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Abstract

Background: Accurate evaluation of the mechanical properties of trabecular bone is
important, in which the internal bone marrow plays an important role. The aim of this
systematic review is to investigate the roles of bone marrow on the mechanical proper-
ties of trabecular bone to better support clinical work and laboratory research.

Methods: A systematic review of the literature published up to June 2022 regard-
ing the role of bone marrow on the mechanical properties of trabecular bone was
performed, using PubMed and Web of Science databases. The journal language was
limited to English. A total of 431 articles were selected from PubMed (n = 186), Web of
Science (n=244) databases, and other sources (n=1).

Results: After checking, 38 articles were finally included in this study. Among them, 27
articles discussed the subject regarding the hydraulic stiffening of trabecular bone due
to the presence of bone marrow. Nine of them investigated the effects of bone marrow
on compression tests with different settings, i.e,, in vitro experiments under unconfined
and confined conditions, and computer model simulations. Relatively few controlled
studies reported the influence of bone marrow on the shear properties of trabecular
bone.

Conclusion: Bone marrow plays a non-neglectable role in the mechanical properties
of trabecular bone, its contribution varies depending on the different loading types
and test settings. To obtain the mechanical properties of trabecular bone comprehen-
sively and accurately, the solid matrix (trabeculae) and fluid-like component (bone
marrow) should be considered in parallel rather than tested separately.

Keywords: Bone, Bone marrow, Trabecular bone, Mechanical properties, Mechanical
testing

Background

Trabecular bone is a hierarchical, spongy and porous structure, located mainly at the
ends of the long bones (tibia, femur), within irregular shared bones (vertebrae, sacrum)
and flat bones (skull, ribs) [1]. At the macrostructural scale, the structure consists of tra-
becular struts and plates that provide a stiff framework for cellular spaces, filled with
bone marrow and cells in vivo [2].
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Bone marrow, which is divided into red and yellow marrow, is a semi-solid soft sub-
stance located within the central cavity of long axial bone and the pore spaces of tra-
becular bone. Yellow (fatty) marrow is the main tissue filling trabecular bone in adult
humans, and the composition of bone marrow varies greatly with anatomical site and
age [3, 4]. Previous studies have reported that fat content increases in the process of bone
loss such as osteoporosis or age-related osteopenia [5—8]. The characteristics of bone
marrow have been investigated in previous publications. In a study by Davis et al. [9], the
viscosity of bone marrow was measured. The data revealed that the specimens contain-
ing red components behaved like a non-Newtonian fluid in the range of 36—38 °C, while
yellow marrow without any red components behaved like a Newtonian fluid at 23 and
36 C. Jansen et al. [10] found that bone marrow is elastic and exhibits a large heteroge-
neity in both intra- and inter-specimens, with the effective elastic modulus at a physi-
ological temperature ranging from 0.25 to 24.7 kPa. This raises a scientific question, does
the presence of bone marrow, as part of the internal structure of trabecular bone, affect
its mechanical properties? In other words, when accurately evaluating the mechanical
properties of trabecular bone, is it possible to neglect the role of bone marrow?

Concerning this subject, previous studies have been conducted not only with in vitro
experiments [11-14], but also with computer model simulations [15-17]. However,
in practice, it is hard to quantify the contribution of bone marrow to the mechanical
behavior of trabecular bone since it is highly reliant on the experimental setup and con-
ditions [13, 14]. To date, there is a lack of comprehensive research on this topic. Several
studies have investigated the mechanical properties of trabecular bone, focusing only on
the solid matrix, and neglecting the role of bone marrow [18—20].

Therefore, a systematic review on this subject is necessary because it is valuable not
only for obtaining more accurate in vitro experimental results, but also for building
more accurate computer models (e.g., finite element models, FEMs) of trabecular bone.
To be specific, this study aims to answer two scientific questions: (i) whether the pres-
ence of bone marrow would cause hydraulic stiffening of trabecular bone? (ii) What are
the differences in the role of bone marrow under various mechanical test conditions of
trabecular bone?

Results

Description of studies

Totally, 431 articles were found through PubMed (n=186), Web of Science databases
(n=244), and other sources (n=1). After removing duplicates, 389 studies were poten-
tially eligible. Following the screening of titles, abstracts, and full-text articles, 38 articles
were finally included in our study. Details are shown in Figs. 1, 2, and Additional file 1:
Table S1.

Risk of bias

All included articles (n=38) were completed for quality assessment, and details
are shown in Table 1. Most of the studies provided detailed information about the
research framework. Thirty-seven clearly described the background, purpose, and
objectives of the study in the abstract. No study included the sample size calculation,
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Fig. 1 Flowchart displaying selection process

The presence of bone marrow plays a significant role in the

In vitro experiments hydraulic stiffening of trabecular bone with regard to load

capacilty at high rates and sufficient volume changes.

Hydraulic stiffening of
bone marrow

The presence of bone marrow may resist a certain extent of
Computer model simulations
applied force and has a hydraulic stiffening impact.

In vitro experiments under ‘The viscous fluid creates transverse pressure and additional

unconfined conditions local load on the trabeculae during flow.

The role of bone marrow on
h hanical : The presence of bone marrow affects the mechanical
the mechanical properties N N In vitro experiments under
— Compression properties . properties of trabecular bone only in confined tests with high
of trabecular bone confined conditions
strains or high strain rates.

The presence of bone marrow could balance stress and energy

Computer model simulations
absorption within trabecular bone.

e - The effect of bone marrow on shear properties is much less
;i n vitro experiments
Shear properties than that of compression properties.

Fig. 2 The flowchart on the main results of this review

and only two studies addressed the missing data [14, 21]. Furthermore, the large het-
erogeneity and lack of randomized controlled trials made it impossible to carry out a

meta-analysis.

Population characteristics

Table 2 summarizes the characteristics of the 38 studies. Among them, 27 articles
addressed the subject regarding hydraulic stiffening effect of bone marrow, including
in vitro experiments and computer model simulations [17, 22—-47]. Nine publications
investigated the role of bone marrow in compression tests under different settings,
i.e., in vitro experiments under unconfined and confined conditions, computer model
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simulations [11-16, 21, 48, 49]. Relatively few controlled studies investigated the effect
of bone marrow on the shear properties of trabecular bone [50, 51].

Quality assessments questions

Abstract

1. Did the abstract provide an informative and balanced summary of what was
done and what was found?

Introduction

2. Was the scientific background and rationale for the reported investigation
explained?
3. Were the objectives of the study clearly stated?

Methodology

4. Did the study clearly describe the methodology/protocol of studies which
includes the setting, the sources, and sizes of samples included (the size is only
applicable for standardized samples)?

5. Did the characteristics of bone samples included in the study clearly
described, including density, volume fraction, or porosity?

6-1. Did the exposures, potential confounders, and allocation scheme for the
samples have been clearly described (applicable to in vitro experiments)?

6-2. Did the computer model provide a clear statement of the source of stim-
ulation parameters with appropriate reasons or references (applicable to com-
puter model simulation studies)?

7. Was the calculation of study size/sample size reported?

8. Were the statistical tests or data analysis methods used to access the main
outcomes described in detail?

9. Did any missing data address in the study?

Results

10. Did the number of samples included in the study have been reported in
detail?

11. Did the study indicate basic information about bone samples, including age,
gender, species origin, and anatomical site (gender is only applicable to human
bone samples)?

12. Were the main findings of the study clearly described?

Discussion

13. Did the study summarize the key results with reference to study objectives?
14. Were the limitations of the study discussed, taking into account sources of
potential bias?
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15. Did the study interpret overall results considering objectives, the multiplic-
ity of analyses and results from similar studies/relevant evidence?

Other information

16. Did the study state the source of funding or the role of funders for the pre-

sent study?

Hydraulic stiffening of bone marrow

Currently, both in vitro experiments and computer model simulations have been used to
investigate the hydraulic stiffening of bone marrow. Comprehensive knowledge of this
subject may enhance the understanding of important orthopedic problems.

In vitro experiments

Theoretically, the deformation of the pores under external forces would induce the
motion of the fluid-like marrow, resulting in pressure and velocity gradients [22, 40].
Because of diverse experimental setups and conditions, the impact of hydraulic stiffen-
ing and strengthening by bone marrow has proven contentious in practice [17, 23-27,
38, 42-46).

Under moderate and physiological loading conditions (i.e., normal walking), Swanson
and Freeman [23] found that trabecular bone is not hydraulically strengthened by bone
marrow. In line with this result, Pugh and co-workers [24] compared the mechanical
properties of fresh wet and defatted bone specimens under the condition of small ampli-
tude mechanical excitation (100 to 30000 Hz). According to the findings, the fluid in
the intertrabecular spaces had no influence on the dynamic mechanical behavior. Bry-
ant [28, 41] also found that hydraulic strengthening and viscous effects do not appear to
occur in long bones subjected to non-destructive compression loads. They argued that
when there is little or no volume change, as well as no significant movement between
the marrow and the adjacent trabecular bone, the hydraulic strengthening and viscous
resistance by the marrow may be insignificant.

Apart from the tests with small volume deformations, it was observed in a study by
Kazarian et al. [25] that the mechanical behavior of the vertebral centrum was depend-
ent on the strain rate. They explained that this was due to hydraulic strengthening
caused by the internal marrow at the higher strain rates. In agreement with this result,
the strength of trabecular bone increases significantly when testing at high strain rates
in the range of 10°~10 s}, according to Pilcher et al. [29]. However, they did not con-
sider the compressive loading of bone marrow to be an important effect. They explained
that this is because the trabecular bone does not have enough time to occur due to the
rapidly increasing applied stress, resulting in a different failure mechanism, i.e., higher
failure stress and lower failure strain. Actually, not only for the solid structure of tra-
becular bone (trabeculae), but also for the internal fluid-like bone marrow, where the
enclosed fluid would directly transmit a part of the load (25% of the applied load) when
the trabecular bone deforms under external forces, according to the findings by Simkin
et al. [44] and Deligianni et al. [46]. In addition, Ochoa et al. [26] investigated the influ-
ence of intraosseous fluid on the load capability of the intact canine femoral heads under
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in vitro conditions. The results revealed that intraosseous fluid within the femoral head
provides a significant portion of the stiffness, up to 30% of the initial stress. Ochoa et al.
[38] also performed the same experiment under in vivo conditions. In corresponds to
similar results in vitro, intraosseous fluid within the femoral head provides a significant
portion of the total stiffness, i.e., an average of 19% of the load-bearing capabilities. They
explained that this difference (30% in vitro vs. 19% in vivo) is due to variations in tem-
perature and rheological properties of bone marrow. The studies by Ochoa et al. [42] and
Nuccion et al. [43] also support this view that the mechanical stiffness of the femoral
head would be affected when the intraosseous fluid compartment is disrupted (a 33%
reduction by Ochoa et al. and a 40% decrease by Nuccion et al.). Furthermore, under
more high-speed loading condition (2500 mm/s), a study by Ochia et al. [45] indicated
that the high fluid flow caused by bone marrow could result in the bending or breaking
of trabeculae, which may damage trabeculae of the vertebral body.

Computer model simulations
Apart from in vitro experiments, the computer model simulations such as FE, poro-elas-
tic and viscoelastic models have also been utilized to investigate the hydraulic stiffening
of trabecular bone caused by the presence of bone marrow [17, 27, 32-37, 39, 47]. A
study by Metzger and co-workers [47] has reported that trabecular bone was simulated
by different models (linear elastic, neo-Hookean, viscoelastic, and power-law fluid con-
stitutive models) with significant variations in test results, in which the bone marrow
as a fluid plays an important role. According to Sandino et al. [34], for trabecular bone,
the fluid flow mechanism induced by bone marrow is a non-negligible role in the build-
ing of trabecular bone models and needs to be taken into account. Kasra et al. [17] also
indicated that hydraulic stiffening occurs once the applied loading rate is higher than
the diffusion rate of pore fluid. Consistent with this view, in other studies [30, 31], the
enhancement of hydraulic stiffness was observed at faster loading strains. Pense and co-
workers [32] also concluded that there is a significant strain-rate dependence of poro-
elastic hydraulic stiffening in bone tissue due to the fluid in the trabecular bone pores.
A study by Lim and co-workers [37] claimed that trabecular bone is poro-elastic and the
fluid effect on the mechanical behavior at the continuum level is significant.

Investigation of hydraulic stiffening, not only in normal bones, but also provides a use-
ful tool for understanding of the abnormal physiological in trabecular bone. For trabecu-
lar bone with aging or osteoporosis, the alternation of the microstructure also results in
changes in its permeability, and in an exponential relationship [35]. There is no doubt
that this alternation in permeability would affect the fluid flow and pore pressure gen-
eration significantly. This hypothesis was also confirmed in previous studies [36, 39].
According to Sandino et al. [36], when the porosity of trabecular bone increases by 30%,
the average stress and strain in the bone tissue may reduce 50% and the fluid velocity in
the marrow phase 88%. Also, Birmingham et al. [39] found that lower bone mass could
increase the shear stress generated within the marrow, meanwhile, a decrease in bone
marrow viscosity reduces the generated shear stress.

In addition to that, concerning the question of whether physiological loading (normal
walking) causes hydraulic stiffening of the trabecular bone. The simulation results by
Rabiatul et al. [27] indicated that, during normal walking loading, the presence of bone
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marrow may resist a certain extent of applied force, which caused the apparent stiffness
of the trabecular structure. In contrast to this view, Haider et al. [33] used a patient-spe-
cific FEM to determine the effects of hydraulic strengthening on the structural response
of the proximal femur under a realistic impact load. The results showed that the pres-
ence of bone marrow results in little hydraulic strengthening effect, i.e., 2% of the total
hydraulic stress.

Compression properties

Compression tests are used to determine how a material reacts when compressed by
measuring basic parameters including elastic modulus, maximum compressive stress,
average compressive stress, yield stress, toughness, etc. [13, 14]. Previous studies have
investigated the role of bone marrow on the compression properties of trabecular bone,
both in vitro experiments and computer model simulations.

In vitro experiments under unconfined conditions

According to the findings by Halgrin et al. [13], under unconfined uniaxial compression
test conditions, bone marrow contributes to a reduction in the mechanical properties of
trabecular bone, i.e., 26% for elastic modulus, 38% for maximum compressive stress, and
33% for average stress. They explained that the viscous interstitial fluid creates transverse
pressure and additional local load on the trabeculae during flow, increasing the trans-
verse strain applied to the trabecula, causing the trabecular network to prematurely col-
lapse. Consistent with Halgrin et al. [13], Bravo et al. [14] found that the specimens with
the marrow removed and replaced with saline exhibited superior mechanical character-
istics, i.e., 37% for elastic modulus, 48% for 0.2% yield stress, 39% for maximum compres-
sive stress, 54% for strain at maximum stress, and 300% for toughness. They explained
that during the unconfined compression testing, the vertical movement of bone mar-
row caused the fluid to expand horizontally, bending the trabeculae and decreasing the
apparent strength. On another hand, during the deformation, the higher viscosity of
bone marrow provides a greater barrier to fluid flow, leading to greater stress concerta-
tion alone the trabeculae and early breakdown of the trabecular structure. In an earlier
study by Linde and co-workers [21], defatted trabecular bone specimens were shown to
enhance stiffness by 30% while decreasing viscoelastic dissipation by 50%. They attrib-
uted the variation in mechanical properties of specimens with and without bone marrow
to drying, and rehydration in saline for more than 3 h would diminish the discrepan-
cies. Indeed, drying or dehydration of trabecular bone specimens can lead to changes in
mechanical properties. However, to avoid dehydration, specimens in the experiments by
Halgrin et al. [13] and Bravo et al. [14] were maintained in saline throughout all prepa-
ration processes. From our perspective, the presence of bone marrow, apart from the
potential effect of dehydration, still plays a significant role in affecting the mechanical
properties of trabecular bone during unconfined compression testing.

In vitro experiments under confined conditions

In both confined and unconfined conditions, Chaari et al. [48] conducted quasi-static
compression tests. According to the findings, there was no significant difference in elas-
tic properties, but bone marrow may increase bone strength at higher strain (more than
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30%). Moreover, according to the results by Cater and Hayes [11], at a very high strain
rate (10.0 per second), the presence of bone marrow enhanced the strength, modulus,
and energy absorption of trabecular bone specimens. This is due to the constricted vis-
cous flow of bone marrow through the platen rather than the flow through the pores of
the trabecular bone. Hence, the presence of bone marrow affects the mechanical prop-
erties of trabecular bone only in confined compression tests with high strains or high
strain rates.

Computer model simulations

A study by Simon et al. [49] revealed that the fluid phase contained in FEMs plays an
important role in the mechanical response of spinal motion segments. Halgrin et al. [13]
simulated the deformation of trabecular bone specimens using a FEM and reported that
the fluid pressure caused by the bone marrow would reduce the maximum compressive
stress. They claimed that the specimens with bone marrow had lower global axial stress
and strain before collapse compared to specimens without bone marrow. The FEM sim-
ulations by Chen et al. [16] and Ma et al. [15] were both conducted under unconstrained
conditions in the X and Y directions. The simulation results by Chen and co-workers
[16] demonstrated that trabecular models stuffed with marrow fat have less maximum
stress (3—9%) and larger average stress in volume (9-56%) than that of models with only
trabeculae. They stated that the presence of marrow fat could improve the strength of
trabecular bone by balancing stress and energy distribution. However, the FEM simu-
lation results by Ma et al. [15] showed that the trabecular bone with marrow fat suf-
fered larger apparent stress and compressive stress than the model with trabecular bone
only, i.e., 18.81% for maximum compressive stress and 10.25% for average stress. They
concluded that the bone marrow augmented the stress but balances the distribution of
stress. The trabecular bone without marrow is more likely to fracture under mechanical
loading due to unbalanced deformation. Moreover, a study by Laouira et al. [12] demon-
strated that the confined marrow plays a non-negligible role in the mechanical proper-
ties of trabecular bone, i.e., 22.3% increase in maximum von Mises stress, 12.4% increase
in maximum shear stress, 5.8% reduction in maximal strain. They explained that this is
due to the increase in marrow pressure, which acts like a damper between the trabecu-
lae, slowing down their deformation. Furthermore, the flow of bone marrow slows down
the velocity of deformation of the solid trabeculae when an external force is applied.

Shear properties

Specimens from trabecular bone are typically difficult to machine since the aged trabec-
ular bone in humans is so fragile [50]. To date, few studies have investigated the effect of
bone marrow on the shear properties of trabecular bone [51].

Nevertheless, some potential evidence can be found by summarizing the previous lit-
erature [28, 50]. Mitton et al. [50] measured the shear strength of trabecular bone speci-
mens with and without physiological saline. The results showed that shear testing in a
physiological saline bath at 37 °C reduced the strength from 32.5 to 37.5% compared to
testing under “standard” conditions (at room temperature, 22—25 C, in the air). They
claimed that friction may be a non-negligible factor. The yellow marrow, being a New-
tonian fluid, has an approximately 10 times higher viscosity than that of water at 37 C



Wang et al. BioMedical Engineering OnLine (2022) 21:80 Page 19 of 25

[28]. Hence, it is worth considering whether the presence of a highly viscous fluid would
produce a non-negligible internal fraction on the shear properties of trabecular bone.

However, a controlled trial by Kasra and Grynpas [51] revealed a different view. The
sheep lumbar vertebrae were used to test the shear properties of trabecular bone at
different strain rates. According to the findings, the presence of bone marrow had no
influence on shear modulus and strength at both low and high strain rates. In compres-
sion tests, the confined test condition and high loading rate cause the entrapped mar-
row to resist the compressive force. Contrarily, during torsion or shear loading, the bone
volume of the tested specimen remains relatively unchanged and the stiffening effect
caused by the friction between bone and marrow is much smaller [51]. It is reasonable
to assume that the effect of bone marrow on shear properties is much less than that of
compression properties. Certainly, this view needs to be verified by further research in
the future.

Discussion

The role of bone marrow on the mechanical properties of trabecular bone under differ-
ent loading conditions was systematically reviewed. According to our results, the solid
matrix (trabeculae) and fluid-like component (bone marrow) should be considered in
parallel rather than tested separately. Cleaning or replacing the marrow with other solu-
tions (e.g., physiological saline) in the in-trabecular space would change the mechanical
behavior of trabecular bone. Undoubtedly, this information is important for the preven-
tion and treatment of degenerative bone diseases (e.g., osteoporosis), and fragility frac-
ture, as well as building more accurate in vitro models of trabecula bone.

Biomechanical characteristics of bone marrow
Bone marrow is generally divided into two types, red marrow, which has a hematopoi-
etic function, and yellow marrow, which is rich in fat. In healthy adults above the age
of 25 years, yellow marrow accounts for a major part of the bone marrow (70% of adult
bone marrow volume) [52]. On the contrary, red marrow is predominant in early child-
hood. However, the difficult harvesting of red marrow limits the ability to isolate and
test its mechanical characteristics by conventional approaches [10]. As a result, more
biomechanical studies on bone marrow have focused on yellow marrow. For instance,
Jansen et al. [10] used three different techniques (rheology, indentation, and cavitation)
to evaluate the mechanics of intact yellow porcine bone marrow. The results indicated
that bone marrow is elastic, with an effective Young’s modulus of 0.25-24.7 kPa at physi-
ological temperature; moreover, there is a high degree of heterogeneity in both intra-
and inter-specimens. Actually, in vivo, the composition (adipose tissue fraction) [8, 53]
and mechanical characteristics (e.g., viscosity, dynamic moduli) [10, 28] of yellow mar-
row present dynamic alternations with age and temperature. In turn, the alternations
in the composition and mechanical characteristics may further affect the role of bone
marrow on the mechanical properties of trabecular bone. A study by Fazeli et al. [52]
concluded that an inverse association between marrow adipose tissue and measures of
bone strength.

In addition, the heterogeneity of bone marrow and surrounding cortical bone is also a
challenge for researchers interested in conducting mechanical studies. The structure and
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histology of bone marrow are governed by numerous variables related to specimen col-
lection and processing [3]. Also, previous studies used bone marrow extracted from the
medullary cavity for histological and mechanical properties, but this method is destruc-
tive and there is a gap with the properties of intact bone marrow [10, 28, 54, 55]. Taken
together, the mechanical characteristics demonstrated by bone marrow at the organ
level are a complex and dynamic behavior. It is still a challenging issue to investigate the
mechanical characteristics of the bone marrow itself comprehensively and accurately.

Hydraulic characteristics of fluid-solid interaction

The hydraulic nature of this fluid—solid interaction has a potential impact on the
mechanics of trabecular bone, particularly in intact bone where the boundary condition
has not been disrupted [25, 26, 49]. As far as we know, no previous systematic review has
been carried out upon the effect of bone marrow on the mechanical properties of tra-
becular bone. In practice, understanding the fluid flow, changes, and hydraulic stiffening
mechanism of bone marrow is of potential clinical significance. For example, the impact
of viscous constituents during mechanical loading is referred to as hydraulic stiffening of
trabecular bone, which is a more realistic simulation for physiological falls [32]. Not only
that, hydraulic resistance and permeability are also believed to be potentially associated
with high-speed spinal injuries such as burst fractures [29, 56]. Currently, based on the
above findings [17, 24-26, 28, 30-32], we may reasonably conclude that the hydraulic
stiffening and strengthening of trabecular bone associated with bone marrow is minimal
or even neglectable at small strains (i.e., non-destructive loading). The presence of bone
marrow, however, plays a significant role in the hydraulic stiffening of trabecular bone
with regard to load capacity at high strain rates and sufficient volume changes. In vivo,
the overall stiffness of trabecular bone is actually a combination of the material proper-
ties of the porous solid substrate and enclosed fluid.

The effect of bone marrow on compressive loading

Experiments addressing the mechanical properties of trabecular bone are often con-
ducted on the cadaveric bone to reflect in vivo performance. To date, the majority of
investigations have studied the effect of bone marrow on compressive loading, in both
unconfined and confined situations [11, 13, 14, 57]. Under the unconfined condition,
bone marrow can flow freely when subjected to compressive loading. Viscous bone mar-
row creates transverse pressure and extra local stress on the trabeculae during flow,
which can cause a reduction in the mechanical properties of trabecular bone [13, 14].
However, the FEM simulation by Chen et al. [16] claimed that marrow fat can balance
the load distribution of bone tissue, potentially reducing deformation under compres-
sive stresses. Although the application of FEM can mitigate the limitations of exist-
ing in vitro experiments by taking advantage of reproducibility and repeatability. The
drawbacks of FEM need to be carefully considered, i.e., bone marrow is simplified [16],
bone matrix and marrow are regarded as solid homogeneous materials with consistent
Young’s modulus [15]. So, the simulation results by FEMs are able to provide us with
trends and references but cannot replace in vitro experiments. In contrast to the uncon-
fined condition, fluid flow is prevented in the confined test. Based on the studies men-
tioned above [11, 12, 48], it is reasonable to conclude that bone marrow contributes to



Wang et al. BioMedical Engineering OnLine (2022) 21:80 Page 21 of 25

the mechanical properties of trabecular bone, especially at high strain rates and suffi-

cient volume changes.

The effect of bone marrow on other loads

Regarding the role of bone marrow on other mechanical loads, such as shear, tensile, and
bending tests, few controlled studies have investigated this subject. As far as we know,
only the study by Kasra and Grynpas [51] directly investigated the effect of bone mar-
row on the shear properties of trabecular bone by in vitro experiments. Because there
is minimal change in bone volume and any stiffening impact is generated by consider-
ably lower frictional forces between bone matrix and bone marrow, the presence of bone
marrow had no significant influence on the shear modulus and strength of trabecular
bone. Nevertheless, this view still needs to be validated by further studies in the future.

Limitations

This systematic review has several limitations. First, not all studies were summarized in
our review, which is a limitation of all systematic reviews. To overcome this problem,
the “similar articles” option of PubMed and references of primary articles and reviews
were used to further expand the search. Second, most studies related to the effect of
bone marrow are on compressive loading, lacking direct compared studies on shear and
other tests. However, reasonable assumptions have been proposed based on other rel-
evant evidence from previous research. We believe that this review paper could shed
new light on the knowledge gained so far, the drawbacks of existing literature, and future
directions.

Conclusion

To address the mechanical properties of trabecular bone, the role of interstitial fluid
should be included in the analyses. In the confined or intact bone compression tests,
hydraulic stiffening and strengthening of trabecular bone are associated with the pres-
ence of bone marrow, especially at high strain rates and sufficient volume changes.
While in the unconfined compression tests, the free flow of viscous marrow under
external forces induces the transverse pressure and extra local loading on the trabecu-
lae. Bone marrow has a much smaller effect on shear properties than on compression
properties since the bone volume of the tested specimen remains relatively unchanged.
In shear and other tests, the potential role of bone marrow needs to be investigated by
further studies in the future.

Methods

The PRISMA (Preferred Reporting Items for Systematic review and Mata analysis)
guidelines [58] were used to conduct a systematic review of the literature to find all rel-
evant studies. Ethical approval was not required since this review did not include the
processing of individual patient data.

Information source
Using PubMed and Web of Science databases, a comprehensive review of the litera-
ture published up to June 2022 related to the role of bone marrow on the mechanical
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properties of trabecular bone was undertaken. The references of primary articles and
reviews were checked to avoid missing relevant papers. The “similar article” option of
PubMed was also used to further expand the search.

Search strategy

Two reviews (FW. and L.Z.) conducted an independent search. The following keywords
were used to search from PubMed and Web of Science databases. In PubMed, the terms
were performed for searching: (1) “(marrow [Title])” AND “(cancellous OR trabecular
OR spongy)” AND “(mechanical OR compress OR tens” OR shear’ OR bending)”; (2)
“(mechanical stimuli) OR (permeability) OR (poro-viscoelastic)” AND “(trabecular bone
[Title])” OR “(cancellous bone [Title])” OR “(spongy bone [Title])” AND “(finite element
[Title])”; (3) “(hydraulic [Title]) OR (boundary conditions [Title])” AND “(trabecular
bone) OR (cancellous bone) OR (spongy bone) OR (fracture strength) [Title])” In Web
of Science, the terms: (1) “(marrow) AND (trabecular OR cancellous OR spongy) [Title]
AND (mechanical OR compress  OR tens” OR shear’ OR bending)”; (2) “(mechanical
stimuli) OR (permeability) OR (poro-viscoelastic)” AND “(trabecular bone [Title])” OR
“(cancellous bone [Title])” OR “(spongy bone [Title])” AND “(finite element [Title])”; (3)
“(hydraulic [Title]) OR (boundary conditions [Title])” AND “(trabecular bone) OR (can-
cellous bone) OR (spongy bone) OR (fracture strength) [Title])” were used for literature
search. The journal language was limited to English. In the Web of Science database,
document types were set to “articles” Following the removal of duplicates, review-
ers scanned the search results by titles and abstracts. After identifying potentially rel-
evant publications, full-text articles were reviewed and downloaded in accordance with
the inclusion and exclusion criteria. Any disagreements between the two authors were
referred to a third independent author to be discussed. The detailed search strategy is
shown in Fig. 1.

Inclusion and exclusion criteria

The inclusion criteria for this study were as follows: (a) in vitro mechanical tests of tra-
becular bone related to bone marrow; (b) studies on computer model simulations of tra-
becular bone associated with bone marrow; (c) studies on hydraulic stiffening of bone
marrow. The exclusion criteria were: (a) non-English and full-text articles are unavail-
able; (b) studies of bones with computer models without involving the role of bone mar-
row; (c) studies were limited to the solid trabeculae; (d) studies on bone marrow lesion
or adiposity; (e) imaging studies on bone and bone marrow; (f) studies on the bone

mechanical environment.

Data extraction and analysis

Data were extracted and recorded separately by two authors (EW. and L.Z.) using
spreadsheet software (Excel for Mac 2016, version 16.2.9, Microsoft, Redmond, WA,
USA). Experimental methods, authors and year of publication, journal of publication,
types and numbers of specimens, gender and age of specimens, anatomical sites, main
findings or summaries were all presented.
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Quality assessment

The STROBE (Strengthening the Reporting of Observational Studies in Epidemiol-
ogy) criteria were used to assess the risk of bias for the studies included in this review
[59]. Of these, 16 items were selected to identify potential sources of bias related to
the scope and objectives of our review for reporting, referring to a published arti-
cle [60]. The checklist includes 6 components: abstract (item 1), introduction (items
2-3), methodology (items 4-9), results (items 10—12), discussion (items 13-15), and
other information (item 16). All included articles were evaluated independently by

two authors (F.W., and L.Z.). Disagreements were documented by discussion.
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