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Abstract 

Background:  The underlying motivation of this work is to demonstrate that artificial 
muscle activity of known and unknown motion can be generated based on motion 
parameters, such as angular position, acceleration, and velocity of each joint (or the 
end-effector instead), which are similarly represented in our brains. This model is 
motivated by the known motion planning process in the central nervous system. That 
process incorporates the current body state from sensory systems and previous experi-
ences, which might be represented as pre-learned inverse dynamics that generate 
associated muscle activity.

Methods:  We develop a novel approach utilizing recurrent neural networks that are 
able to predict muscle activity of the upper limbs associated with complex 3D human 
arm motions. Therefore, motion parameters such as joint angle, velocity, acceleration, 
hand position, and orientation, serve as input for the models. In addition, these models 
are trained on multiple subjects (n=5 including , 3 male in the age of 26±2 years) and 
thus can generalize across individuals. In particular, we distinguish between a gen-
eral model that has been trained on several subjects, a subject-specific model, and a 
specific fine-tuned model using a transfer learning approach to adapt the model to a 
new subject. Estimators such as mean square error MSE, correlation coefficient r, and 
coefficient of determination R2 are used to evaluate the goodness of fit. We additionally 
assess performance by developing a new score called the zero-line score. The present 
approach was compared with multiple other architectures.

Results:  The presented approach predicts the muscle activity for previously through 
different subjects with remarkable high precision and generalizing nicely for new 
motions that have not been trained before. In an exhausting comparison, our recurrent 
network outperformed all other architectures. In addition, the high inter-subject varia-
tion of the recorded muscle activity was successfully handled using a transfer learning 
approach, resulting in a good fit for the muscle activity for a new subject.

Conclusions:  The ability of this approach to efficiently predict muscle activity contrib-
utes to the fundamental understanding of motion control. Furthermore, this approach 
has great potential for use in rehabilitation contexts, both as a therapeutic approach 
and as an assistive device. The predicted muscle activity can be utilized to guide func-
tional electrical stimulation, allowing specific muscles to be targeted and potentially 
improving overall rehabilitation outcomes.
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Background
Human motion execution is the product of muscle contraction caused by muscle acti-
vation which, in turn, results from upstream motion planning of the motor cortical 
areas. Motion is defined as a change in position over time, and this can be described 
by parameters, such as time, direction, and velocity. Early motor control theories, such 
as Pavlov’s view of movements as combinations of reflexes and Sherrington’s proposal 
of reciprocal innervation to ensure coordinated movements, influenced the field [1, 2]. 
However, unlike Pavlov, Sherrington states that movements are generated by modula-
tion of parameters of reflexes [2]. Bernstein formulates the equivalence problem, which 
highlights the redundancy in human motion where there are often more elemental vari-
ables than constraints associated with the movement [3]. For instance, when reaching a 
target in three-dimensional space, the number of arm joint rotations is typically more 
than three [4]. Bernstein’s theory suggests that the nervous system must choose a spe-
cific solution for each movement, taking into account the complex interplay between the 
nervous system, the musculoskeletal system, and the environment [3]. He proposes the 
existence of muscle synergy to simplify the control of multiple degrees of freedom [3, 
5], which is compatible with Latash principle of abundance [4]. In the 1980s, Georgo-
poulos and colleagues found a correlation between the movement direction of the hand 
and the motor cortical activity [6, 7]. Moreover, speed and, with a less prominent effect, 
acceleration and position are continuously represented in motor cortical activity dur-
ing reaching [8, 9]. There is some controversy about whether the motor cortex repre-
sents so-called high-level features of the hand as described above (direction, speed, and 
acceleration) or low-level features for muscle groups, such as muscle activity and force 
[10–12]. Churchland and colleagues developed a dynamical system approach to better 
understand the neural activity in the motor cortex [13]. Furthermore, the motor cor-
tex might be explained by utilizing a recurrent neural network (RNN) [14–16] which 
in itself exhibits dynamical behavior. These models show that preparatory activity sets 
initial conditions that unfold predictably to control muscles during reaching. We might 
assume that the preparatory activity draws on pre-learned inverse dynamics that gener-
ate the associated muscle activity with measurable angular position, velocity, and accel-
eration for each joint. For further clarification, the term “muscle activity” refers to the 
neuronal signal at the muscle membrane that can be measured by surface electromyo-
graphy (EMG), as in other works [17–20].

Building on this thesis, we demonstrate that muscle activity can be generated arti-
ficially for known and unknown motion based on high-level motion features for each 
joint (or for the hand instead), which is similarly represented in our brain [6–9]. For 
this, we develop a recurrent neural network with long–short term dependencies in a 
supervised learning session with motion parameters such as angular position, veloc-
ity, and acceleration of the arm. Previously trained motion can be generated with a 
remarkable precision, while new motions that are not previously trained reach a high 
precision in most cases. It has to be clarified that we do not aim to represent specific 
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cortical activity but to show that muscle activity measured directly on the surface of 
the arm can be predicted based on motion parameters.

This concept is based on the assumption that motion parameters, such as angular 
motion, velocity, and acceleration, have a context to muscle activity. This assump-
tion is in line with Georgopoulos and colleagues’ findings regarding the correlation 
between the movement direction of the hand and the motor cortical activity [6, 7]. 
This means that the specific parameters of a movement are encoded in the activity of 
the motor cortex, which then influences the activity of the muscles involved in that 
movement. Overall, this concept emphasizes the close relationship between motor 
control and the parameters of movement, and suggests that the two are intimately 
linked. Furthermore, it has been shown that the proprioceptive system which pro-
vides information about kinematic parameters, such as joint position, movement, and 
load [21] is crucial for adaption in reaching motion. The information of the proprio-
ceptive system is transmitted to the central nervous system and integrated with other 
sensory systems like the visual system to generate an overall representation of the 
current body-state. Furthermore, the local loop in the spinal cord also has a direct 
influence on the generation of motion, especially on the time component where local 
parameters can be altered. This could be achieved by integrating additional hidden 
variables; however, this is part of future work and not incorporated in the present 
model.

There are several studies dealing with the inference of muscle activity based on meas-
ured motion parameters. According to the existing literature, two different approaches 
can be used: an analytical or a machine learning method. The analytical method is 
based on a biomechanical model that utilizes the given trajectory to compute muscle 
activity [22, 23], while the machine learning approach often involves artificial neural 
networks that directly learn the association between muscle and motion based on the 
data rather than on predefined programmed instructions. In both cases, these models 
often use joint angles, primarily those of the shoulder and elbow, or hand trajectories, 
as input parameters to predict the corresponding muscle activity [18, 23–26]. The task 
design, and thus the movements performed and muscle activity predicted, vary greatly 
throughout the existing literature: from simple one-dimensional motion to rare three-
dimensional motions. Typically, 8− 12 muscles are recorded from 5− 9 participants. In 
the following, we take a closer look at the different machine learning-based approaches, 
where a feedforward network (FNN) is commonly used [17, 18, 26]. The performance 
is typically evaluated using the mean squared error (MSE), root-MSE (RMSE), normal-
ized-RMSE (NRMSE), correlation coefficient r [27] or less commonly the coefficient of 
determination R2 and the variance accounted for (VAF), see "Evaluation method" sec-
tion. We present our results with several of these methods to facilitate comparability. 
The comparison of different probabilistic methods by Johnsen and Fuglevand concludes 
that the dynamic neural network, which is a FNN with some time-delayed inputs, 
achieves good results with an average accuracy of r2= 0.40 for random three-dimen-
sional motions [19]. Several other studies reported also good results employing FNN. 
Rittenhouse et al. achieved an average accuracy of r2= 0.66 with an FNN for a press-up 
motion [26]. Tibold and Fuglevand also used an FNN and achieved a R2=0.43 for loaded 
and unloaded random three-dimensional motion [17]. Alternatively, a probability-based 
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prediction achieves the best accuracy with a VAF score of 69% and an RMSE of up to 
0.037 for the teres major muscle for two-dimensional random movements [20].

Here, we developed a specific recurrent network which is the most appropriate model 
for generating time series data due to its ability to recognize time dependencies in the 
motion sequence, and thus is the canonical candidate to approach the relation between 
motion and muscle activity. More precisely, we formed a Long–Short-Term Memory 
(LSTM) network, which is a type of recurrent neural network that allows for stimulation 
from earlier input remaining as hidden states to influence predictions at the current time 
step. This enables recurrent networks to exploit a dynamically contextual window which 
then can be utilized for time dependency of muscle activity. RNNs are not only suitable 
for this special case, and they are also generally suitable for physiological applications 
[28]. In addition to the recurrent network, we consider and evaluate other neural net-
work architectures. A vanilla feedforward neural network (FNN) is a base model which 
allows the signal to only travel in one direction from input to output. Furthermore, a 
convolutional neural network (CNN) is introduced, which extracts spatial and temporal 
dependencies of the time series by applying different sized kernels and filters using the 
whole movement (and not just one point in time) as input. Thereby, the motion data as a 
whole are mapped to the muscle activity. Each neuronal network predicts the activity of 
all muscle simultaneously taking the synergistic nature of agonist and antagonist muscles 
into account. The performance of a model is presented by the mean square error (MSE) 
as the loss function of the neural network as well as the correlation coefficient r (often 
used squared r2 ) and the coefficient of determination R2 . We further introduce a new 
better-suited measure, the zero-line score, that adaptively rescales the loss function of 
the muscle activity and compares the generated signal to the overall range of the muscle 
activity and thus identifies similarities between both signals. Unlike the similar defined 
R2 , the zero-line score uses the zero-line rather than the signals mean as comparison.

The generalization properties of the architecture are mandatory for all kinds off appli-
cation along with the question of how transferable the feature is. We aim for a model 
which can further extrapolate across multiple subjects as well as for new motions. To 
provide a measure for generalization, we evaluate different disparate motions and trans-
fer learning across all feature combinations across multiple subjects. The muscle activity, 
recorded by EMG, is known as a high inter-subject variable due to varying physiological 
factors, slightly different electrode placement, and other skin conditions [29–34]. There-
fore, we evaluate models that have been trained on different individuals: we distinguish 
between a general model trained on multiple subjects but exclude the data from the sub-
ject that is referred to test these models, a subject-specific model that is trained entirely 
on this one subject, and a specific, fine-tuned model that uses the general model as a 
basis and is then adapted to the specific subject afterwards.

To evaluate the true generalization properties of our approach, we go beyond generat-
ing muscle activity based on already known motions and predict new, unseen motions 
covering a huge range of motions. Finally, we fall back on the input parameters we have 
chosen: angular position, velocity, and acceleration. We further evaluate and quantify 
the importance of all these motion parameters with respect to their contribution to gen-
erate artificial muscle activity or whether the redundancy of velocity and acceleration 
due to their reproducibility by deriving the position can be observed as well. In addition, 
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we check if the position and orientation for the hand alone, also known as end-effector 
(EEF), are sufficient to drive the muscle activity of the upstream arm joints/segments, 
which can be described by inverse kinematics based on the EEF.

The objective of this study is to showcase the feasibility of inducing muscle activity 
via a kinematic representation. Previous research provides evidence that the brain’s 
neural activity encodes kinematic representation to some extent [6–9]. In this study, 
we substituted the neural representation of kinematics with actual measured kinematic 
parameters to generate a movement command. As a result, we developed a powerful 
generative model capable of generating muscle activity for new subjects and movements 
based on motion parameters similarly represented in the brain [6–9]. This highlights the 
close relationship between kinematic representations and muscle activity during motor 
control. This does not only contribute to a deeper understanding of motion control but 
has also practical applications in human–machine interaction and rehabilitation. In par-
ticular, this model addresses the crucial issue of subject-specific adjustments in myoe-
lectrical controlled systems, such as prostheses and exoskeletons. These systems rely on 
the classification of residual signals to support or execute desired movements, and deep 
learning models require large data sets to achieve the performance and robustness nec-
essary for real-world applications. The proposed muscle activity generation approach 
can generate the necessary subject-specific data to improve the performance and robust-
ness of these systems. This generative approach has the potential to greatly benefit 
prosthetic users by allowing them to improve upon their existing movements with high 
robustness and accuracy. Additionally, it can go beyond the limitations of a set of pre-
programmed motions by exploring new, generative approaches that may produce less 
accurate but more diverse and creative movements. Furthermore, in rehabilitation, the 
generated muscle activity can serve as a building block for targeted functional electric 
stimulation (FES) of paralyzed limbs to support movement.

Methods
In this section, the entire process from data acquisition to pre- and post-processing to 
the construction of the different neural network architectures and their hyperparameter 
tuning is outlined.

Experimental protocol

In total, five healthy subjects (2 female, 3 male in the age of 26 ± 2 years) participated 
in the experiment. They all have given their informed written consent to the study. The 
study involving human subjects was reviewed and approved by the Ethics Committee 
of the Ruhr-University Bochum. All methods were performed in accordance with the 
relevant guidelines and regulations. Each subject performed 20 tasks with 18 repetitions 
of each isotonic movement resulting in 360 motion sequences per subject. An isotonic 
movement is caused by a muscular contraction that leads to a change in muscle length 
and thereby causes a motion at the corresponding joint. The movements can be catego-
rized into three groups: simple motion, combined, and complex motion (Table 1). The 
simple motions include shoulder flexion to 90 degrees, shoulder extension, shoulder 
abduction to 90 degrees, elbow flexion, elbow flexion with a supinated forearm, wrist 
flexion, wrist extension, and wrist pronation. Unless specified differently, all simple 
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motions are performed to their maximum flexion and extension, respectively, as long 
as it is comfortable, accepting a small inter-subject variability; there is no external target 
that must be reached. The combined movements are composed of shoulder abduction 
elbow flexion, shoulder flexion elbow flexion, and shoulder abduction wrist extension. 
The complex movements try to mimic everyday activity’s as breaststroke (extend the 
arm in front of the body center, pronate the forearm and perform a horizontal exten-
sion), relay handover (shoulder extension and pronation of the forearm, so that the relay 
can be passed), reading a clock (raising the forearm in front of the body and pronation 
of the forearm, so that the time can be read from the wristwatch), diagonal reach (using 
the right hand to lightly touch the left arm at different heights), waving gestures, drawing 
a circle in the air (in front of the body), and pointing to three points in space (Figs. 1 and 
2). Each movement begins and ends in a rest position with the arm relaxed and hang-
ing parallel to the side of the body. The subjects are instructed to perform a controlled 
movement and must not to use gravity to return to the rest position, e.g., in shoulder 
abduction, the arm is first raised to a certain degree, followed by the downward move-
ment, which should be performed in a controlled active manner and not passively use 
gravity.

Table 1  List of all exercises considered for this project, each task is repeated 18 times

All simple and complex movements were performed to a natural joint maximum. Shoulder flexion and abduction were 
performed only to 90 degrees. Movements with the addition of (mix) are performed with arbitrarily changing endpoint, i.e. 
the subjects are allowed to stop their movement before their natural joint maximum. *This movement is just performed by 
the test subject

Simple motion Shoulder flexion

Shoulder flexion (mix)

Shoulder extension

Shoulder abduction

Shoulder abduction (mix)

Elbow flexion

Elbow flexion (mix)

Elbow flexion with a supinated forearm

Wrist flexion

Wrist extension

Wrist pronation

Combined motion Shoulder abduction with simultaneous elbow flexion

Shoulder flexion with simultaneous elbow flexion

Shoulder abduction with simultaneous wrist extension

Complex motion Breaststroke

Relay handover

Reading a clock

Diagonal reach

Waving gestures

Drawing a circle

Pointing to three points in space*
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The muscle activity of these movements is recorded at 2222 Hz using the Trigno Wire-
less EMG System (Delsys Inc., Boston, MA, USA) with two Quadro electrodes. The 
skin preparation and placement of electrodes were performed according to the recom-
mendation of the SENIAM manuscript [35]. Eight EMG electrodes were placed on the 
upper right arm on the following muscles: deltoid anterior, medial, and posterior, biceps 
short head, triceps brachii lateral head, pronator teres, flexor carpi radialis, and exten-
sor carpi ulnaris (Fig. 1). The targeted muscles were selected according to an antagonis-
tic pattern and extended over several joints, thus covering multiple degrees of freedom. 
Note that the musculoskeletal system has a certain redundancy and multiple muscles 
contribute to one movement. We have selected only a representative selection of these 
muscles. The EMG system is start and stop synchronized with the motion tracking from 
Xsens Motion Capture via the Delsys trigger box. The EMG signal is processed with a 
root mean square and sampled at a frequency of 60 Hz matching the timestamps of the 
Xsens Motion Capture system. For this, we place a window of 200 ms around each Xsens 
timestamp. Sequentially, we select all timestamps of the EMG signal that are within this 
window and calculate their root mean square. In this way, the EMG signal is synchro-
nized with the Xsens data while being simultaneously smoothed and downsampled. 
The Xsens Motion Capture system (Xsens Technologies B.V., P.O. Box  559, 7500 AN 
Enschede, Netherlands) uses the upper body configuration including 11 sensors cover-
ing both arms and the torso, i.e., wrist, forearm, upper arm, shoulder for each side, ster-
num, pelvis, and head. The application and advanced N-pose calibration of the sensors 
is performed according to their manual [36]. The Xsens Motion Capture samples with 
a rate of 60 Hz. During the visual validation of the motion capture performance, it was 
found that the abduction and adduction of the wrist is not very accurate and can deviate 
up to a maximum of 20 degrees, therefore, simple and combined motions that include 
wrist abduction and adduction were not included. This issue could be improved in the 
future with the incorporation of additional sensors.

Fig. 1  a Overview of the electrode (rectangles) placement on the right upper limb (deltoid posterior (1), 
lateral (2) and anterior (3), biceps short head (4), triceps brachii lateral head (5), extensor carpi radialis longus 
(6), pronator teres (7), and flexor carpi ulnaris (8) with the last two shaded), modified from [37]. b Overview 
of the test setup with the subject standing in front of the screen and the following measurement device, 
Delsys Trigno EMG System and Xsens motion capture system (motion sensor in orange) connected to the the 
trigger module and the laptop
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During the experiment, the subjects stand in front of a screen showing the visual inter-
face which provides the instructions always starting with the resting position for 4 s sig-
naled by the ‘resting window’. Next, an instruction window pops up and refreshes every 
7.5 s indicating the next repetition. During this time, the subject is asked to perform the 
described movement repeatedly. To avoid muscle fatigue, 60 s of rest is granted after 
each task.

Data preprocessing

The EMG signal is baseline corrected, and outliers are determined by considering val-
ues with six standard deviation of the mean. The detected outliers are mostly related to 
cable movement and are fitted and subtracted by a spline. Afterwards, the EMG data is 
smoothed with a root mean square (1) over a window size of 200 ms and simultaneously 
downsampled to the synchronized Xsens frequency of 60 Hz. Further, for each subject 
individually, all EMG and motion data channels are normalized between 0 and 1 and −1 
and 1, respectively. The normalization is necessary due to huge differences between the 
individual channels. Furthermore, the data are cut into motion sequences of 457 frames 
where each motion sequence represents one completed motion to eliminate inter-trial 
pauses. The onset and offset of motion sequences are dictated by instructed cues. By 
using a fixed window size, we are able to include longer trials that encompass both active 
and non-active states, thereby facilitating learning of both states. The Xsens motion cap-
ture system provides the hand position, orientation as well as angular position of each 
joint. The latter includes the angular position of the shoulder, elbow, and wrist reflect-
ing shoulder abduction/adduction, shoulder extension/flexion, elbow extension/flexion, 
elbow rotation, wrist abduction/adduction, and wrist extension/flexion is extracted. The 
angular position is filtered by a third-order Savitzky–Golay filter [38] and then two times 
discretely differentiated to compute the angular velocity and acceleration using the for-
ward difference operator �f : n �→ f (n+ 1)− f (n) . The angular position, angular veloc-
ity, and angular acceleration of each joint serve as input data for the following models. In 
addition, the hand position, and orientation are used for the EEF-configuration and their 
corresponding velocity-, and acceleration for the EEF+-configuration.

Neural network models

We investigate the relationship between motion input data and muscle activity that can 
be learned by a neural network to generate an artificial muscle activity. The models are 
trained on angular position, velocity, and acceleration for each joint to predict the corre-
sponding muscle activity. In a matter of supervised learning, we compare the predicted 
muscle activity to the smoothed (1) recorded muscle activity. The recurrent neural net-
work is compared to two other network types: a basic vanilla feedforward network and a 
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more complex convolutional network. Besides the different architectures, the models are 
also evaluated on different training approaches. These approaches include training on 
different subjects’ data: distinguishing between a general model that has been trained on 
several subjects, a general model which was fine-tuned on subject-specific data, and an 
exclusively subject-specific model trained on the data of one subject (the last recorded 
subject) only. The architectures are evaluated by the general model trained and tested 
on multiple subjects ("Comparison of the network architectures" section). For the evalu-
ation of the different training approaches, one subject is excluded from the training data 
set to, later on, test the model on unseen subject data (Results "Performance for new sub-
jects" section). Therefore, the training set consists of 15 repetitions of n− 1 motions (all 
motions except one), leaving 2 repetitions for n− 1 motion for the training set and one 
repetition n− 1 motion for the validation set. The excluded n− 1 motion is later used to 
evaluate the performance to generate new motions (Results "Generalization property for 
new motion" section). Finally, we demonstrate with the Leave-One-Out (LOO) method 
that the results obtained above can be reproduced with a separate subject from all other 
subjects (see "Leave One Out method: determine variation between subjects" section). 
In the LOO method, one other subject is left out of each run such that the model can be 
evaluated based on this subject. After running across all subjects, the average value can 
be determined. We also removed two motions from the pool and used these as a new 
test data set for the new motion. These are a simple shoulder flexion and a complex relay 
handover motion. In "How many repetitions of a motion are required for learning?" sec-
tion we analyze how many repetitions of a movement are required for learning.

The FNN is feed with a vector containing multiple motion sequences at ones, whereas 
the LSTM and CNN are feed with one motion sequence at a time. Each neuronal net-
work predicts the activity of all muscle simultaneously taking the synergistic nature of 
agonist and antagonist muscles into account.

All networks are implemented with the Keras API [39]. The networks use an adaptive 
learning rate optimization algorithm called Adam [40] to change the learning rate and 
weights to reduce the loss. The loss is the prediction error of the neural network com-
puted in our case by the mean squared error loss function (2). Through backpropagation, 
the loss is transferred from one layer to another and the weights are modified depend-
ing on the losses so that the loss is minimized. The rectified linear activation function 
(ReLu) (3) is used in the hidden layers which describe the transformation from input to 
output from a node. To prevent overfitting, an early stopping with a patience of 5 epochs 
and dropout layers (that can randomly set input units to zero) are implemented.

(2)MSE =
1
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n
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,
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x if x > 0,
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Recurrent neural networks

In general, recurrent neural networks (RNN) are specialized in time dependencies due 
to their specific architecture that allows adding information of previous time steps to 
the current one. Theoretically, all recurrent networks are stateful, however, in Keras, this 
only applies within a batch. If an additional time sequence is separated into individual 
batches, the previous information is lost since the states are initialized at the first time 
step of a batch and reset to 0. Two possibilities are derived from this: either the batch 
contains the entire sequence of one movement, or the state must be regained during 
warm-up phase before the actual prediction of the current time step. The latter sugges-
tion can also be used for an online prediction of the muscle activity. In the following, 
both approaches are applied beginning with the first approach, which trains and predicts 
the whole sequence at once.

The recurrent network in this work consists of an input dropout and three hidden 
Long Short-Term Memory (LSTM) [41] layers (256, 128, 64 nodes) and a TimeDistrub-
tion dense output (Fig. 3). The LSTM network is a type of RNN that overcomes the van-
ishing and exploding gradient problem of standard RNNs [41] by using gates to control 
the memorizing process. The model is trained with a vector of dimension 3: total num-
ber of sequences, time steps of each sequence, and number of features. In the LSTM 
layer, the return sequence and stateful parameter are enabled, which allows the LSTM 
layer to predict the whole sequence at once. To obtain a good result at the beginning of 
the sequence, the stateful parameter needs to be enabled. Thus, the memory states and 
hidden states of the LSTM layer are saved from the former sequence and used as a rea-
sonable starting value for the next sequence. In our context, this works particularly well 

Fig. 2  a Motion trajectory (in terms of angular position, velocity, and acceleration) and muscle biceps signal 
as well as the artificially generated signal for flexion and extension of the elbow. b Visualization of the new 
motion, pointing to three points in space (the three points are indicated by the black crosses and trajectory 
indicated by the dashed line)



Page 11 of 29Schmidt et al. BioMedical Engineering OnLine           (2023) 22:63 	

because every sequence starts and ends at the same resting position ensuring that each 
sequence has a very similar starting value range. However, the downside of this approach 
is a slower backpropagation due to the length of a whole sequence.

In the second approach, the recurrent network is trained with fractures of the motion 
sequence, called sub-sequences. Each sub-sequence only consists of a single data point 
in time, which has to be predicted, and a few prior time steps i : 20+ i as a warm-up 
phase, solely used to restore the correct time-dependent states of the recurrent net-
work. In addition, this approach benefits from two models, one for training using the 
sub-sequence and one for prediction using the whole sequence again allowing different 
batch sizes for training and testing. While it is more efficient to train with a higher batch 
size it is necessary to predict with a batch size of one for each time step. Both mod-
els, the RNN and the sub-sequences model RNNseq have a similar architecture starting 
with an input dropout followed by a LSTM layer(s) and a dense output layer. The stateful 
parameter in the LSTM layer is enabled in both networks. The return sequence param-
eter is not needed in this scenario because we are not training on whole sequences. In 
order to predict a whole sub-sequence in one, a new model needs to be defined using 
the same weights as for the previously trained model. The architecture only differs in the 
batch size parameter of one. The states will be rest after a full sequence prediction. This 
approach can also be used for online generation of muscle activity.

Feedforward network

The vanilla feedforward network (FNN) is one of the more basic networks with a sim-
ple forward pass of information. The architecture is composed of three fully connected 
hidden dense layers with 512, 256 and 128 nodes, and an 8-node output according to 
the number of predicted EMG channels (Fig. 4). The model is trained with a batch size 
of 128, i.e., the gradient is updated every 128th sample. In theory, it should be benefi-
cial to have additional information on previous time steps to predict the current time 

Fig. 3  Recurrent neural network architecture with a linear motion input (green circle), three LSTM hidden 
(gray square), and linear muscle output (red circle) layer. The arrows that connect nodes h(1)

1
 , h(2)

1
 , and h(3)

1
 

back to themselves are representative for all LSTM gray square nodes. The dashed connection indicated a 
dropout layer
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step. Therefore, we develop a vanilla network that is also fed with sequence informa-
tion (FNNseq) of additional previous time steps n− i2 = (n− 1, n− 2, n− 4, n− 8, ..) , 
which are added to the feature input vector. This information of previous time steps can 
improve the prediction of the current step.

Convolutional neural network

Besides the recurrent, the convolutional neural network (CNN) is also able to capture 
time dependencies through the application of relevant filters. The CNN works as a fea-
ture extractor that transforms the data into a form that is easier to process, with the 
intention not to lose relevant information necessary for a good prediction. This is done 
by the kernel and filter parameters in the convolutional layer. The CNN consists of an 
input dropout layer with a rate of 0.1 followed by 5 one-dimensional convolution lay-
ers with decreasing number of convolutions (128, 128, 128, 128, 64) and kernel size of 
(32, 8, 8, 4, 4) and a final output dense layer with 8 nodes (Fig. 5).

Fig. 5  Convolutional neural network architecture with a motion input (green circle), three Conv1D hidden 
(gray square), and linear muscle output (red circle) layer. The dashed connection indicates a dropout layer

Fig. 4  Feedforward neural network architecture with motion input, three hidden, and muscle activity output 
layer. The dashed connection between h(1)

1
 and h(2)

1
 indicates the dropout layer
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Hyperparameter tuning

All models were hyperparameter tuned using optuna for optkeras with enabled 
pruning option on an evolutionary sampler [42]. Concerning a minimal validation error 
the following parameters were optimized: batch size, number of layers, number of nodes, 
the dropout rate, and number of filter and kernel size for the CNN.

Evaluation method

To evaluate the similarity with the smoothed original muscle activity and compare between 
all artificially generated signals, the MSE (2) is computed and is also used as a loss func-
tion by the neural networks. For the MSE, a smaller value indicates a more similar signal. 
The over-representation of lower values caused by the rest state and several inactive muscle 
groups for most motions strongly influences the MSE, which in this case inherents lower 
values than expected. Note that the MSE of the whole original data-set is only 0.0044 while 
the signal is allowed to have values up to 1. Therefore, this metric is not ideal to compare 
the results of different task designs. Besides the MSE also the correlation coefficient r (4) is 
commonly used to evaluate the difference between the original and predicted signal [27]. 
The correlation coefficient describes the relationship or rather the connection between two 
signals, where 0 indicates a lack of correlation, 1 perfect correlation, and −1 a negative cor-
relation. Usually r2 is used instead to restrict the value between 0 and 1. Various works [27] 
used the r2 to quantify their prediction. It is important to note that r2 is not only independ-
ent of the magnitude of the original data values, which is desired, but also only sensitive to 
relative changes between original and generated data. For instance, a predicted signal which 
is exactly half of the value of the original signal still has a correlation coefficient of 1. This is, 
however, not ideal to quantify the goodness of a fit. Both, the timing and in particular the 
amplitude of muscle activity are crucial for a realistic generation of artificial muscle activity. 
Therefore, the coefficient of determination R2 (5), which should not be confused with r2, is 
better suited to rate a fit in this context. R2 measures how well the predicted value matches 
the original value by considering the distance relative to the average of the original signal 
(5). The R2 reaches from any negative number to 1 indicating a perfect match.

Motivated by the weakness of the MSE to be sensitive to the over-representation of lower 
values and the R2 using a mean signal comparison, we introduce a new rating, the so-called 
zero-line score (6) which calculates a zero line signal comparison. With the mean square 
value of the original signal as a baseline, a score of 0 indicates an approximation as poor as 
the zero line signal itself, while a value of 100 signifies perfect alignment. The smaller the 
values of the original signal are, causing a closer resolution of the zero-line score, the more 
difficult it becomes to reach a high zero-line score for the artificially generated signal. This 
is due to the fact that the smallest possible zero-line score value decreases. For instance, the 
data used to evaluate the general model, the zero-line score can hypothetically attain a value 
of approximately −5000 , that describes the error between the original signal and a hypothet-
ical signal containing the respectively more distant limit 0 or 1 at each time step. The zero-
line score is especially useful for capturing the error of muscle activity for multiple channels, 
which are of different magnitude. The main difference between the zero-line score and the 
R2 is the comparison of the MSE with the zero lines signal and the mean signal, respectively. 
The zero-line score is especially recommended for signals that have long periods of inactivity, 
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i.e., signals close to zero. In the following, we will present all our results for the RNN with the 
MSE, r2, R2 and zero-line score to allow a comparison with other works.

yi : original data
xi : predicted data
y, x : average of the original/predicted data
n: number of data
Note that the zero-line score Zs as well as the R2 can easily reach values smaller than 

zero, e.g., when the predicted signal is higher than twice the original signal.

Results
The results part is structured into several interrelated sections. First, we assess the 
overall suitability of various network architectures in generating synthetic mus-
cle activity by comparing the prediction outcomes. Following this, we examine the 
model’s ability to generalize beyond the training data by predicting muscle activity 
for previously unseen subjects and motions. We then investigate the significance of 
input data in the model and explore how inter-subject variability affects the results. In 
addition, we determine the minimum number of repetitions required for learning and 
compare the effectiveness of subject-specific versus general models.

Comparison of the network architectures

Across all architectures, the artificial muscle activity is approximated reasonably close 
(Fig.  6). In the following, the architectures are evaluated based on a general model 
containing train and test data from multiple subjects. Thereby, the recurrent neural 
network outperforms the others with a zero-line score of 88.13 and an R2 value about 
0.85 (Table 2). The sub-sequence based online recurrent neural network achieves the 
lowest score of 83.33. The scores for each channel reveal a higher accuracy for the 
second and third channels, which represent the deltoid muscle activity.
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Table 2  Overview of the performance for all architectures (recurrent neural network (RNN), sub-
sequenced input recurrent neural network (RNNseq), feedforward neural network (FNN), sub-
sequenced input feedforward neural network (FNNseq), convolutional neural network (CNN)) and 
channels (electrodes 1-8) with the general approach (training and testing on multiple subjects) 
evaluated by the zero-line score Zs, mean square error MSE, the squared correlation coefficient r2, 
and the coefficient of determination R2

1 2 3 4 5 6 7 8 Average

RNN Zs 89.53 91.89 90.31 88.75 81.27 89.45 80.55 80.44 88.13
MSE 0.0009 0.00131 0.00285 0.00203 0.00269 0.00066 0.00066 0.00081 0.00149

r2 0.88156 0.89965 0.87858 0.84992 0.77071 0.87266 0.79592 0.80298 0.85597

R2 0.87719 0.89916 0.87292 0.8474 0.75624 0.8695 0.77816 0.78616 0.84904

RNNseq Zs 86.24 90.34 86.78 84.71 69.16 84.42 76.11 72.94 83.33

MSE 0.00119 0.00156 0.00388 0.00275 0.00443 0.00098 0.00081 0.00113 0.00209

FNN Zs 88.39 90.97 90.06 88.43 63.58 88.59 79.81 82.19 85.21

MSE 0.001 0.00146 0.00292 0.00208 0.00523 0.00071 0.00068 0.00074 0.00185

FNNseq Zs 88.6 91.67 89.74 88.57 75.35 86.73 78.21 81.71 86.81

MSE 0.00102 0.00139 0.00311 0.00214 0.00356 0.00085 0.00077 0.00078 0.0017

CNN Zs 88.49 91.24 89.78 88.25 71.94 86.59 79.89 81.0 86.18

MSE 0.00099 0.00141 0.003 0.00212 0.00403 0.00084 0.00068 0.00079 0.00173

Fig. 6  Muscle activity for all eight channels (blue) and the artificial generated muscle activity (orange). The 
artificial activity is generated on the general training approach using an RNN architecture, evaluated by the 
zero-line score. The muscle activity corresponds to the following motions: elbow flexion (mix), shoulder 
extension, shoulder flexion with simultaneous elbow flexion, elbow flexion with a supinated forearm, 
shoulder flexion with simultaneous elbow flexion, shoulder flexion with simultaneous elbow flexion, shoulder 
abduction, waving gestures, breaststroke, elbow flexion, and wrist flexion
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Performance for new subjects

The next step is to evaluate how the model predicts new unseen subjects. For this 
purpose, the general model from the   "Comparison of the network architectures" 
section is first tested on a separate subject. In this setup, all architectures reach a 
significantly lower similarity between 30 and 40 (Table 3). This is not surprising due 
to inter-subject variance for further information see "Discussion" section.

To improve the performance, we apply a subject-specific fine-tuning on the general 
model using transfer learning with a weight initialization strategy [43]. Thereby, the 
weights of the original general model are used as a pre-training status which is then 
updated on the subject-specific data. This approach leads to a significant increase in per-
formance for all architectures and rer values to the multiple-subject setting described in 
the"Comparison of the network architectures" section with a slightly higher maximum 

Table 3  All architectures (recurrent neural network (RNN), sub-sequenced input recurrent neural 
network (RNNseq), feedforward neural network (FNN), sub-sequenced input feedforward neural 
network (FNNseq), convolutional neural network (CNN)) are tested on the same test data set of 
the separate subject and evaluated by the zero-line score Zs, mean square error MSE, the squared 
correlation coefficient r2, and the coefficient of determination R2

The results are presented as an average over all channels, with the bold number indicating the highest score

General Fine-tuned Subject-specific

RNN Zs 35.52 88.21 85.16

MSE 0.00747 0.00137 0.00172

r2 0.3338 0.86077 0.83648

R2 0.21422 0.85634 0.81915

RNNseq Zs 41.23 83.36 77.12

MSE 0.00681 0.00193 0.00265

FNN Zs 36.68 83.83 85.74

MSE 0.00733 0.00187 0.00165

FNNseq Zs 40.71 87.95 85.67

MSE 0.00714 0.00145 0.00173

CNN Zs 42.61 80.18 86.56

MSE 0.00665 0.0023 0.00153

Fig. 7  New subject performance for the RNN (orange bar) of the general, fine-tuned and subject-specific 
model. The other network architectures (RNNseq, FNN, FNNseq and CNN) are represented by the black lines
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of 88.21 for the zero-line score and around 0.86 for the R2 value for the RNN (Table 3, 
Fig. 7). For comparison, we further train a model purely on one subject’s data, i.e. the 
data from the previously separate subject, resulting in a subject-specific model. This 
model again has a high performance of Zs > 80 across most architectures (Table 3, Fig. 7) 
but remains behind the fine-tuned model. We further comp general approach with the 
subject-specific approach in "Subject-specific or general model" section.

Generalization property for new motion

Thus far, we have shown that we can predict muscle activity with different architec-
tures and also generate subject-specific muscle activities. The natural consequence of 
this is to go beyond can we generate new motion that has not been learned before. For 
this, all models are tested on a new motion not seen before, pointing to 3 points in 
space (Fig. 2b) for the separated subject introduced in "Performance for new subjects" 
section. We want to emphasize that we evaluate a new type of movement only for 
the separated subject. The new motion is not performed by any of the other subjects. 
Overall, the fine-tuned models reach a consistently higher accuracy than the general 
and subject-specific model, led by the RNN and CNN with 72 (Table 4, Fig. 8). Previ-
ously, the R2 reached similar high rankings as the zero-line score see Table 2 and 3, 
but for the new motion, the R2 remain comparatively low for the fine-tuned model at 
0.36 (Table 4). In all cases, the fine-tuned models also outperform the subject-specific 
model for a more detailed comparison see "Subject-specific or general model" section. 
Note that the R2 can be negative if the numerator MSE which is proportional to the 
MSE is greater than the sum of the squared differences between yi and ȳ (5) as it is the 
case for general model predicting a new motion (Table 4). EMG channels that tend 
to have a large contribution to the motion and, therefore, have increased amplitudes 
achieve higher accuracy R2=0.67401 and Zs= 85.32 in generating new motions com-
pared to channels with reduced activity R2=0.39 and Zs= 73.2 (Fig. 9).

Table 4  All architectures (recurrent neural network (RNN), sub-sequenced input recurrent neural 
network (RNNseq), feedforward neural network (FNN), sub-sequenced input feedforward neural 
network (FNNseq), convolutional neural network (CNN)) are tested on a new motion from the 
separate subject and evaluated by the zero-line score Zs, mean square error MSE, the squared 
correlation coefficient r2, and the coefficient of determination R2

The results are presented as an average over all channels, with the bold numbers indicating the highest score

General Fine-tuned Subject-specific

RNN Zs 53.42 71.6 68.15

MSE 0.01286 0.00784 0.00879

r2 0.64099 0.71044 0.7245

R2 – 0.05092 0.35933 0.28147

RNNseq Zs 49.22 71.27 67.39

MSE 0.01401 0.00793 0.009

FNN Zs 50.39 67.33 64.76

MSE 0.01369 0.00902 0.00973

FNNseq Zs 37.51 70.99 69.47

MSE 0.01786 0.00829 0.00873

CNN Zs 47.87 71.63 68.22

MSE 0.01439 0.00783 0.00877
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Input parameter validation

Until now, we generated artificial muscle activity for known and new motions based on the 
chosen input parameter angular position, angular velocity, and angular acceleration for each 
joint (shoulder, elbow, and wrist). However, from an analytical viewpoint, the latter param-
eters are redundant since velocity and acceleration can be derived as the first and second 
derivatives of the position, respectively. Note that with integration on one, the velocity and 
position can be accumulated from the acceleration, and thus up to numerical precision, only 
one of the three quantities is needed to describe motion. Therefore, we want to test whether 
one of these three parameters is sufficient enough as input for a neural network to provide a 
similar good abstraction for generating known (Table 6) and new muscle activity (Fig. 10 or 
Table 5). To this end, we train the RNN separately on each input parameter and compare the 
ability to generate motions to the previous results using all three input quantities simultane-
ously. Furthermore, instead of testing the motion for each joint as before, we want to con-
sider the position and orientation of the hand as input data, the so-called end effector (EEF) 
and (EFF+) if the corresponding velocity and acceleration are included as well.

The RNN trained with all input parameters still outperforms all other approaches with 
a reduced number of input data for a new subject and new motion (Tables 5, 6). The 
result is particularly evident in the case of the new motion prediction (Fig. 10). For the 
general and fine-tuned approaches, the accuracy drops from a score of 71.55 for solely 
using the angular position to 57.49 for the acceleration input. A similar trend can be 
observed for the subject-specific models. The EEF and EEF+ achieve comparable results 
to the RNN trained with all parameters. However, the subject-specific model slightly 
outperforms the other models with a score of 71.98.

Fig. 8  New motion performance for the RNN (blue bar) of the general, fine-tuned and subject-specific 
model. The other network architectures (RNNseq, FNN, FNNseq and CNN) are represented by the black lines

Fig. 9  Muscle activity (blue) from a new motion (pointing into 3 points in space) and the artificial generated 
muscle activity (orange). The artificial activity is generated after fine-tuning using an RNN architecture
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Leave‑One‑Out method: determine variation between subjects

In the previous prediction, we choose always to test on the same separate subject and the 
same new motion, to compare the different approaches with each other. The results will 
likely vary slightly across individuals as well as the results will differ for new motions. 
How does subject variation affect our results? Therefore, we want to use the Leave-One-
Out (LOO) method to determine the variation between subjects. In the LOO method, 
one other subject is left out of each run, such that the model can be evaluated based 
on this subject. After running across all subjects, the results are averaged and displayed 
with the standard deviation to indicate the variance (Fig.  11). In contrast to "Perfor-
mance for new subjects" section, where only one subject was tested as an example, the 
LOO method is used in this Section to make a more general statement about the influ-
ence of different subjects. Since the new motion (3 points in space) used prior is not 
performed by all subjects, two other movements are removed from the pool and used 
as a test data set for the new motion. These two consist of simple shoulder flexion and 
a complex relay handover motion. The score of the new motions is average over both 
new motions. The subsequent calculations have been conducted with the RNN model. 
As suspected, the variability for the general and fine-tuned model is lower in contrast 
to the new subject and new motion model. The variability for the new motion decreases 
again with the fine-tuned model. In addition, the black dashed line indicates the result 
of the original approach (see "Comparison of the network architectures, Performance for 
new subjects, Generalization property for new motion" sections). The original model is 
in most cases within the standard deviation of the LOO method and is thus reproduc-
ible. The slightly better result of the initial approach in the general model could be due 
to a higher number of training data, since two motions as described above were removed 
for the LOO to be used as a new motion.

Fig. 10  The recurrent neural network (RNN) is separately trained on several parameters: angular position 
(ang), angular velocity (vel), and angular acceleration (acc) from each joint as well as on the end-effector (EEF) 
position and orientation of the hand and EEF+ with additional velocity and acceleration of the EEF. The RNN 
is tested on a new motion from the separate subject a-c and evaluated by zero-line score Zs. The results are 
presented as an average over all channels
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How many repetitions of a motion are required for learning?

Furthermore, we want to evaluate how many repetitions of a motion are required to 
learn the motion. The repetition rate is analyzed by training the general model with dif-
ferent numbers of repetitions ( 1 ∼ 7%, 3, 5, 8, 10, 12, 15 ∼ 100% of data) (Fig.  12). Sur-
prisingly, a single repetition already achieves a score of 67 for the general model and 55 
for the subject-specific model. The accuracy increases steadily with the quantity of data 
until about 70% is reached in the general model. Between 100% and 70% no improvement 
is seen. This tendency does not occur in the new subject or new motion configuration; 
they are less affected by the number of repetitions. In contrast to the general model, the 
increasing amount of repetitions lead to a further increase in the subject-specific model 
score. We empathize that the overall number of data used by the subject-specific model 
is always lower compared to data of the general model using 4 subjects, and, therefore, 
has 4 times higher number of repetitions, respectively (see "Discussion" section).

Fig. 11  Average performance and standard deviation with the Leave-One-Out method (n=4) for all models 
based on the RNN architecture. The black dashed line represents the result from the original approach (see 
"Comparison of the network architectures, Performance for new subjects, Generalization property for new 
motion" sections) with a separated test subject and new motion (3 points in space) used there
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Subject‑specific or general model

The EMG signal has a high inter-subject variability which makes it hard to predict across 
subjects. However, in practice, an adaptation to a new subject is often required. The 
subject-specific model is explicitly trained on this subject during the first application. In 
contrast, the general model is trained on multiple subjects in advance and benefits from 
a larger data set to potentially generalize across subjects. The question is whether a sub-
ject-specific model is superior to a general model. Therefore, we apply the LOO method 
introduced above and generate 5 subject-specific models (i.e., one for each subject) and 
equivalent to that an added-general model trained on all 5 subjects at once. Note that 
this added-general model should not be mistaken with the general model from all previ-
ous "Comparison of the network architectures – How many repetitions of a motion are 
required for learning?" sections which is always trained on n = 4 subjects. In the first 
step, each model is tested on already known motions of the trained subjects. For the sub-
jects-specific model, we train on subject x and test on subject x. Similarly, for the added-
general model, which is trained on all subjects ( n = 5 ) and also tested on all subjects. In 
the second step, each model is tested on the new motions of the trained subjects in the 
same way as described above using the shoulder flexion and a relay handover motion. In 
the first step, the added-general model slightly outperforms the average subject-specific 
models (Fig. 13). The standard deviation from the subject-specific is remarkable small 
compared to the second step. For new motions, the score of the subject-specific varies 
between widely 23− 78 (Fig. 13). The added-general model is again slightly above the 
average subject-specific model.

Fig. 12  a Decaying amount of repetitions (from 100% ∼ 15 repetitions to 7% ∼ 1 repetition) predicted by 
the general model with the RNN architecture. b Decaying amount of repetitions (from 100% ∼ 15 repetitions 
to 7% ∼ 1 repetition) predicted by the subject-specific model with the RNN architecture
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Discussion
The underlying motivation of this work is to demonstrate that artificial muscle activity 
of known and unknown motion can be generated based on motion parameters such as 
angular position, acceleration, and velocity of each joint (or the end-effector instead), 
which are similarly represented in our brains [6–9]. For this purpose, we develop a neu-
ral network with a recurrent architecture that is trained in a supervised learning session. 
Alternative architectures are also elaborated and tested for comparison. Furthermore, 
we evaluate different training approaches: the general model, the fine-tuned one, and 
the subject-specific model. All architectures and the majority of the other training 
approaches produce good artificial muscle activity for previously trained movements. In 
addition, we also generate artificial muscle activity on new motion, i.e., types of motions 
that were previously not used to train the network. Naturally, this is a much more chal-
lenging task, and trained motions achieve higher similarities than these new motions.

The general setting of comparing different neural network architectures is described 
in "Comparison of the network architectures" section. The RNN outperforms the other 
architectures for most muscle activity. In all models, the zero-line score is higher for the 
second and third channels likely due to an unbalanced amount of data. These two chan-
nels represent the shoulder abduction and flexion, which have a higher presentation in 
the recorded motion, whereas wrist motions are less represented and tend to have lower 
approximation values (channels seven and eight).

While the general model shows an exceedingly good approximation for all subjects 
included in the training data, it does not generalize well for new subjects data (Table 3). 

Fig. 13  a The subject-specific models (1-5) are tested on themself. The added-general model (n=5) is 
tested on all subjects. b The subject-specific models (1-5) are tested on themself for the new motions. The 
added-general model (n=5) is tested on all subjects for the new motions
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That is most likely due to the high inter-subject variation of the recorded muscle activ-
ity [28]. To minimize these differences primarily caused by varying skin conditions a 
normalization factor is already calculated and applied for each subject [44]. However, 
the normalization only accounts for a linear relationship between the subjects; in addi-
tion, there are likely to be additional changes in shape caused by individual anatomy and 
slightly inconsistent placement of the sensors [29–34]. Thus, we must further enhance 
the model so that it can more accurately predict new subjects’ data as well. The fine-
tuned model starts with the weights of the general model, which are further fine-tuned 
by an additional short training session with the data of the new subject utilizing transfer 
learning [28, 43]. There are other fine-tuning approaches, however, weight initialization 
seems to be the most promising for muscle data [45, 46]. Alternatively to the fine-tuned 
model, a subject-specific model that is purely trained on one subject’s data can also be 
used. The latter has the same amount of data for training compared to the fine-tuning 
step of the so called model but has a higher number of epochs. However, it misses the 
weight initialization step of the fine-tuned model based on the larger dater set of the 
other subjects. Overall, the fine-tuned model outperforms the average subject-specific 
model (Fig. 13) both for predicting the subjects data and for new motions. Interestingly, 
the subject-specific model seems to have a high variance between different subjects for 
new motions (Fig. 13). This suggests that the subject-specific model does not generalize 
well in some cases. In comparison, a model trained on multiple subjects seems to be less 
vulnerable. The influence of the different subjects to a model trained on multiple sub-
jects can be seen in the LOO approach (Fig. 11).

The input parameter validation reveals that a combination of angular position, veloc-
ity, and acceleration results in a slightly higher overall accuracy than each parameter on 
its own, especially by being more robust for new motions (Table 5). This is consistent 
with findings in motor cortical activity during reaching where besides the movement 
direction also less dominant correlations as velocity and acceleration are represented [8, 
9]. From an analytical point of view, the redundancy of input parameters, for example, 
velocity as the derivative of position and the integral of acceleration, should not increase 
the accuracy of the overall model. In contrast to biological systems, and especially the 
neuronal system, a high degree of redundancy is present. The artificial neural networks 
inspired by these also exhibit an increase in performance, stability, and faster conver-
gence due to the application of redundancy [47, 48]. The EEF+ as an alternative input 
parameter reaches similar high scores for the fine-tuned model as the RNN with angu-
lar position, velocity, and acceleration of each joint. Note that the variation in the EEF 
may be lower than the variation of the overall sum of all joints in the arm. That could 
be explained by the fact that the arm has seven degrees of freedom, whereas only six 
degrees are sufficient to describe the EEF. The former allows choosing slightly differ-
ent trajectories ending at the same position and orientation of the hand. The addition of 
velocity and acceleration parameters as further input, which was previously shown ben-
eficial, for the angular position of all joints, causes the EEF+ to be able to achieve slightly 
higher scores for the fine-tuned model.

In an additional step, we verified that our models can generate muscle activity based 
on new motions. This reveals the true ability to abstract the relationship between motion 
parameters and muscle activity. As expected, the accuracy for predicting new motions is 
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lower than for the trained motions with a zero-line score of 72 and r2=0.71 compared to 
a zero-line score of 88 and r2=0.86 for known motions. However, the artificial signal still 
follows the trend of the original signal well (Fig. 9). Our results are in line with previous 
works as [19, 26] (see "Background" section) using similar approaches but different task 
designs and achieving an average r2 of 0.40 and 0.66 for new 3D motions, respectively. 
The comparatively lower values of R2 of 0.36 compared to 0.86 for known motions is due 
to the fact that the shape and timing is well matched (latter indicated by a high r2 value) 
but the amplitude tends to undershoot the original signal here (Fig. 9).

We also investigate how much data are needed for the RNN to learn to predict muscle 
activity based on motion data. The amount of data is given by three factors: the number 
of subjects, the number of motions, and their repetitions. The evaluation of the results 
of the LOO method has confirmed that, especially for new subjects, the prediction accu-
racy depends on the subject itself and is very variable compared to other new subjects 
(Fig. 11). Thus, it makes little sense to vary the number of subjects between 1− 5 in this 
framework to see how many subjects are required. The second factor, the influence of 
the number of motions and especially the exact nature of the motions, is part of further 
work. The number of repetitions of a movement has a clear effect on the performance of 
the model. Saturation is already reached with 10 repetitions for the general model using 
data of 4 subjects so the model does not improve significantly with more repetitions. 
However, the subject-specific model continues to improve as the number of repetitions 
increases. This is most likely due to the fact that the general model is based on multiple 
subjects, and thus even if each movement is repeated only once, the actual repetition 
rate adds up to the number of subjects, whereas in the subject-specific model there is 
only one person and thus only one actual repetition of the movement. It is also remark-
able that even one repetition achieve a score of 67 for the general model and 54 for the 
subject-specific model (Fig. 12). This indicates that repetition of the same motion alone 
is not necessarily crucial for a good generalization of the model.

Most models generate muscle activity using an entire motion sequence and thus work 
offline. The RNNseq and FNNseq model are based on sub-sequences and are thus suit-
able for online prediction, however, it leads to a slightly decrease in overall accuracy.

The recorded muscle activity includes an over-representation of the zero line repre-
senting an inactive state of the corresponding muscle. Initially, the motion sequences 
are already cut to eliminate inter-trial pauses. However, due to the different lengths of 
each single task, the sequence still incorporates some zero line signals to ensure that 
all sequences have the same length. Further, not all recorded muscles are active in each 
motion. Most tasks are designed to activate only certain muscle groups such that all 
the other channels have a resting signal close to zero. Ensuring the same signal length 
is especially important for the CNN, while the RNN and FNN can cope with different 
sequence lengths. While the representation of the zero line itself is meaningful, as it rep-
resents the non-active state which is crucial for learning, this over-representation of low 
values leads to inherently smaller values in the MSE metric, which can easily be mis-
interpreted. As a result, the zero lines are easily predicted by all models, but learning 
other values becomes more challenging, and the model naturally tends to form lower 
peak muscle activity values overall. The newly introduced zero-line score differs from 
the R2 by accounting for the zero line whereas the R2 accounts for the mean value of the 
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signal and thus is naturally suited for rating EMG signals accounting for the over-repre-
sentation of the zero line.

The RNN receives the highest score for all motions used for training with a zero-line 
score of 88, while new motions reach an average value up to 72 for the zero-line score 
and a r2= 0.81. We emphasize that a theoretical 100 cannot be achieved in real-word 
applications due to the generalization by training the networks with different subjects, 
as mentioned before. Furthermore, we already described above that it is more difficult to 
achieve a high zero-line score for data containing many zero signal segments. Note that 
the MSE achieves very low values of 0.00066 and 0.00131 (Table 2), respectively. Finally, 
even for a hypothetical perfect test environment in which a subject can perform two 
exactly identical movements, it is not clear whether the corresponding muscle activities 
must also be perfectly matched. Consequently, our models achieve a very high degree of 
similarity, that can also be seen in Fig. 6.

This work is valuable to support EMG-based classifiers for myoelectrical controlled 
devices which requires additional data to improve further performance and generaliza-
tion. In addition, a transfer to a functional electrical stimulation (FES) protocol is con-
ceivable to support the movement of paralyzed limbs. Many studies have already shown 
that FES has a high impact for rehabilitation of stroke patients [49–52]. The approach 
involves approximating the relationship between muscle activity and force and then 
transferring this to stimulation patterns. Our model, is founded on a comprehensive data 
set that encompasses various motion types and many repetitions, see "How many repeti-
tions of a motion are required for learning?" section. Featuring data from five healthy 
subjects, excels at predicting muscle activity similar to the original subjects (see "Leave 
One Out method: determine variation between subjects") but may have limited accu-
racy for individuals in a rehabilitation setting. For this, recruiting a more diverse group 
of subjects will supposedly improve the accuracy and generalizability of the model and 
expand our understanding of muscle activity generation. This is particularly important 
given the high inter-subject variation in muscle activity and the need in rehabilitation 
context to also account for age-related and pathological differences. For further work, 
we will also test our model for the vice versa approach predicting the motion parameters 
we used in this work as input values from EMG signals to gain more insight into the 
complex relation between motion and muscle activity. Furthermore, it will be interesting 
to combine this model with a biomechanical model and compare the expected outcome.

Conclusions
This work shows that artificial muscle activity of known and unknown motion can be 
generated based on motion parameters such as angular position, acceleration, and veloc-
ity of each joint (or the end-effector instead), which are similarly represented in our 
brains [6–9]. The dynamic behavior of the motor cortex might be best explained by a 
recurrent neural network [49–52], which also achieves remarkable results in our case. 
We obtain outstanding results predicting muscle activity through different subjects. 
Moreover, the model generalizes over a wide range of motions including new motions. A 
transfer learning approach was successfully used to overcome the challenging variations 
in muscle activity between subjects, resulting in a good adaptation of muscle activity for 
a new subject. The efficient prediction of muscle activity is relevant for the fundamental 
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understanding of movement control and the rehabilitation process of neuromuscular 
diseases with myoelectric prostheses using functional electrical stimulation.

Appendix
See Tables 5 and 6

Table 5  Recurrent neural network (RNN) is separately trained on several parameters: angular 
position (ang), angular velocity (vel), and angular acceleration (acc) from each joint. As well as on 
the end-effector (EEF) position and orientation of the hand and EEF+ with additional velocity and 
acceleration. The RNN is tested on a new motion from the separate subjects and evaluated by zero-
line score Zs and mean square error MSE

The results are presented as an average over all channels, with the bold numbers indicating the highest score

RNN General Fine-tuned Subject-specific

All Zs 53.42 71.6 71.33

MSE 0.01286 0.00784 0.00791

Ang Zs 36.49 71.55 61.38

MSE 0.01753 0.00785 0.01066

Vel Zs 45.22 60.7 60.4

MSE 0.01512 0.01085 0.01093

Acc Zs 40.3 57.49 58.96

MSE 0.01648 0.01173 0.01133

EEF Zs 59.26 69.4 71.98
MSE 0.01124 0.00845 0.00773

EEF+ Zs 42.71 71.44 70.79

MSE 0.01581 0.00788 0.00806

Table 6  Recurrent neural network (RNN) is separately trained on several parameters angular 
position (ang), angular velocity (vel), and angular acceleration (acc) from each joint.  As well as on 
the end-effector (EEF) position and orientation of the hand and EEF+ with additional velocity and 
acceleration. The RNN is tested on the same test data set of the separate subject and evaluated by 
the zero-line score Zs and mean square error MSE

The results are presented as an average over all channels, with the bold number indicating the highest score

RNN General Fine-tuned Subject-specific

All Zs 35.52 88.21 85.16

MSE 0.00747 0.00137 0.00172

Ang Zs 28.93 80.16 72.86

MSE 0.01923 0.00823 0.0023

Vel Zs 27.0 84.72 69.24

MSE 0.00846 0.00177 0.00356

Acc Zs 5.66 84.08 77.18

MSE 0.01093 0.00184 0.00264

EEF Zs 39.81 87.57 83.56

MSE 0.00697 0.00144 0.0019

EEF+ Zs 30.41 89.48 86.37

MSE 0.00806 0.00122 0.00158
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Abbreviations
EMG	� Electromyography
EEF	� End-effector
FES	� Functional electrical stimulation
MSE	� Mean square error
RMSE	� Root mean square error
NRMSE	� Normalized root mean square error
r	� Correlation coefficient
R2	� Coefficient of determination
VAF	� Variance accounted for
Zs	� zero-line score
FNN	� Feedforward neural network
RNN	� Recurrent neural network
LSTM	� Long short-term memory
CNN	� Convolutional neural network
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