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Background
Swallowing is an essential function in which food and liquids are transferred from the 
oral cavity to the stomach to provide necessary nutrients vital for human survival. There-
fore, monitoring swallowing activities can be considered an ideal surrogate for tracking 

Abstract 

Monitoring of ingestive activities is critically important for managing the health 
and wellness of individuals with various health conditions, including the elderly, 
diabetics, and individuals seeking better weight control. Monitoring swallowing 
events can be an ideal surrogate for developing streamlined methods for effective 
monitoring and quantification of eating or drinking events. Swallowing is an essential 
process for maintaining life. This seemingly simple process is the result of coordi-
nated actions of several muscles and nerves in a complex fashion. In this study, we 
introduce automated methods for the detection and quantification of various eating 
and drinking activities. Wireless surface electromyography (sEMG) was used to detect 
chewing and swallowing from sEMG signals obtained from the sternocleidomastoid 
muscle, in addition to signals obtained from a wrist-mounted IMU sensor. A total 
of 4675 swallows were collected from 55 participants in the study. Multiple methods 
were employed to estimate bolus volumes in the case of fluid intake, including regres-
sion and classification models. Among the tested models, neural networks-based 
regression achieved an R2 of 0.88 and a root mean squared error of 0.2 (minimum 
bolus volume was 10 ml). Convolutional neural networks-based classification (when 
considering each bolus volume as a separate class) achieved an accuracy of over 99% 
using random cross-validation and around 66% using cross-subject validation. Mul-
tiple classification methods were also used for solid bolus type detection, includ-
ing SVM and decision trees (DT), which achieved an accuracy above 99% with ran-
dom validation and above 94% in cross-subject validation. Finally, regression models 
with both random and cross-subject validation were used for estimating the solid 
bolus volume with an R2 value that approached 1 and root mean squared error values 
as low as 0.00037 (minimum solid bolus weight was 3 gm). These reported results lay 
the foundation for a cost-effective and non-invasive method for monitoring swallow-
ing activities which can be extremely beneficial in managing various chronic health 
conditions, such as diabetes and obesity.
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the ingestive behavior of an individual for purposes of observation, measurement, and 
control. Swallowing is the result of a well-coordinated, yet complex set of neuromuscular 
activities that involves more than 30 nerves and muscles [1, 2]. The swallowing process 
is commonly divided into three phases: oral preparatory phase, pharyngeal phase and 
esophageal phase. The timing and duration of each of the three phases vary according to 
multiple factors that include material consistency, bolus volume, age and health condi-
tion of the subject [3, 4]. However, of the three phases, the pharyngeal phase is consid-
ered the most important as many of the swallowing physiological events such as airway 
protection and upper esophageal sphincter opening occur in this phase [5, 6].

Automatic tracking of swallowing activities is of special importance to identify and 
intervene in certain health situations that include eating patterns of the elderly, food 
consumption disorders in type 1 diabetes, and obesity. According to the United Nations, 
the world population included more than 700 million persons of age 65 or older in 2019 
[7]. As people grow older, they become more vulnerable to a wide variety of diseases 
such as cognitive, cardiac and metabolic diseases. Studies indicate that a significant 
number of such diseases are linked to nutrition deficiencies, which include changes in 
the eating and drinking patterns [8]. Such pattern changes usually have a direct influence 
on people’s health, especially the elderly. Diabetes is the third most prevalent chronic 
childhood diseases and is considered a leading cause of retinopathy, nephropathy and 
cardiovascular diseases later in life [9]. Also, about 40% of the diabetic population are of 
age 65 or older [9]. Obesity is a complex disorder that involves abnormal body weight for 
the corresponding height due to excessive amounts of body fat resulting, mostly, from 
excess calorific intake. Obesity is one of the leading causes of a set of chronic diseases, 
such as cardiovascular diseases, diabetes, and hypertension [10]. Common management 
protocols for diabetes and obesity include weight loss through management of calorie 
intake, being more physically active, and making other changes to routine eating hab-
its. Management of food intake relies mainly on monitoring the acts of swallowing to 
characterize the amount of food/drink consumed by the subject [3, 11]. While multi-
ple methods have been explored for the automatic characterization of various physical 
activities, less has been done on developing accurate and inexpensive ways for day-to-
day monitoring of ingestive activities [12, 13].

Known methods for the evaluation of the physiology of swallowing include X-ray 
videofluoroscopy, electromyography (EMG), and more recently cervical auscultation. 
Videofluoroscopy is a radiographic method that is not available outside custom clini-
cal settings and exposes subjects to radiation [4, 6, 13]. Recent research explored the 
monitoring of food/drink intake activity through utilizing a variety of sensing modalities 
associated with sensing specific movements of the head and neck region as well as the 
hands. For instance, swallowing sounds collected from a throat microphone and con-
duction microphone placed on the mastoid bone along with a strain sensor have been 
used for monitoring chewing and swallowing activities and determining the bolus nature 
being composed of solids or liquids [13, 14]. Other studies have also utilized sensors like 
accelerometers and strain sensors for monitoring swallowing activities [6, 15–17]. Fur-
ther, with a camera that can be triggered by a set of sensors when food intake is detected, 
the accuracy of monitoring could be improved by up to 82.7% [18]. Another study used 
a proximity sensor, IMU and throat microphone to differentiate between daily activities 
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and food intake with accuracy of 97% [19]. Wrist motion tracking was utilized as well to 
detect periods of eating and drinking to improve accuracy [20, 21].

Monitoring fluid intake via the use of a throat microphone or mechanical sensors was 
reported but without estimating the fluid intake volume [22]. Another study reported 
the use of a throat microphone to estimate the fluid intake volume with a reported accu-
racy of 80% for volumes between 5 and 15 ml per subject [23]. Swallowing and chew-
ing activities along with bolus volume and material consistency were also the subject 
of another study using a microphone and 2 sEMG channels [24]. The use of sEMG with 
microphone improved the accuracy from 73 to 84%.

This study introduces a non-invasive swallowing sensing technique that relies on a 
single-channel sEMG and a wrist-worn IMU sensor to monitor and evaluate the inges-
tive activities. This study also provides an sEMG-based algorithm to quantify food bolus 
through using three different food classes and drink sip volumes.

Results
A total of 4675 swallows (2200 water swallows and 2475 solid material swallows) were 
collected. 335 swallows (200 water swallows and 135 solid material swallows) were then 
excluded due to low signal quality and noise dominance that occurred during the data 
collection procedure.

Swallowing signals were collected via two wearable sensors, a mobile BITalino single 
electrode sEMG and a wrist-mounted IMU (WI) sensor. To guarantee the synchroniza-
tion of collected signals, the WI and sEMG sensors were started at approximately the 
same time. Furthermore, the participants were also asked to move the WI sensor close 
to the sEMG to induce some electrical interference that appears as high-frequency (sud-
den) change in the sEMG signal. This sudden change was detected and used to perform 
end-to-end synchronization between the signals from the two sensors prior to analysis 
by using Memory Based Graph Theoretic technique (MB-GT). This technique is con-
sidered a fast adaptive algorithm for abrupt change detection [25]. After detecting and 
removing the noise window, both WI and sEMG signals were considered in alignment. 
The full processing chain is shown in Fig. 1. The sEMG signals before and after synchro-
nization are shown in Fig. 2.

Fig. 1 A block diagram that shows overview of pipeline for the proposed method. This pipeline includes the 
process of end-to-end synchronization and fusion between the data from the WI and sEMG sensors
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Solids vs water swallows prediction

After signals from WI and sEMG were aligned temporally as described previously, these 
signals were fused to identify and remove no-activity periods (periods of “no ingestive 
intake”) as only periods of hand motion in WI signals indicate solid/water intake. We 
described the solid or liquid intake using the IMU’s X, Y, and Z rotation angles. Prior 
to the experiments, we verified the subjects’ angles for both eating and drinking. Then, 
we employed thresholding and decision trees to ascertain the angles for each. There 
are specific X, Y, and Z rotation angles for every subject in every activity. The majority 
of subjects use the same angles for each eating or drinking activities, with a difference 
between the X and Y angles in both activities. The X and Y angles for drinking were 
located between 300 and 350 and 1 and 60, respectively. Additionally, the X and Y angles 
for eating were located between 200 and 300 and 90 and 150, respectively. WI was able 
to use rotation angles to differentiate between solid and water input based on the prior 
angles. Following temporal alignment with sEMG, the activity times marked in the WI 
signals were converted to sEMG using the time stamp in WI and frequency in sEMG. An 
example of signal-fusion outcome is shown in Fig. 3. The red lines represent the onset of 
ingestive activities. Signal properties of sEMG differ in magnitude and duration accord-
ing to the underlying activity performed by the subject.

Fig. 2 a sEMG with electrical high-frequency interference “red line represents the MB-GT detection window”. 
b sEMG signal after removing electrical interference
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The muscle activity magnitude (MAM) can be divided into either high MAM or low 
MAM [26]. Low MAM segments of the sEMG represent swallow events only, which cor-
respond to fluid and saliva swallowing. On the other hand, high MAM segments include 
biting, chewing, and swallowing events, which correspond to eating activities. The seg-
ments of sip–swallow and bite–chew–swallow events were further identified through 
applying the MB-GT algorithm on sEMG in the duration between each two successive 
eating/drinking events, as identified by WI. As mentioned previously, MB-GT is an effi-
cient technique for detecting abrupt changes in biosignals [25, 27].

Bolus material type and volume estimation

In high MAM segments, to determine the solid material type and volume we divided the 
problem into two main steps: (1) classification for identifying the material type and (2) 
regression for volume quantification. We used two different approaches to implement 

Fig. 3 a sEMG and b WI signals fusion to indicate the ingestive activities “the red lines represent the start of 
ingestive intake”
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both steps: starting with classification then doing regression and vice versa, as illustrated 
in Fig. 4.

For the classification task that determines the solid material type, our experiment 
included 3 classes representing different softness levels: Type A, carrot (hard texture); 
Type B, cheese (intermediate texture); and Type C, banana (soft texture).

Examples of sEMG signals for the three classes are shown in Fig. 5, while examples for 
signals from different bolus weights for “carrots” are shown in Fig. 6.

Forty features calculated in time–frequency domains commonly used with EMG sig-
nals in the literature, were chosen for our study [28–30] and are shown in Table 1.

The bites data were split into two groups (80–20%): 1872 bites were used for training 
and 468 bites were used for testing. Since sEMG data usually suffer from inter-subject 
variability, we used two validation methods.

First, both training and testing data were sampled evenly from all subjects (among-
subjects validation or AS) and, second, training and testing data were sampled from dif-
ferent subjects (cross-subject validation or CS). The data splitting process was repeated 
5 times until all data points were included at least once in the training and testing pro-
cess (fivefold cross-validation). K-Nearest Neighbor (KNN) classifier, support vector 
machine (SVM) and DT were tested as classifiers to determine the bolus class. KNN 
was configured to use K = 5 and Euclidian distance; while SVM was configured to use 
C = 1, a Radial Basis Function (RBF) kernel. For DT, entropy was employed as a metric 
to assess the efficacy of each split, with a stipulation that an internal node must have at 
least 2 samples to be eligible for splitting. Additionally, the expansion of nodes contin-
ued until all leaves became pure.

For the regression task that determines the bolus volume, the bites included three dif-
ferent weights: 3, 6, and 9  g for each type. The material type was known at this stage 
given that this regression task is performed after the classification task. DT, extra trees 
(ET), AdaBoost (AB), gradient boosting (GB), eXtreme gradient boosting (XGB), light 
gradient boosting (LGB), SVM, and Gaussian regressors (GPR) were used and validated 
in a fivefold cross-validation manner. Further, a two-layer feed-forward neural network 
was tested with both Levenberg–Marquardt (LM) and Bayesian regularization (BR). The 

Fig. 4 A block diagram that shows the two approaches for bolus material type and volume estimation. a 
First Approach, b Second Approach.
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Fig. 5 EMG signals for the different classes: a carrot, b cheese, and c banana
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Fig. 6 EMG signals for different carrot bolus sizes: a 9 gm, b 6 gm, and c 3 gm
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neural network consisted of a hidden layer containing 50 neurons, an output layer with a 
single linear rectified neuron to represent the regression output, and it underwent 1000 
epochs during training.

In this approach, KNN and DT showed the highest accuracies in the AS validation 
scheme, while SVM showed better performance in the CS validation scheme as shown in 
Table 2, with sensitivity and specificity values of 92.3 and 96.1%, respectively.

Table 3 depicts the root mean squared error (RMSE) for the regression task that deter-
mines the bolus volume. While ET showed the best overall performance for both AS and 
CS validation in the three material types, most of the tested regression models showed 
close performances. Table  4 shows the detailed performance measures for ET regres-
sion results including the mean absolute error and  R2 for each material type. Also Fig. 7 
shows the ET regression fitting model.

As a second approach, we performed the regression first followed by classification 
to test the effect of the pre-knowledge of bolus volume/weight on the classification 
results of the material type. For this purpose, we grouped the results of regression 
task into 3 groups small volume (< 4.5), intermediate volume (> 4.5 and < 7.5) and large 
volume (> 7.5). Then followed by bolus type classification for each regression group. 
Tables 5 and 6 show the results and the top performing models in the regression and 

Table 1 EMG selected features

No. Feature No. Feature

1 Enhanced Mean absolute value 21 Skewness

2 Enhanced Wavelength 22 Kurtosis

3 New Zero Crossing 23 Coefficient of Variation

4 Absolute Value of Summation of exp root 24 Standard Deviation

5 Absolute Value of Sum of Square Root 25 Variance

6 Mean Value of Square Root 26 Average Energy

7 Log Teager Kaiser Energy Operator 27 Integrated EMG

8 Log Coefficient of Variation Cardinality 28 Mean Absolute Value

9 Log Difference Absolute Standard Deviation Log 29 Slope Sign Change

10 Difference Abs. Mean Value 30 Zero Crossing

11 Difference Variance Value 31 Waveform Length

12 V-Order 32 Root Mean Square

13 Temporal Moment 33 Average Amplitude Change

14 Difference Absolute Mean Value 34 Difference Absolute Standard Deviation

15 Auto-Regressive Model 35 Value

16 Mean Absolute Deviation 36 Log Detector

17 Interquartile Range 37 Modified Mean Absolute Value

18 Variance of EMG 38 Modified Mean Absolute Value 2

19 Willison Amplitude 39 Myopulse Percentage Rate

20 Maximum Fractal Length 40 Simple Square Integral

Table 2 Solid material type classification accuracies using different validation schemes

Validation scheme KNN (%) SVM (%) DT (%)

AS 100 99.5 100

CS 89.32 94.4 86.1



Page 10 of 17Hassan et al. BioMedical Engineering OnLine           (2024) 23:48 

Ta
bl

e 
3 

RM
SE

 fo
r b

ol
us

 v
ol

um
e 

es
tim

at
io

n 
re

su
lts

 in
 d

iff
er

en
t v

al
id

at
io

n 
sc

he
m

es
 fo

r e
ac

h 
cl

as
s

M
at

er
ia

l t
yp

e
D

T
SV

M
G

BR
N

N
-L

M
N

N
-B

R
ET

A
B

RF
G

B
XG

B
LG

B

A
A

S
0.

72
0.

48
0.

25
0.

65
0.

02
5

0
1.

28
59

5
0.

06
84

0.
35

75
2

0.
00

03
7

0.
05

07
8-

C
S

2.
22

2.
54

1.
97

3.
52

2.
85

4.
83

05
6

4.
83

29
3

3.
66

57
5

4.
76

86
4.

63
51

4.
81

86
9

B
A

S
0.

45
0.

51
0.

05
0.

45
0.

1
0

−
 0

.8
56

76
−

 0
.0

08
32

0.
09

59
9

0
−

 0
.0

17
46

C
S

2.
54

2.
8

2.
72

3.
5

2.
28

2.
95

47
9

2.
96

13
8

3.
17

58
8

3.
02

59
1

2.
91

99
1

3.
09

82
2

C
A

S
0.

52
0.

66
0.

34
0.

66
0.

9
0

1.
28

59
5

0.
06

84
0.

35
75

2
0

0.
03

67
4

C
S

1.
88

1.
72

1.
4

4.
6

1.
45

0.
56

47
1

1.
40

59
8

0.
58

72
7

0.
68

82
3

0.
56

47
3

0.
57

47
2



Page 11 of 17Hassan et al. BioMedical Engineering OnLine           (2024) 23:48  

classification tasks of the experiments performed in the second approach. We can 
clearly see the deterioration in the regression error and classification accuracy for 
this approach compared to the first approach which indicates that the pre-knowledge 

Table 4 Bolus volume estimation results for the lowest error regression schemes (ET) of each class

Material type Validation scheme RMSE MAE R2

A AS 0 0 1

CS 4.83056 4.17036 0.59288

B AS 0 0 1

CS 2.95479 2.62233 0.46163

C AS 0 0 1

CS 0.56471 0.56473 0.94685

Fig. 7 ET regression model for Class A

Table 5 RMSE for bolus volume estimation in different validation schemes for the second approach

Validation scheme DT SVM GBR NN–LM NN–BR

AS 2.3 3.01 2.33 4.7 3.6

CS 4.5 4.2 3.01 6.3 6.32

Table 6 Bolus material type classification accuracies in different validation schemes for each class in 
the second approach

Bolus size Validation scheme KNN (%) SVM (%) DT (%)

Low volume AS 84 86.3 84.2

CS 80 73.9 71.2

Intermediate volume AS 71 72.2 72.8

CS 69.8 79 70.4

High volume AS 93 95 96.5

CS 86 86.6 92.2



Page 12 of 17Hassan et al. BioMedical Engineering OnLine           (2024) 23:48 

of the material type is a substantial factor that enhances the quality of bolus volume 
estimation. Other regression models tested in this approach showed poorer results, 
therefore they were removed from Table 5.

Water sip volume estimation

In this part of the study, the goal was to estimate the water sip volumes using low MAM 
signals via two methods. The first method employed regression approach for a direct 
estimate of the sip volume using the 40 features described before and the second method 
utilized a deep convolutional network that used raw sEMG signals to classify sip volume 
into one of four classes (10, 20, 30, and 40 ml). The deep network (Fig. 8) consisted of 5 
1D convolutional layers, each with a kernel size of 5 and a number of output channels of 
32, 32, 32, 64, and 64, respectively. Each convolutional layer was followed by batch nor-
malization and 1D maxpooling (of size 1*2). The convolutional network was followed by 
two dense layers to combine the features and generate the classification output.

Table 7 shows the RMSE values for each of the tested regression models in the first 
approach task for AS and CS validation. We can see that neural networks-based regres-
sion with Bayesian regularization gives the best performance among the other regression 
models, with RMSE values of 0.57 and 4.1 for AS and CS validation scheme, respectively.

Fig. 8 Architecture of the convolutional neural network used for water sip volume classification. 5 1D 
convolutional layers each followed by batch normalization and maxpooling (1*2 on time dimension). The 
output of the last convolutional layer is then flattened and fed into two dense layers and an output layer to 
generate the classification result

Table 7 RMSE for water volume estimation using different regression schemes

Validation 
scheme

DT SVM GBR NN–LM NN–BR ET AB RF GB XGB LGB

AS 3.2 2.5 1.7 0.29 0.57 0.0 7.99 0.897 4.47 0.028 0.78

CS 6.2 7.2 5.8 6.4 4.1 14.57 12.61 14.49 13.77 14.57 14.55
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In the second approach, the deep network that used raw sEMG signals showed an 
accuracy of up to 99% while validating AS and 66% while validating CS.

Discussion
We presented a system and processing methods for the detection and quantification of 
swallowing activities of an individual in a manner that does not require manual logging. 
The approach used in this study employed a less-controlled environment compared to 
previous studies [31]. It also provided methods for quantification of ingested solid and 
fluid materials. These combined abilities bring this research one step closer to achiev-
ing an environment where many aspects of the ingestive behavior of an individual can 
be characterized in the least possible intrusive way. Such a goal can prove invaluable for 
many clinical and day-to-day living cases, enabling better care for the elderly, diabetics, 
and those seeking better weight control in a self-guided manner or via the help of medi-
cal professionals, to list a few.

To carry out this work, we relied on a single-channel surface electromyography sensor 
affixed on the sternocleidomastoid muscle in the neck area. We tested various machine 
learning techniques for binary classification of swallowing vs. non-swallowing and solid 
vs. fluid intake. The use of sEMG proved valuable in terms of minimum interference and 
reliability, despite lack of ideal signal-to-noise ratio conditions due to the small size of 
the target muscle and the limited capabilities of the used device. Nevertheless, the accu-
racy of swallowing vs. non-swallowing classification was above 99% and the accuracy of 
solid vs. fluid classification was 96% as shown in this and previous studies [31].

The two main goals of this research, however, were the quantification of solid bolus 
type and weight and the quantification of the liquid intake volume as one of four pre-
selected values. The selection of three solid types was rather intuitive to cover different 
“softness” levels: soft, medium, and hard. The performance of the solid type classifica-
tion was above 99.5%, while root mean squared error of quantity estimation of each type 
from the possible three weight values was 0.00037. This demonstrates that it is possi-
ble to use sEMG to estimate the type of ingested solid material and quantify its weight 
with high accuracy and low RMSE. The achieved accuracies of using classification then 
regression were low compared to regression then classification as shown in Tables 2 and 
6.

For liquid volume estimation, we pre-selected four different volume sizes that lend 
themselves well to model the lowest and highest sip volume that the subject could swal-
low at once. The accuracy of this part ranged between 100 and 66% for among and cross-
subject validation schemes. The drop in classification/regression performance in the 
different presented tasks can be accounted for by the widely known high inter-subject 
variability in sEMG. Therefore, a future direction to boost the cross-subject perfor-
mance of this platform could be considering different pre-processing strategies of the 
sEMG signals and using a variety of features to reduce the variability.

The use of the wrist-mounted IMU sensor was another tool that helped reduce the 
complexity of the problem in terms of demarcation of onset of about-to-eat or about-
to-drink moments as a facilitator for data segmentation. The performance of this type of 
sensors is expected to be moderate to good even in less-controlled environments.
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The main limitations of this study are: the limited types and quantities of solids and 
liquids, short experiment duration and limited number of visits. Hence, future work 
should include: more types and quantities of solids and liquids, and moving to free-living 
environments.

Conclusions
The goal of this work was to detect and measure an individual’s swallowing behaviors 
in a way that did not require human logging. Through the wrist angles, the WI was able 
to successfully identify ingestive intake, whether it was eating or drinking. With an R2 
value approaching one and root mean squared error values as low as 0.00037, the system 
was able to quantify food intake. In the case of fluid consumption, multiple approaches, 
including regression and classification models, were used to estimate bolus volumes. 
Among the investigated models, neural networks-based regression had the highest R2 
and the lowest root mean squared error (0.2). The employment of a simple EMG-based 
system and wrist-mounted IMU to monitor ingestive behavior with a simple classifica-
tion algorithm that can be quickly constructed utilizing modest computing platforms 
makes practical implementation of this methodology in real life highly feasible.

Methods
Experiment protocol and signal acquisition

This study was approved by the institutional review board of Cairo University and all 
procedures were performed in accordance with the 1964 Helsinki Declaration and the 
Nuremberg code of ethics and their later amendments or comparable ethical standards 
[32]. All participants provided informed written consents prior to enrollment in the 
study including consent to publish. Fifty-five healthy individuals (25 males, 30 females, 
age: 23.7 ± 5.7 years, BMI: 26.7 ± 10.83 kg/m2) participated in the experiment.

Participants were deemed eligible based on the following inclusion criteria: no history 
of medical conditions that affect swallowing and/or food intake. Each participant per-
formed the experiment in a one one-hour session where three activities were investi-
gated: drinking, eating, and talking. Drinking activities included 40 water sips equally 
split among 4 fixed volumes (10, 20, 30, and 40 ml), for a total volume of one liter per 
participant. Eating activities included administering 45 boluses equally split among 3 
materials: banana, cheese and carrot and 3 weights per each type: 3, 6, and 9 gm. Bolus 
volume and weight were controlled and verified through using graded cups and a digital 
kitchen scale prior to starting each experiment session. A total of 4675 swallows (2200 
water swallows and 2475 solid material swallows) were collected. 335 swallows (200 
water swallows and 135 solid material swallows) were then excluded due to low signal 
quality and noise dominance that occurred during the data collection procedure.

Swallowing signals were collected via two wearable sensors, a mobile BITalino sin-
gle electrode sEMG and a wrist-mounted IMU (WI) sensor. The BITalino revolu-
tion kit is a Bluetooth compact biosignals platform designed for research purposes 
(range: up to ~10  m (in line of sight)) [33]. Sampling rate of BITalino was 1000  Hz 
with Battery 500  mA, 3.7  V, LiPo (rechargeable). The sEMG electrode (Fig.  9) was 
placed on the left sternocleidomastoid muscle and the signals were acquired using the 
BITalino open-source software. The left sternocleidomastoid muscle was chosen as it 
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is considered least uncomfortable neck location to place the electrodes during swal-
lowing plus it is proven in previous studies to produce swallowing signals of better 
quality. An MPU-6050 sensor was used as the IMU module on the wrist (Fig. 9) [34]. 
The IMU module was used to detect the angle of tilt or inclination along the X, Y, 
and Z axes of the wrist shown in Fig. 9a. Wrist angles data from the IMU sensor were 
transferred to an Arduino Nano kit through an I2C interface and then written into 
an SD card by the Arduino kit. The 3 axes of activities from the WI were sampled at 
1 kHz and the periods of ingestive intake were identified through hard-thresholding 
and decision trees (as shown Fig. 3). At the beginning of each session, and as a cali-
bration step, each subject was asked to eat and drink freely to determine the range of 
the wrist angles for both eating and drinking activities. A threshold was determined 
for each axis and a DT was later used to demarcate the periods of activity and the 
type of activity (eating or drinking) [27].
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