation method based on transformer
Prior to the application of transformer to the field of medical image segmentation, seg-
mentation models such as FCN and U-Net performed well in various downstream image 
segmentation tasks. Researchers have used various methods to improve the U-Net 
model to meet the needs of different tasks and data, and a series of variant models 
based on the U-Net model have appeared; for example, 3D U-Net [25], ResUNet [29], 
U-Net++ [30], and so on. However, since the introduction of ViT, an increasing number 
of researchers have focused on the attention mechanism, attempting to apply it locally 
or globally in complex network structures to achieve better results. By incorporating a 
transformer module during encoder downsampling, TransUNet [31] outperforms mod-
els such as V-Net [32], DARR [33], U-Net [13], AttnUNet [34], and ViT [16] in a vari-
ety of medical applications, including multiorgan segmentation and heart segmentation. 
TransUNet, like U-Net, has become a popular network for medical image segmentation. 
Because of the complexities of medical image segmentation tasks, high-quality manually 
labeled datasets can only be produced on a small scale. To achieve better performance 
on medical image datasets, it is necessary to continuously optimize the application of 
transformer in the encoder/decoder network. Following that, this paper will discuss 
transformer-based medical image segmentation methods based on model optimization 
position.

Fig. 5 TransUnet applied transformer structure to medical image segmentation firstly [31]. a schematic of 
the Transformer layer; b architecture of the proposed TransUNet
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Transformer encoder structure

TransUNet, depicted in Fig. 5, stands as the pioneering application of the transformer 
model in the realm of image segmentation. The authors serialize the feature map 
obtained through U-Net downsampling and then process the serialized features with a 
block made up of 12 original transformer layers. The benefits of long-distance depend-
encies can be obtained using transformers to capture global key features. The experi-
mental results show that TransUNet outperforms the previous best model, AttnUNet, 
on the Synapse dataset. TransBTS [35] replaces 2D CNNS with 3D CNNS and uses 
a structural design similar to TransUNet to achieve 3D multimodal brain tumor seg-
mentation in MRI imaging. Similar to TransBTS, the UNETR [36] employs the same 12 
transformer blocks in its encoder. However, UNETR differs in that it utilizes the out-
puts of the 3rd, 6th, 9th, and 12th transformer blocks as inputs for four downsampling 
convolutional neural network modules in the encoder. UNETR demonstrates excellent 
performance in both BTCV [37] and MSD [38], two 3D image segmentation tasks. Fur-
thermore, Swin UNETR [39] goes a step further by replacing the Transformer blocks 
in UNETR with Swin Transformer blocks, achieving superior results on the BraTS2021 
dataset compared to nnU-Net, SegResNet, and TransBTS. AFTer-UNet [40] employs an 
axial fusion transformer encoder between CNN encoder and CNN decoder to integrate 
contextual information across adjacent slices. The axial Fusion transformer encoder cal-
culates attention along the axial direction and within individual slices, reducing com-
putational complexity. This approach significantly outperforms models like CoTr and 
SwinUnet on multiorgan segmentation datasets, including BCV [41], Thorax-85 [42], 
and SegTHOR [43].

In general, most methods for dealing with 2D image segmentation can also be used 
to deal with continuous video data, as long as the video data are input as a 2D image 
frame by frame. The cost of this is that we cannot fully exploit the time continuity of 
the video data. Zhang et  al. [44] created an additional convolution branch based on 
TransUNet to extract the features of the previous frame data, and then combined the 
results of the downsampling of the two parts with the results of the upsampling via the 
skip connection to achieve a better video data segmentation effect. X-Net [45] extends 
U-Net by introducing an additional Transformer-based encoder–decoder branch, facili-
tating information fusion across branches through skip connections. Zhang et al. pro-
posed a new architecture called TransFuse, which can run convolution-based and pure 
transformer-based encoders in parallel and then fuse the features from the two branches 
together to jointly predict segmentation results via the BiFusion module, greatly improv-
ing the model’s inference speed [46]. This work adds a new perspective to the use of 
transformer-based models by investigating whether a network using only transformers 
and no convolution can perform better segmentation tasks.

The primary goal of the self-attention mechanism is to model the long-distance 
dependence between pixels to obtain global context information. On the other hand, 
convolution produces feature maps at various scales that frequently contain complex 
information. Before the appearance of ViT, researchers discovered numerous effec-
tive methods for expanding the convolution receptive field using convolution. Dilated 
convolutions are the most well-known of these, and DeepLabV3 [47] uses dilated spa-
tial pyramid pooling to great effect, while CE-Net [48] captures multiscale information 
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using dense dilated convolutions and residual multikernel pooling. As a result, taking 
into account global context information and multiscale information is a very effective 
method. Yuanfeng Ji [49] et  al. proposed MCTrans, a self-attention transformer mod-
ule and a cross-attention transformer module. The self-attention transformer module 
performs pixel-level context modeling at multiple scales. To ensure intraclass consist-
ency and interclass discrimination, the cross-attention transformer module is used to 
learn the corresponding semantic relationship of different categories, that is, the dif-
ference between feature expressions of different classes and the connection between 
feature expressions of different classes. DC-Net [50] also reflects the emphasis on mul-
tiscale features in this model. The authors create a Global Context Transformer Encoder 
(GCTE) and a module for Adaptive Context Fusion (ACFM). GCTE connects the trans-
former encoder to the back of CNN down-sampling, serializes the multiscale features 
obtained by CNN and the input image, and then obtains a better feature representation 
via the transformer encoder. The ACFM is made up of four cascaded feature decoding 
blocks, each with two 1 × 1 convolutions and a 3 × 3 deconvolution. The adaptive weight 
ωi is converted by the authors into adaptive spatial weight (APW) and adaptive channel 
weight (ACW). The ACFM can better fuse context information and improve decoder 
performance using the two weight parts of the APW and ACW.

Although transformers have achieved outstanding results in a variety of downstream 
medical image tasks, it is undeniable that they have more parameters to train than con-
volutional models. As a result, how to optimize the model using global context infor-
mation obtained by the  transformer to meet the requirements of lightweight tasks for 
model size and inference speed has become a hot topic in research. SA-Net [51] was 
proposed in early transformer-related research to reduce the number of parameters in 
CNN and transformer using a random ranking algorithm. The sandwich parameter-
shared encoder structure [52] was investigated by Reid M et al. In the field of medical 
image segmentation, the CoTr model [53] was proposed by Xie Y et  al. The encoder 
structure was created by combining the bridge structure DeTrans, which was made up 
of the MS-DMSA layer and only focused on a small set of key sampling locations around 
the reference location, with CNN, which greatly reduced the time and space complex-
ity. TransBridge [54] employs a bridge structure similar to CoTr, but adds a shuffle layer 
and group convolution to the transformer’s embedding part to reduce the number of 
parameters and the length of the embedding sequence. The experimental results show 
that after 78.7% parameter reduction, on the EchoNet-Dynamic dataset, TransBridge 
outperforms CoTr, ResUNet [29], DeepLabV3 [55], and other models.

Transformer codec structure

TransUNet demonstrated the importance of transformers in encoders, and the sym-
metries of encoder–decoder architectures make it simple to extend transformers to 
decoder architectures. U-Transformer [56] uses the Multihead Cross-attention Module 
(MHCA) to combine the high-level feature maps with complex abstract information and 
the high-resolution feature maps obtained through the skip connection in each splic-
ing process of upsampling and skip connection, which is used to suppress the irrelevant 
regions and noise regions of the high-resolution feature maps. The feature map obtained 
by convolution is expanded pixel by pixel as a transformer patch in the encoder section, 
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and then a single transformer layer is used to extract global context information. Luo 
C et al. [57] improved the use of transformer in encoders based on the TransUNet and 
U-Transformer. To build the UCATR model, a block of 12 transformer layers is used 
to replace the single MultiHead self-attention in the U-Transformer. The experimental 
results show that the UCATR model can recover more refined spatial information than 
the original TransUNet and U-Transformer. SWTRU [58] proposes a novel Star-shaped 
Window self-attention mechanism to be applied in the decoder structure and intro-
duces the Filtering Feature Integration Mechanism (FFIM) to integrate and reduce the 
dimensionality of the fused multilayer features. These improvements result in a better 
segmentation effect in CHLISC [59, 60], LGG [61, 62], and ISIC2018 [63]. Since in most 
vision tasks the visual dependencies between regions nearby are usually stronger than 
those far away, MT-UNet [64] performs local self-attention on fine-grained local context 
and global self-attention only on coarse-grained global context. When calculating global 
attention maps, axial attention [65] is used to reduce the amount of calculation, and fur-
ther introduce a learnable Gaussian matrix [66] to enhance the weight of nearby tokens. 
MT-UNet performs better than models such as ViT and TransUNet on the Synapse and 
ACDC datasets.

Although transformers have done much useful work in medical image segmenta-
tion tasks, training and deploying transformer-based models remains difficult due to a 
large amount of training time and memory space overhead. To reduce the impact of the 
sequence length overhead, one common method is to use the feature maps obtained by 
downsampling as the input sequence rather than the entire input image. High-resolution 
images, on the other hand, are critical for location-sensitive tasks such as medical image 
segmentation, because the majority of false segmentations occur within the region of 
interest’s boundary range. Second, in medical image data with small data volumes, trans-
formers have no inductive bias and can be infinitely enlarged.

Gao Y et al. [67] combined the benefits of convolution and the attention mechanism 
for medical image segmentation, replacing the last layer of convolution with a trans-
former module in each downsampling block, avoiding large-scale transformer pretrain-
ing while capturing long-distance correlation information. At the same time, to extract 
the detailed long-distance information on the high-resolution feature map, two projec-
tions are used to project the K and V (K and V ∈ Rn×d ) into low-dimensional embedding 
( K and V ∈ Rk×d , k = hw ≪ n ), where h and w are the reduced sizes of the feature map 
after subsampling, which reduces the overall complexity from O(n2) to O(n). In addition, 
the authors also learn the content–location relationship in medical images using rela-
tive position encoding in the self-attention module. Valanarasu J et al. [68] proposed an 
MedT model based on a gated location-sensitive attention mechanism, which allowed 
the model to perform well on smaller datasets during training. Feiniu Yuan et al. [69] 
introduced CTC-Net, a synergistic network that combines both CNN and transformer 
for medical image segmentation. This approach involves feature extraction through both 
a CNN encoder and a Swin Transformer encoder, followed by feature fusion facilitated 
by an Feature Complementary Module (FCM) incorporating channel attention and spa-
tial attention mechanisms.
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Transformer in skip connections

The mechanism of skip connections was initially introduced in U-Net, aiming to bridge 
the semantic gap between the encoder and decoder, and has proven to be effective in 
recovering fine-grained details of the target objects. Subsequently, UNet++ [30], Att-
nUnet [34], and MultiResUNet [70] further reinforced this mechanism. However, in 
UCTransUnet [71], the authors pointed out that skip connections in U-Net are not 
always effective in various medical image segmentation tasks. For instance, in the GlaS 
[72] dataset, a U-Net model without skip connections outperforms the one with skip 
connections, and using different numbers of skip connections also yields different 
results. Therefore, the authors considered adopting a more suitable approach for feature 
fusion at different depths. They replaced the simple skip connections in U-Net with the 
CTrans module, consisting of multiscale Channel Cross fusion with Transformer (CCT) 
and Channel-wise Cross-Attention (CCA). This modification demonstrated competitive 
results on the GlaS and MoNuSeg [73] datasets.

Pure transformer structure

Researchers have attempted to use transformer as a complete replacement for convo-
lution operators in codec structures due to its significant advantage in global context 
feature extraction. Karimi D et al. [74] pioneered the nonconvolutional deep neural net-
work for 3D medical image segmentation, demonstrating through experiments that a 
neural network fully composed of transformer modules can achieve segmentation accu-
racy superior to or comparable to the most advanced CNN model 3D UNet++ [30].

Based on the Swin Transformer, Cao H et  al. [75]created Swin-Unet, a pure trans-
former model similar to U-Net. The model employs two consecutive Swin Transformer 
blocks as a bottleneck, which are then assembled in a U-Net-like configuration. The 
structure of Swin-Unet is shown in Fig.  6. By comparing Swin-Unet with V-Net [32], 
DARR [33], ResUnet [29], AttnUnet [34] and TransUnet [31] on two datasets of Syn-
apse and ACDC, the authors obtained significantly better performance than other mod-
els. Swin-PANet [76] is a dual supervision network structure proposed by Zhihao Liao 
et al. Swin-PANet is made up of two networks: a prior attention network and a hybrid 
transformer network. The prior attention network applies the sliding window-based 
subattention mechanism to the intermediate supervision network, whereas the hybrid 
transformer network aggregates the features of the jump connection and the prior atten-
tion network and refines the boundary details. GlaS [72] and MoNuSeg [73] yield bet-
ter results. DS-TransUNet [77] is constructed upon the SwinTransformer framework 
and enhances feature representation with a dual-scale encoder. More precisely, the 
approach employs medical images segmented at both large and small scales as inputs to 
the encoder. This allows the model to effectively capture coarse-grained and fine-grained 
feature representations.

These models demonstrate the Swin Transformer’s utility for medical image datasets. 
Because the Swin Transformer is more lightweight and suitable for medical image seg-
mentation tasks than transformers that require large amounts of data pretraining in 
NLP, further investigating its application can help overcome the challenge of limiting 
model progress in medical image datasets.
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Evaluation indicators
The objective evaluation of the performance of medical image segmentation algo-
rithms is essential for their practical application in diagnosis. The segmentation 
results must be assessed both qualitatively and quantitatively. For segmentation tasks 
with multiple categories, let k be the number of classes in the segmentation result, pij 
be the total number of pixels whose class i is predicted to be the total number of class 
j, and pii be the total number of pixels whose class i is predicted to be the total num-
ber of class i. When k = 2 , we can divide the results of a segmentation task with only 
two classes into four categories: True positive (TP) indicates that both the observed 
and predicted data classes are correct. True negative (TN) indicates that both the 
actual and predicted data classes are incorrect. The term false positive (FP) refers to 
when the actual data class is false while the predicted data class is true. The term false 
negative (FN) denotes that the actual data class is true while the predicted data class 
is false. The following are examples of commonly used evaluation metrics.

The F1 score, or F-measure, is a metric used in binary classification analysis, repre-
senting the harmonic mean of precision and recall. Precision is the ratio of true posi-
tive results to all identified positive results, while recall is the ratio of true positive 

Fig. 6 The Swin-Unet structure [75]
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results to all actual positive instances. By combining precision and recall in a single 
metric, the F1 score provides a balanced measure of a test’s accuracy. It ranges from 
0 to 1, with 1 indicating perfect precision and recall, and 0 if either precision or recall 
is zero.

The prediction results are evaluated using pixel accuracy (PA), which stands for the pro-
portion of total pixels classified correctly over the total number of pixels of original sam-
ples. The PA value is closer to one, the segmentation is more accurate. The closer the 
value is to one, the more accurate the segmentation. The formula for calculation is as 
follows:

Mean pixel accuracy (MPA) is a step up from PA. It calculates PA for each class sepa-
rately, then averages PA for all classes.

The Jaccard index, or Jaccard similarity coefficient, serves as a statistical measure to 
assess the similarity and diversity between sample sets. Introduced by Grove Karl Gilbert 
in 1884, it is formulated as the ratio of verification [78]. The Jaccard coefficient quantifies 
the similarity of finite sample sets by calculating the size of their intersection divided by 
the size of their union. This metric is also referred to as Intersection over Union (IoU).

The mean intersection over union (mIoU) is used to calculate different categories of IoU 
in the image, and then calculate the average value is calculated as the final result. For 
image segmentation, the calculation formula of mIoU is as follows:

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 = 2×
Precision× Recall

Precision+ Recall

(6)PA =

∑k
i=0 pii

∑k
i=0

∑k
j=0 pij

.

(7)MPA =
1

k + 1

k
∑

i=0

pii
∑k

j=0 pij

(8)J (A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

(9)IoU =

1
∑

i=0

pii
∑1

j=0 pij
+

∑1
j=0 pji − pii
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The Dice coefficient is a fixed similarity measurement function that is commonly used 
to determine the similarity of two samples. In the segmentation task, we consider the 
model prediction result and the real mask to be two sets with the same number of ele-
ments, and the value of the Dice coefficient is used to judge the quality of the model 
prediction result.

The directed average Hausdorff distance from point set X to Y is given by the sum of 
all minimum distances from all points from point set X to Y divided by the number of 
points in X. The average Hausdorff distance can be calculated as the mean of the directed 
average Hausdorff distance from X to Y and directed average Hausdorff distance from Y 
to X. In the medical image segmentation domain, the point sets X and Y refer to the 
voxels of the ground truth and the segmentation, respectively. The average Hausdorff 
distance between the voxel sets of ground truth and segmentation can be calculated in 
millimeters or voxels.

Dataset
Unlike general image datasets, medical image annotation requires doctors with pro-
fessional experience to devote significant time to annotation. The majority of the early 
pathological image data are of a small scale. Deep learning models, particularly trans-
former-based models, rely heavily on large-scale data to perform well. A novel labeling 
strategy involves training a deep learning model with a small amount of data and then 
manually modifying the model’s prediction results to continuously expand and improve 
the dataset. Some public datasets used in many popular medical image segmentation 
tasks have been compiled in Table 1 to assist readers in conducting relevant experiments 
quickly. In the “Resolving power (pixel)” column of Table 1, “~” indicates that the image 
resolution in the dataset is not uniform. For example, in the GLAS dataset, the mini-
mum image resolution is 567 × 430 and the maximum resolution is 755 × 522. “*” is 
only used in 3D image datasets to indicate that the number of channels in the dataset is 
not fixed, even if the image resolution is the same.

Summary and outlook
Transformers have emerged as a hot topic in the field of deep learning, and they can 
be found in a variety of downstream tasks in NLP and computer vision. The hybrid 
model of the convolutional neural network and transformer performs well in the task 

(10)mIoU =
1

k + 1

k
∑

i=0

pii
∑k

j=0 pij
+

∑k
j=0 pji − pii

.

(11)DSC =
1

k + 1

k
∑

i=0

2× pii
∑k

j=0 pij
+

∑k
j=0 pji

(12)
AVD =

1
X

∑

x∈X

min
y∈Y

d(x, y)+ 1
Y

∑

y∈Y

min
x∈X

d(x, y)

2
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of medical image segmentation. However, using transformer to process medical images 
still presents significant challenges:

1. The medical image dataset is small: labeling medical images requires doctors with 
professional experience, and medical images have high resolution, so labeling medi-
cal images takes time and money. Existing medical image datasets have a small sample 
size. Using transformers to their full potential in capturing long-distance dependencies 
necessitates more samples, which most medical image datasets lack.

2. Transformer lacks location information: Object location information is critical for 
segmentation results in medical image segmentation tasks. Transformer can only embed 
position information through learning because it does not contain position information. 
However, the location information is different for different data sets, and the require-
ments for location information are different, so the methods of learning location are also 
different, which has a significant impact on the model’s generalization.

3. The self-attention mechanism only works between image patches: after the image 
is serialized, the calculation of the attention weight is only performed between image 
patches, and the relationship between the pixels within the image patch is ignored. Criti-
cal information between pixels can affect model accuracy when segmenting, recogniz-
ing, or detecting small objects and tasks with blurred boundaries.

Table 1 Medical image dataset

Datasets Year Tasks Resolving power(pixel) Sample

STARE [79] 2000 Retinal vascular segmentation 700 × 605 20

DRIVE [80] 2004 Retinal vascular segmentation 768 × 584 40

Alizarine [81] 2010 Corneal endothelial cell segmentation 768 × 576 30

CHASE-DBI [82] 2012 Retinal vascular segmentation 999 × 960 28

HRF [83] 2013 Retinal vascular segmentation 3304 × 2336 45

GLAS [72] 2016 Glandular segmentation 567 × 430 ∼775 ×  522 165

MoNuSeg [73] 2017 Nuclear segmentation of multiple organs 1000 × 1000 30

DSB18 [84] 2018 Nuclear segmentation ∼ 670

TNBC [85] 2018 Nuclear segmentation 512 × 512 50

IDRiD [86] 2018 Segmentation of fundus lesions 4288 ×  2848 516

DDR [87] 2019 Segmentation of fundus lesions 512 × 512 757

PanNuke [88] 2019 Multiple organ pan cancer cell segmentation 256 × 256 7904

Brain US [89] 2019 Ventricular septum segmentation 512× 512 1629

Kvasir-SEG [90] 2020 Gastrointestinal polyp segmentation 332 × 487∼1920 × 1072 1000

TM-EM3000 [91] 2021 Corneal endothelial cell segmentation 266 ×  480 184

PROMISE12 [92] 2012 Prostate segmentation ∼ 100

BTCV [37] 2015 Abdominal organ segmentation 512 × 512×∗ 50

BCV [41] 2015 Abdominal organ segmentation ∼ 30

ACDC [93] 2018 Cardiac segmentation ∼ 150

BraTS [94] 2018 Brain tumor segmentation 240 × 240 × 155 285

MSD [38] 2018 Decathlon Division ∼ 2633

LiTS [60] 2019 Liver tumor segmentation 512 × 512×∗ 131

KiTS19 [95] 2019 Renal tumor segmentation ∼ 210

SegTHOR [43] 2019 Chest organ segmentation ∼ 40

Thorax-85 [42] 2021 Chest organ segmentation ∼ 85
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Based on the transformer’s current status and challenges in medical image segmenta-
tion, the following suggestions and prospects for future research are made:

1. The transformer’s ability to extract global key features from large datasets has been 
leveraged to train the model on large datasets with auxiliary tasks or to learn exist-
ing labeled image features to automatically generate high-confidence pseudo labels. 
These approaches are effective in addressing the challenge of small-scale medical 
image datasets.

2. Integrating prior knowledge about the location can assist the model in highlighting 
important features of the target task. The position encoding for transformer can be 
thoughtfully designed to incorporate prior knowledge of the image position, thereby 
enhancing the model’s ability to generalize.

3. Optimizing the model structure is crucial. A large receptive field transformer can 
extract global key features, while a convolutional neural network is better suited 
for capturing small local features through continuous convolution pooling, which 
is essential for segmentation tasks. Therefore, the fusion strategy between the two 
methods needs to be optimized to fully leverage their respective strengths and ensure 
the model’s optimal performance.

The transformer has become one of the most popular deep learning frameworks in 
the last 2 years. It can alleviate the problems of scattered target regions and large shape 
differences in medical image segmentation tasks due to its advantage of obtaining global 
context. As shown in Fig.  7, both CNN and transformer have their advantages. The 
transformer can use the convolutional neural network structure to fully exploit the abil-
ity of sample information to extract multiscale local spatial features, allowing the model’s 
global and local information to achieve a better balance and improve model perfor-
mance. We summarize recent research on the hybrid model of convolutional neural net-
works and transformers in this paper. Transformers have good development prospects 
and high research significance in the field of medical image segmentation, based on the 
performance of the model in this paper.
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