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Abstract 

Background:  Osteoporosis is a significant health problem in the skeletal system, asso-
ciated with bone tissue changes and its strength. Machine Learning (ML), on the other 
hand, has been accompanied by improvements in recent years and has been 
in the spotlight. This study is designed to investigate the Diagnostic Test Accuracy 
(DTA) of ML to detect osteoporosis through the hip dual-energy X-ray absorptiometry 
(DXA) images.

Methods:  The ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore 
Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE were systematically 
searched until June 2023 for studies that tested the diagnostic precision of ML model-
assisted for predicting an osteoporosis diagnosis.

Results:  The pooled sensitivity of univariate analysis of seven studies was 0.844 (95% 
CI 0.791 to 0.885, I2 = 94% for 7 studies). The pooled specificity of univariate analysis 
was 0.781 (95% CI 0.732 to 0.824, I2 = 98% for 7 studies). The pooled diagnostic odds 
ratio (DOR) was 18.91 (95% CI 14.22 to 25.14, I2 = 93% for 7 studies). The pooled mean 
positive likelihood ratio (LR+) and the negative likelihood ratio (LR−) were 3.7 and 0.22, 
respectively. Also, the summary receiver operating characteristics (sROC) of the bivari-
ate model has an AUC of 0.878.

Conclusion:  Osteoporosis can be diagnosed by ML with acceptable accuracy, and hip 
fracture prediction was improved via training in an Architecture Learning Network 
(ALN).

Keywords:  Bone diseases, Metabolic, Osteoporosis, Lower extremity, Hip, Artificial 
intelligence, Machine learning, Meta-analysis

Background
Osteoporosis is one of the major health problems in the skeletal system, which is 
associated with changes in bone tissue and its strength in a way that will be prone to 
fracture [1]. This disease is prevalent and can strike people of all nationalities with many 
older men and women [2]. Many factors increase the risk of osteoporotic fractures, such 
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as low peak bone mass, hormonal factors, the use of certain drugs (e.g., glucocorticoids), 
smoking, lack of physical activity, lack of calcium and vitamin D, race, small body size, 
and familial history of skeletal disorders [3].

According to World Health Organization (WHO) reports, 15.7% of men and women 
aged 50 years or more in 2000 in the Americas had osteoporosis [4]. About half of the 
women have some grade of osteopenia in the hip and neck of the femur [5]. Hip fractures 
are more common than any other type, in which half of Caucasian adult females will 
experience an osteoporotic fracture during their life [6]. A hip fracture can increase 
fatality by up to 15% during the 1st year, and as many as above 70% of survivors have a 
profound disability in doing functions [2].

Clinical evaluation of osteoporosis is challengeable and recognizes cases at higher 
risk of hip fracture by Bone Mineral Density (BMD) results [7]. Two factors express the 
BMD; the T score and the Z score [8]. This scale of bone density is commonly used as a 
representative for total bone strength and is indicated as grams of mineral per square 
centimetre or grams per cubic centimetre [9]. Access to average peak bone mass is 
necessary for intercepting osteoporosis. Bone mass is distinguished by dual-energy 
X-ray absorptiometry (DEXA, or DXA), quantitative computed tomography (CT) scan, 
and a peripheral ultrasound [10, 11].

Using DXA has several disadvantages, such as incidence related to measurement faults 
that make happen by the surrounding soft tissues, radiation exposure, and high system 
price [12–14]. The effortless availability of BMD examinations is essential, specifically in 
developing countries [15, 16].

The appropriate way to calculate data collection and extract unexpected risk factors 
for preventive medicine is machine learning (ML) and artificial intelligence (AI). 
ML is a subset of computer science attached to algorithm expansion, authorizing 
the computer to learn from examples [17, 18]. In recent years ML is the new method 
in medical divination models that have transpired specifically in osteoporotic. Few 
ML studies predict osteoporotic fracture and improve hip fracture prediction beyond 
logistic regression (LR) [19]. ML algorithms have been used to indicate the chance of hip 
fractures, length of rehabilitation, patient resource utilization after lumbar spinal fusion, 
and length of aftercare for hip fracture patients [20–23].

ML may help distinguish osteoporosis risk, grading, and conclusion; a complex of 
clinical, laboratory, and DXA variables show positive results [24, 25]. Diagnostic Test 
Accuracy (DTA) research can investigate the role of ML in osteoporosis diagnosing.

Results
Study selection and characteristics

Finally, 57 studies were included in the primary search, and seven duplicate studies were 
removed. Thirteen retrospective studies were included after the title, abstract, and full 
paper screening; then, seven studies were included for analysis. Six studies were excluded 
because no diagnostic accuracy was reported (Fig. 1) [15, 19, 20, 24, 26–34]. The mean 
age of people was 73.84 ± 8.45 years, and 159,644 (50.75%) were female (Table 1). The 
ML algorithms were classified into an artificial neural network (ANN), Support Vector 
Machine (SVM), Random Forest (RF), k-nearest neighbors (KNN), Logistic Regression 
(LR), RSF, AdaBoost, CatBoost, ExtraTrees, XGBoost, Deep-TEN, ResNet-18, RUSBoost, 
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Superlearner, XGBoost, NN, Decision Trees (DT), CNN; ResNet18, ResNet34, Goog-
leNet, EcientNet b3, EcientNet b4, XGB, BFDA, CB, LR, bagFDA, xgbTree [15, 19, 20, 
24, 26–34]. Finally, all included studies used ML with ANN, SVM, RF, KNN, LR, and DT 
algorithms (Table 1) [15, 19, 28–30, 32, 33].

Risk of bias within studies

The QUADAS-2 criteria assess the validity of included research and the possibility of 
bias (Fig. 2). There were no studies with high-risk biases. The points will be symmetri-
cally distributed around the true effect in the shape of an inverted funnel when publica-
tion bias is very low, as shown in Fig. 3.

Diagnostic test accuracy (DTA) of all included studies

Overall, this is of all DTA; the pooled sensitivity of univariate analysis of seven stud-
ies was 0.844 (95% CI 0.791 to 0.885, I2 = 94% for seven studies) shown in Fig.  4. The 
pooled specificity of univariate analysis was 0.781 (95% CI 0.732 to 0.824, I2 = 98% for 
7 studies) as shown in Fig. 5. The pooled diagnostic odds ratio (DOR) was 18.91 (95% 
CI 14.22 to 25.14, I2 = 93% for 7 studies) as shown in Fig. 6. The positive likelihood ratio 
(LR+) ranges from 3.23 to 4.25 with pooled mean of 3.7 (Table 2); likewise, the negative 

Fig. 1  Study flow diagram showing how to extract articles
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Table 1  Summary of findings

ID Expert 
radiologists 
involved as a 
control

Mean age, 
years

Gender, N (%) AI model Reference 
standard

Outcomes

Male Female

Ou Yang et al. 
(2021)/Taiwan 
[33]

Yes 81.4 ± 6.95 3053 2929 ANN, SVM, RF, 
KNN, LR

DXA Machine 
learning 
algorithms 
improve the 
performance of 
screening for 
osteoporosis

de Vries et al. 
(2021)/The 
Netherlands 
[26]

Yes  > 50 2564 5014 ANN, RSF DXA Major 
Osteoporotic 
Fracture can 
be done with 
adequate 
discriminative 
performance

Shtar et al. 
(2021)/Israel 
[20]

Yes 83.1 ± 7.4 514 1382 AdaBoost, 
CatBoost, 
ExtraTrees, 
KNN, RF, SVM, 
XGBoost

DXA hip fracture 
patients are 
superior 
to linear 
and logistic 
regression 
models

Kuo et al., 
(2020)/China 
[32]

Yes 66.1 ± 1.7 18 151 Deep-TEN, 
ResNet-18

DXA The bone 
texture model 
can detect 
osteoporosis 
and predict the 
FRAX score

Engels et al., 
(2020)/
Germany [27]

Yes 75.67 ± 6.20 147,377 140,709 LR, SVM, RF, 
RUSBoost, 
Superlearner, 
XGBoost

DXA Super learners 
showed poorer 
discrimination 
and calibration 
in the validation 
set

Villamor et al., 
(2020)/Spain 
[34]

Yes 81.4 ± 6.95 NA 137 SVM, LR, NN, 
RF

DXA Prediction 
of the hip 
fracture without 
interrupting the 
actual clinical 
workflow

Galassi et al., 
(2020)/Spain 
[28]

Yes 81.4 ± 6.95 NA 137 LR, SVM, DT, 
RF

DXA Clinical, 
geometric, and 
biomechanical 
variables 
from the 
finite element 
simulation 
of a side fall 
are used as 
independent 
variables 
to train the 
models

amamoto 
et al. (2020)/
Japan [15]

Yes 82.7 ± 8.3 346 877 CNN; 
ResNet18, 
ResNet34, 
GoogleNet, E
cientNet b3, E
cientNet b4

DXA High accuracy 
for the CNN 
models 
diagnosed 
osteoporosis 
from hip 
radiographs



Page 5 of 15Rahim et al. BioMedical Engineering OnLine           (2023) 22:68 	

likelihood ratio (LR−) spans from 0.19 to 0.26 with pooled mean of 0.22. The SROC of 
the bivariate model has an AUC of 0.878 (Additional file 1: Fig. S1).

The accuracy of all included studies ranges from 0.6975 to 0.78 with a mean of 0.75 
(Table 2), while the precision ranges from 0.589 to 0.6448 with a mean of 0.62 (Table 2), 
the F1 score has a mean of 0.714 and ranges from 0.6783 to 0.7425 (Table 2).

DTA based on algorithms architecture

The Algorithms Architecture analysis was divided into ANN, SVM, RF, KNN, 
LR, and DT. These results reveal a significant difference in the sensitivity of the 
categories of Algorithms architecture (P value = 0.0028) Fig.  4. These results show no 
significant difference in the specificity of the categories of Algorithms architecture (P 
value = 0.3086) Fig. 5. These results indicate no significant difference in the DOR of the 
categories of Algorithms architecture (P value = 0.0843) Fig. 6.

DTA based on gender

The DTA analysis was divided into two subgroups, male and female. These results 
show no significant difference in the sensitivity of the categories of gender (P 

DXA Dual-energy X-ray absorptiometry, Deep-TEN Deep Texture Encoding Network, ResNet-18 three blocks of Residual 
Network with 18 layers, SVM Support Vector Machine with RBF radial basis function, LR Logistic Regression, SNN Shallow 
Neural Networks, RF Random Forest, convolutional neural network (CNN), Decision Trees (DT), eXtreme Gradient Boosting 
(XGB), BFDA Bagged Flexible Discriminant Analysis, CB CatBoost, ANN artificial neural network, bagFDA bootstrap 
aggregated flexible discriminant analysis model, xgbTree eXtreme Gradient Boosting, RSF Random Survival Forests, GB 
Gradient boosting, KNN k-nearest neighbors algorithm

Table 1  (continued)

ID Expert 
radiologists 
involved as a 
control

Mean age, 
years

Gender, N (%) AI model Reference 
standard

Outcomes

Male Female

Erjiang et al., 
(2020)/China 
[24]

Yes 60.24 ± 10.56 107 1162 XGB, BFDA, 
NN, CB, LR, RF, 
SVM

DXA MLTs could 
improve DXA 
detection of 
osteoporosis 
classification in 
older men and 
women

Kong et al., 
(2020)/
Republic of 
Korea [31]

Yes 61.2 ± 8.7 970 1257 CB, SVM, LR DXA CatBoost 
model, the 
top predicting 
factors

Hussain 
et al., (2019)/
Republic of 
Korea [30]

Yes NA 150 RF DXA RF will reduce 
workload and 
improve the 
use of X-ray 
devices

Ho-Le et al., 
(2017) [29]/
Australia

Yes 69.1 ± 6.4 NA 1167 ANN, LR, KNN, 
SVM

DXA ANNs can 
predict hip 
fractures

Kruse et al., 
(2017) [19]/
Denmark

Yes 74.5 ± 65.5, 
69.3 ± 59.9

717 4722 bagFDA, 
xgbTree

DXA Machine 
learning can 
improve 
hip fracture 
prediction 
beyond logistic 
regression
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Fig. 2  A Risk of bias and applicability concerns graph; review authors’ judgments about each domain 
presented as percentages across included studies. B Risk of bias and applicability concerns summary; review 
authors’ judgments about each domain for each included study

Fig. 3  Funnel plot showing the low likelihood of publication bias in all included studies
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value = 0.3275) (Additional file 1: Fig. S2). These results indicate a significant differ-
ence in the specificity of the categories of gender (P value = 0.0226) (Additional file 1: 

Fig. 4  Univariate sub-group analysis of sensitivity with random model based on Network Architecture. G 
represents sub-group analysis of data, when g = 0 (ANN), g = 1 (SVM), g = 2 (RF), g = 3 (KNN), g = 4 (LR), and 
g = 5 (DT)
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Fig. S3). These results show no significant difference in the DOR of the categories of 
gender (P value = 0.301) (Additional file 1: Fig. S4).

Fig. 5  Univariate sub-group analysis of specificity with random model based on Network Architecture. G 
represents sub-group analysis of data, when g = 0 (ANN), g = 1 (SVM), g = 2 (RF), g = 3 (KNN), g = 4 (LR), and 
g = 5 (DT)
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DTA based on continent

The DTA analysis was divided into Asia, Europe, and Australia. These results show a 
significant difference in the sensitivity of the Continent categories (P value = 0.0099) 
(Additional file  1: Fig.  S5). These results indicate no significant difference in the 
specificity of the Continent categories (P value = 0.3439) (Additional file 1: Fig. S6). 
These results show no significant difference in the DOR of the Continent categories 
(P value = 0.6027) (Additional file 1: Fig. S7).

Discussion
In recent years, the results obtained using AI in detecting bone fractures and 
osteoporosis have been promising [18, 35]. In this current study, ML has been used in 
pelvic DXA images of patients prone to osteoporosis with different architecture models. 
The resulting pooled sensitivity, specificity, DOR, AUC, accuracy, and precision were 
0.844 (95% CI 0.885, I2 = 94%), 0.781 (95% CI 0.732 to 0.824, I2 = 98%), 18.91 (95% CI 
14.22 to 25.14, I2 = 93%), 0.878, 0.75 (ranges from 0.6975 to 0.78), and 0.62 (ranges from 
0.589 to 0.6448) respectively, and also pooled LR+, LR−, and F1 score were 3.7 (ranges 
from 3.23 to 4.25), 0.22 (ranges from 0.19 to 0.26), 0.714 (ranges from 0.6783 to 0.7425) 
respectively.

According to evidence, this is the first study which analyzed the DTA of ML algorithms 
for detecting osteoporosis by assessing X-Ray hip bone; therefore, this study can be used 
as an indicator for comparing with other study results.

Fig. 6  Univariate sub-group analysis of DOR with random model based on Network Architecture. G 
represents sub-group analysis of data, when g = 0 (ANN), g = 1 (SVM), g = 2 (RF), g = 3 (KNN), g = 4 (LR), and 
g = 5 (DT)

Table 2  DTA estimated from all included studies using the (2 × 2) truth table

Amount LR+ LR− Accuracy Precision F1 score

Minimum 3.23 0.19 0.6975 0.589 0.6783

Maximum 4.25 0.26 0.78 0.6448 0.7425

Average 3.7 0.22 0.75 0.62 0.714
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Suitable machine learning is defined by high accuracy factors such as AUC, sensitivity, 
and specificity, which can correctly classify suspects from disease and non-disease. 
This meta-analysis reported a pooled AUC of 0.878, a high result for this study. ML 
algorithms improve the performance of screening for osteoporosis without interrupting 
the actual clinical workflow [33, 34], and major osteoporotic fractures can be done with 
adequate discriminative performance [26]. The AUC result reported ranges from 0.663 
to 0.92 [15, 24, 29, 31]; however other studies were not reported the AUC result.

To interpret the results, a DOR of 18.91 (95% CI 14.22 to 25.14, I2 = 93%) generally 
means that the use of ML in the diagnosis of osteoporosis is valuable. Due to the 
necessity of reporting the convergence of the results along with the accuracy, precision is 
also mentioned. Precision equal to 0.62 (ranges from 0.589 to 0.6448) indicates a relative 
convergence besides the accuracy of 0.75 (ranges from 0.6975 to 0.78). Based on these 
overall results, ML can be diagnosed with osteoporosis from non-osteoporosis. Also, 
likelihood ratios are important factors which could help to improve clinical judgment 
and shows the range of disease frequencies, and LR+ greater than 10 produces a greater 
pretest probability. The LR− less than 0.1 produces conclusive changes in the post-test 
probability [36]. The pooled positive LR+ and LR− are 3.7 (ranges from 3.23 to 4.25) and 
0.22 (ranges from 0.19 to 0.26), respectively. The pooled LR+ of 3.7 simply means that 
diagnosis of osteoporosis through the hip DXA images is 3.7 times more likely to be 
diagnosed while ML is used; likewise, the pooled LR− of 0.22 means osteoporosis has a 
higher likelihood of a negative test for the ML algorithm than non-osteoporosis.

The pooled F1 score of this study was 0.714. The F1 score is a numerical score between 
0 and 1, and the closer this number is to 1, the more valuable the method studied [37]. 
This score results from the average weight of recall and precision, which has a significant 
place in data interpretation. It can be reduced the number of false negatives and 
positives.

The sub-group analysis based on the ML architecture and gender was done to assess 
these factors’ influence on the DTA results. The Algorithms architecture analysis results 
showed a significant difference in the pooled sensitivity of the categories of Algorithms 
architecture (P value = 0.0028); thus, DT architecture has higher pooled sensitivity than 
other architectures 0.943 (95% CI 0.504 to 0.996, I2 = 95%) and pooled LR architecture 
has lower sensitivity than other architectures 0.776 (95% CI 0.546 to 0.909, I2 = 94%). In 
contrast, pooled specificity, DOR, AUC, accuracy, and precision were not statistically 
significant between Algorithms architectures; however, these algorithms have high 
results which can be used in future studies. On the other hand, there was a significant 
difference in the pooled specificity of the categories of gender (P value = 0.0226); thus, 
the female has higher pooled specificity than the male 0.77 (95% CI 0.679 to 0.842, 
I2 = 99%) and the male has lower pooled specificity than female 0.659 (95% CI 0.639 to 
0.68, I2 = 17%). Also, there was a significant difference in the pooled sensitivity of the 
categories of Continent (P value = 0.0099); thus, Europe has higher pooled sensitivity 
than others 0.88 (95% CI 0.836 to 0.913, I2 = 81%).

Variation in the type of datasets used (single-centre or multicenter) leads to differences 
in the resulting data; thus, single-centre datasets seem to have less heterogeneity; 
however, another factor that causes heterogeneity in the studies included in the analysis 
was the geographical dispersion [38]. Also, studies included were from different 
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countries (Taiwan, China, Spain, Japan, the Republic of Korea, Australia, and Denmark) 
with different geographic locations, which could be a source of potential heterogeneity. 
Consequently, the continent (Asia, Europe, and Australia) was analyzed as a subgroup.

Different architectures in ML models and the age difference among participants 
in the included studies in this meta-analysis are counted as other possible causes of 
heterogeneity. For instance, the results obtained by using regions of random forest in 
phantom and human models and comparing the results with each other showed an 
accuracy of 0.962 and 0.988 [30]. However, the calculated accuracy in this current meta-
analysis was 0.75, which is lower than the more homogeneous studies included in the 
analysis. In addition to the possible causes of heterogeneity, retrospective studies were 
the most critical limitation of this study, so the design of prospective studies in this field 
can significantly contribute to future progression. Another limitation of the study is the 
sample size considered for the sub-group analysis for continents is too small, this may 
not generalize or fully represent results from each continent under consideration.

Conclusion
This meta-analysis on DTA of ML algorithms for detecting Osteoporosis by assessing 
Hip Bone shows the ML has an acceptable performance to diagnose Osteoporosis. Hip 
fracture prediction was improved via training in an Architecture Learning Network. 
However, further studies with greater homogeneity are needed to draw more accurate 
conclusions about the results of DTA of ML in osteoporosis.

Methods
Protocol and registration

This meta-analysis study was reported according to Preferred Reporting Items for 
Systematic Reviews-Diagnostic Test Accuracy (PRISMA-DTA) and Meta-analysis Of 
Observational Studies in Epidemiology (MOOSE) guidelines.

Eligibility criteria

A bone mineral density at the femoral neck equal to or less than 2.5 standard deviations 
(SDs) below the mean for a young person of the same sex is diagnostic of osteoporosis. 
At study entry, bone mineral density (BMD; g/cm2) was measured at the lumbar spine 
and femoral neck. The measurement was done with the DXA based on the femoral neck 
BMD; the femoral neck BMD T-score was calculated as the number of SD was different 
from the young normal level (ideal or peak bone mineral density).

Information sources

The ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, 
CINAHL, Science Direct, PROSPERO, and EMBASE were systematically searched until 
June 2023 for studies that tested the diagnostic precision of ML model-assisted for 
predicting an osteoporosis diagnosis.
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Search

One experienced librarian [K⋅SH] drafted search strategies and refined them through 
team discussion. The search used medical subject headings (MeSh) terms including 
“Deep Learning”, “Machine Learning”, “Artificial Intelligence”, “Bone Mineral Density”, 
“BMD”, “Fracture Risk Assessment Tool”, ” Lower Extremity”, “Hip” in different com-
binations. Papers that did not fit into the study’s conceptual framework were excluded.

Summary measures

The principal outcome of interest was diagnostic accuracy = ((TP + TN)/
(TP + FN + FP + TN)), sensitivity = TP/(TP + FN), specificity = TN/(FP + TN), 
precision = (TP/TP + FP), F1 Score = 2 X (Precision X Recall/Precision + Recall), 
positive likelihood ratio (LR+) = (sensitivity/1 − specificity), negative likelihood ratio 
(LR−) = (1 − sensitivity/specificity), diagnostic odds ratios (DOR) = (LR+/ LR−), and 
the AUC of ML on detecting osteoporosis in the patients, osteoporosis versus healthy 
controls (HCs) [39, 40]. The secondary outcomes were to compare the accuracy, 
sensitivity, and specificity of the ML with BMD modalities.

Risk of bias across studies

In terms of meta-analysis data retrieval for predicting osteoporosis in patients, 
osteoporosis versus healthy controls (HCs) that were true positive (TP, true osteoporosis, 
predicted to be osteoporosis), true negative (TN, non-osteoporosis predicted to be non-
osteoporosis), false positive (FP, non-osteoporosis predicted to be osteoporosis) or false 
negative (FN, osteoporosis, predicted to be non- osteoporosis) were extracted.

The inclusion criteria in the original study were used to collect data for the meta-
analysis on detecting osteoporosis. In addition, the year of publication, the country 
where the research was performed, studies method, patients’ numbers, and their ages 
were all recovered. The revised Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) tool was used to assess all studies’ quality and potential bias by two 
independent reviewers. Conflicts were settled by dialogue, and a third reviewer and 
reviewers assessed the first included articles independently. Two categories were 
evaluated: bias vulnerability and applicability within the patient selection, index test, and 
comparison benchmark. In the domains of flow and pacing, bias was assessed.

Additional analyses

Using the method of DerSimonian Laird’s Random Effects Model (RE), a univariate 
meta-analysis was performed individually for sensitivity and specificity to estimate the 
diagnostic accuracy of each modality [41]. The RE model was chosen because of the 
suspected high proportion of heterogeneity. The primary endpoints were sensitivity, 
specificity, a summary of receiver operating characteristics (SROC) curve, and 
diagnostic odds ratio (DOR). Point estimates and 95% confidence intervals (CIs) for each 
study were calculated to ensure consistency of sensitivity and specificity. A bivariate 
meta-analysis of sensitivity and specificity used R version 4.1.2 (R Foundation for 
Statistics Computing, Vienna, Austria, 2021) and RStudio version 1.4.1717 to obtain the 
SROC curve. This includes the R package. "mada" and "meta" have been implemented. 
Then the average AUC of SROC was estimated [42, 43]. Secondary results included the 



Page 13 of 15Rahim et al. BioMedical Engineering OnLine           (2023) 22:68 	

positive and negative likelihood ratio, accuracy, and F1 score. Cochran’s Q test and I2 
statistics assessed statistical heterogeneity between studies. For Q statistics, values in 
the range of 0–40% mean non-significant non-uniformity, 30–60% mean moderate non-
uniformity and 75–100% mean significant non-uniformity. Means sex. Publication bias 
was evaluated and visualized by creating a funnel chart [32]. All p values are based on 
two-sided tests, and p values ≤ 0.05 were considered statistically significant. Subgroup 
analysis was performed by screening based on machine learning algorithms, gender, and 
Continent. Bias cross-study risk and applicability concern charts were evaluated using 
the Cochrane Review Manager version 5.4 (RevMan 5.4) software.
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