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Introduction
Since the first coronavirus disease 2019 (COVID-19) case was reported in December 
2019 [1, 2], 500 million people have been infected and more than 6 million people have 
died worldwide (Jun, 2022) [3]. The role of chest imaging in the diagnosis, prognosis 
and treatment of this infectious disease has evolved over the course of the COVID-19 
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Methods:  This is a retrospective study. Serial pCXR and serial clinical variables were 
analyzed for data from day 1, day 5, day 1–3, day 3–5, or day 1–5 on IMV (110 IMV 
survivors and 76 IMV non-survivors). The outcome variables were duration on IMV 
and mortality. With fivefold cross-validation, the performance of the proposed deep 
learning system was evaluated by receiver operating characteristic (ROC) analysis and 
correlation analysis.

Results:  Predictive models using 5-consecutive-day data outperformed those using 
3-consecutive-day and 1-day data. Prediction using data closer to the outcome was 
generally better (i.e., day 5 data performed better than day 1 data, and day 3–5 data 
performed better than day 1–3 data). Prediction performance was generally better 
for the combined pCXR and non-imaging clinical data than either alone. The com-
bined pCXR and non-imaging data of 5 consecutive days predicted mortality with an 
accuracy of 85 ± 3.5% (95% confidence interval (CI)) and an area under the curve (AUC) 
of 0.87 ± 0.05 (95% CI) and predicted the duration needed to be on IMV to within 
2.56 ± 0.21 (95% CI) days on the validation dataset.

Conclusions:  Deep learning of longitudinal pCXR and clinical data have the potential 
to accurately predict mortality and duration on IMV in COVID-19 patients. Longitudinal 
pCXR could have prognostic value if these findings can be validated in a large, multi-
institutional cohort.
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pandemic. During the initial outbreak in China when virus assays were unreliable, com-
puted tomography (CT) of the lung was the primary diagnostic tool used for triage and 
diagnosis [4–7]. Portable chest X-ray (pCXR) [8–11] is currently widely used to evalu-
ate the spatial extent and location of lung infection associated with COVID-19 because 
the widely available imaging equipment is portable, can be dedicated for use in patients 
with suspected infection, and can be readily disinfected between uses, avoiding cross-
contamination. The hallmarks of COVID-19 lung infection on pCXR include bilateral or 
peripheral hazy opacities and airspace consolidation [12].

In principle, pCXR could also be used to monitor disease progression and treatment 
response, optimize mechanical ventilator settings, determine when to safely extubate, 
and predict clinical outcomes in COVID-19 patients. However, pCXR is not currently 
being used in this capacity and thus the potential of pCXR in COVID-19 is not yet fully 
realized. This is in part because the temporal progression of COVID-19 lung infection 
on pCXR is incompletely understood [11]. pCXR has become more relevant because a 
disproportionally large percentage of COVID-19 patients require invasive mechani-
cal ventilation (IMV) for a longer duration than patients with other similar lung infec-
tions [13, 14]. Improved understanding of the temporal progression of COVID-19 lung 
infection on pCXR could be leveraged to address resource allocation in the event of a 
shortage of mechanical ventilators, as occurred during peak periods of COVID-19 in the 
United States and around the world [15].

Machine learning (ML), including deep learning, is increasingly being used in medi-
cine, including radiology [16–18]. In contrast to conventional analysis methods, which 
specify the relationships among data elements to outcomes, ML employs computer 
algorithms to identify relationships among different data elements to inform outcomes 
without the need to specify such relationships a priori. ML can accurately estimate risk 
in the Framingham Risk Score for coronary heart disease [19] and detect lung nod-
ules on pCXR [20] without a priori specification of the data elements that lead to the 
determination.

A few studies have explored the use of ML to predict mortality based upon pCXR at 
admission to the emergency room [21] and associate radiological pCXR scores with clin-
ical outcomes [22–28]. Prediction of COVID-19 outcomes based on a single pCXR at 
admission, however, is likely inadequate [11]. There are no studies to date that use ML 
analysis of longitudinal pCXR to predict the duration of the need for IMV or mortality 
associated with COVID-19. ML is well-suited to address such COVID-19 outcome pre-
diction problem because the temporal relationships of serial imaging characteristics and 
serial clinical variables with outcomes are complex and cannot be readily parameterized 
to predict eventual outcomes.

The goal of this study was to determine whether deep learning of longitudinal pCXR 
could accurately predict the duration of IMV (i.e., how much time the patient needs to 
be on IMV) and in-hospital mortality in COVID-19 patients, as predicting mortality or 
the duration IMV using data from a single time point at admission is likely suboptimal. 
We compared prediction performance using a single time point against serial pCXR. We 
further considered a large array of non-imaging variables (such as demographic, comor-
bidity, serial vital signs and serial laboratory tests) to improve the predictive models. 
Deep learning of serial imaging and non-imaging clinical data has the potential to better 
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inform the management of COVID-19 patients in time-sensitive, stressful, and poten-
tially resource-constrained environments.

Results
Figure 1 shows the flowchart of patient selection. At the time of this study, our registry of 
patients presenting to the emergency department (ED) with suspected COVID-19 (oth-
erwise known as persons under investigation) consisted of 5,766 patients from February 
7, 2020, to Jun 30, 2020. A subset of clinical variables using various analysis methods in 
this cohort had previously been published but addressing completely different questions 
[29, 30]. Only patients who were diagnosed with COVID-19 by real-time polymerase 
chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) were included in the study. Inclusion criteria were SARS-CoV-2-positive patients 
requiring IMV. Patients younger than 18  years of age were excluded. To maintain the 
same cohort that has at least 5 consecutive day data, patients with less than 5-day data 
were excluded. The final sample size after exclusions consisted of 110 IMV survivors and 
76 IMV non-survivors prior to discharge.

Table  1 summarizes the demographics and comorbidities, as well as the laboratory 
tests and vital signs, stratified by primary outcome (110 IMV survivors, 76 IMV non-sur-
vivors). Patients who expired were older than those who survived (median age: 67 years 
[IQR: 58,73] versus 56 years [IQR: 50,64], p < 0.001). With the exception of smoking his-
tory, hypertension, and coronary artery disease, none of the comorbid conditions were 
considered significantly different between groups (p > 0.05). Other than ALT and HCO3, 
all blood markers and all vital signs differed between groups.

Fig. 1  Patient selection flowchart
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Table 1  Patient demographics, comorbidities, and clinical variables of dead and alive patients

Patients, no. (%)

Died (n = 76) Survived (n = 110) p value

Demographics

 Age, median (IQR) 67 (58, 73) 56 (50, 64)  < 0.001

 Sex 0.117

  Male 59 (77.6%) 74 (67.3%)

  Female 17 (22.3%) 36 (32.7%)

 Ethnicity 0.374

  Hispanic/Latino 20 (26.3%) 35 (31.8%)

  Non-Hispanic/Latino 44 (57.9%) 61 (55.5%)

  Unknown 12 (15.8%) 14 (12.7%)

Comorbidities

 Smoking history 0.036

  Current smoker 4 (5.3%) 3 (2.7%)

  Former smoker 21 (27.6%) 14 (12.7%)

  Never smoker 46 (60.5%) 86 (78.2%)

  Unknown 5 (6.6%) 7 (6.4%)

 Diabetes 25 (32.9%) 32 (29.1%) 0.585

 Hypertension 46 (60.5%) 45 (40.9%) 0.008

 Asthma 7 (9.2%) 12 (10.9%) 0.705

 COPD 7 (9.2%) 6 (5.5%) 0.348

 Coronary artery disease 18 (23.7%) 8 (7.3%) 0.004

 Heart failure 6 (7.9%) 3 (2.7%) 0.141

 Cancer 3 (3.9%) 3 (2.7%) 0.656

 Immunosuppression 2 (2.6%) 9 (8.2%) 0.086

 Chronic kidney disease 5 (6.6%) 6 (5.5%) 0.755

Laboratory findings at admission, median (IQR)

 Alanine aminotransferase, U/L (alt) 43 (24, 71) 43 (25, 80) 0.194

 C-reactive protein, mg/dL (crp) 10.6 (4.9, 19.5) 5.3 (1.6, 12.1)  < 0.001

 D-dimer, ng/mL (ddim) 1574 (793, 3290) 887 (498, 1894)  < 0.001

 Ferritin, ng/mL (fer) 1267 (776, 2149) 861 (478, 1432)  < 0.001

 Lactate dehydrogenase, U/L (ldh) 540 (411, 696) 392.0 (298, 512)  < 0.001

 White blood cells, × 103/ml (wbc) 13.0 (8.9, 19.3) 10.9 (8.4, 14.3)  < 0.001

 Lymphocytes, % (lym) 4.5 (2.1, 8.0) 8.9 (4.5, 15.0)  < 0.001

 Procalcitonin, ng/mL (procal) 0.7 (0.3, 1.9) 0.2 (0.1, 0.6) 0.019

 Troponin T, ng/mL (tnt) 0.0 (0.0, 0.1) 0.0 (0.0, 0.0)  < 0.001

 Aspartate aminotransferase, U/L (ast) 49.0 (32.0, 76.0) 38.0 (25.0, 63.0) 0.005

 Creatinine, mg/dL (crt) 1.4 (0.9, 2.7) 0.8 (0.6, 1.3)  < 0.001

Blood gases and others

 pCO2 48.0 (42.0, 57.0) 47.0 (40.0, 53.0) 0.020

 HCO3 26.0 (22.0, 31.0) 26.8 (23.0, 31.0) 0.113

 pH 7.3 (7.3, 7.4) 7.4 (7.3, 7.4)  < 0.001

 pO2 78.0 (64.9, 99.0) 82.7 (69.0, 105.0) 0.001

 Hematocrit (hcrit) 31.2 (26.7, 37.0) 31.7 (27.4, 37.7)  < 0.001

 Potassium, mEq/L (k) 4.3 (3.9, 4.9) 4.1 (3.7, 4.5)  < 0.001

 Sodium, mEq/L (Na) 141.0 (137.0, 147.0) 141.0 (138.0, 145.0)  < 0.001

Vital signs, median (IQR)

 Heart Rate, bpm (hr) 86.0 (72.0, 101.0) 84.0 (71.0, 97.0)  < 0.001

 Respiratory rate, bpm (rr) 25.0 (20.0, 30.0) 23.0 (20.0, 27.0)  < 0.001

 Oxygen saturation (o2) 96.0 (93.0, 98.0) 97.0 (94.0, 99.0)  < 0.001

 Systolic blood pressure, mmHg (sbp) 122.0 (109.0, 138.0) 124.0 (111.0, 142.0) 0.008
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Figure 2 shows the temporal evolution of the clinical variables during the first con-
secutive 5 days on mechanical ventilation. Among laboratory tests, white blood cell 
count (WBC), lymphocyte count (Lym), D-dimer, and creatinine (Cr) were consist-
ently different across all 5 time points between groups. C-reactive protein (CRP), 
procalcitonin, and lactate dehydrogenase (LDH), and hematocrit (HCT) showed an 
increasing divergence between groups over time. Alanine aminotransferase (ALT), 
ferritin (Fer), aspartate aminotransferase (AST), potassium (K), sodium (Na), and 
troponin, did not differ between groups.

Among the vital signs, respiratory rate (RR), heart rate (HR), oxygen satura-
tion (SpO2), and diastolic blood pressure (DBP) showed an increasing divergence 
between groups over time, whereas mean arterial pressure (MAP), systolic blood 
pressure (SBP), and temperature were similar between groups across time. Arte-
rial pH, bicarbonate (HCO3), and oxygen index showed an increasing divergence 
between groups, whereas arterial pO2 and pCO2 did not.

Table 1  (continued)

The clinical variables were averaged across five time points and then averaged across subjects (median, IQR)

Fig. 2  Longitudinal clinical variables from the day on mechanical ventilator. The variables are broadly 
grouped into those showed increasing or sustained temporal divergence and those showed decreasing or 
no temporal divergence. Red: death group. Blue: alive group. Error bars are SEM. See Table 1 for abbreviation 
definitions. Oxygen index is pO2:FiO2 where FiO2 is inspired oxygen fraction

Patients, no. (%)

Died (n = 76) Survived (n = 110) p value

 Diastolic blood pressure, mmHg (dbp) 64.0 (58.0, 72.0) 67.0 (60.0, 76.0) 0.005

 Mean arterial pressure, mmHg (map) 84.0 (77.0, 95.0) 88.0 (79.0, 98.0)  < 0.001

 Temperature, °C (temp) 37.0 (36.7, 37.5) 36.9 (36.7, 37.2)  < 0.001

 FiO2, % 70.0 (50.0, 90.0) 50.0 (40.0, 60.0)  < 0.001
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Predicting mortality

Predictive models of mortality were constructed using pCXR data alone, non-imaging 
data alone, and both combined in separate models utilizing data from day 1, day 5, day 
1–3, day 3–5, or day 1–5 on IMV. To predict the binary outcome of mortality, predic-
tion performance by ROC analysis was performed on the validation dataset (Table 2). 
AUCs from 5 consecutive day data were generally higher than those from 3 consecu-
tive day data, which in turn were generally higher than those from single time-point 
data. AUCs were generally higher for models including both pCXR and non-imaging 
data, as opposed to models based on either one exclusively. Overall, prediction perfor-
mance using 5-consecutive-day data was stronger (AUC = 0.80–0.87) than those using 
3-consecutive-day data (AUC = 0.71–0.81), which were stronger than those using one-
day data (AUC = 0.67–0.74). Prediction performance using day 5 data (one day of data) 
was better than that using day 1 data one day of data. Similarly, prediction performance 
using day 3–5 was better than that using day 1–3 data. The best predictive model was 
obtained using 5 consecutive days of combined pCXR and non-imaging clinical data, 
yielding an accuracy of 85 ± 3.5% (95% CI) and AUC of 0.87 ± 0.05 (95% CI). Precision, 
recall, and F1 score showed similar performance trends. By Delong’s statistical test for 
AUC differences, the AUC for the model using a combination of CXR and non-imag-
ing data for days 1–5 was significantly different from AUC of day1 CXR (p = 0.02), day1 
non-imaging (p = 0.03), day1 CXR + non-imaging (p = 0.02), and day1-3 CXR (p = 0.01). 
No other comparisons reached statistical significance.

Predicting duration of IMV

Figure  3 shows the histogram of days on IMV for the non-survivor and survivor 
groups. The number of days on IMV was not significantly different between non-
survivors (median 13.8 [IQR:8.1, 22.0]) and survivors (11.2  days [IQR = 9.1, 21.4], 

Table 2  Performance metrics of models in predicting mortality using CXR data alone, non-imaging 
data alone, and their combination for 1, 3 and 5 days on mechanical ventilator

Values in parentheses are standard deviations

AUC​ Accuracy Precision Recall F1 score

Day 1 CXR 0.67 (0.18) 0.75 (0.08) 0.58 (0.18) 0.56 (0.13) 0.55 (0.10)

Non-imaging variables 0.69 (0.06) 0.74 (0.06) 0.59 (0.07) 0.64 (0.32) 0.57 (0.18)

CXR + non-imaging variables 0.70 (0.14) 0.78 (0.08) 0.79 (0.19) 0.56 (0.26) 0.60 (0.22)

Day 5 CXR 0.70 (0.09) 0.73 (0.03) 0.62 (0.01) 0.56 (0.21) 0.57 (0.13)

Non-imaging variables 0.69 (0.05) 0.73 (0.05) 0.66 (0.07) 0.50 (0.15) 0.55 (0.09)

CXR + non-imaging variables 0.74 (0.04) 0.78 (0.02) 0.69 (0.09) 0.63 (0.08) 0.65 (0.07)

Day 1–3 CXR 0.71 (0.04) 0.76 (0.04) 0.69 (0.10) 0.67 (0.12) 0.67 (0.06)

Non-imaging variables 0.77 (0.06) 0.80 (0.04) 0.85 (0.14) 0.42 (0.23) 0.51 (0.21)

CXR + non-imaging variables 0.78 (0.05) 0.80 (0.04) 0.87 (0.15) 0.56 (0.20) 0.65 (0.13)

Day 3–5 CXR 0.77 (0.07) 0.78 (0.03) 0.81 (0.04) 0.61 (0.10) 0.69 (0.07)

Non-imaging variables 0.78 (0.04) 0.78 (0.04) 0.69 (0.06) 0.61 (0.05) 0.65 (0.05)

CXR + non-imaging variables 0.81 (0.00) 0.80 (0.03) 0.83 (0.12) 0.61 (0.19) 0.67 (0.11)

Day 1–5 CXR 0.80 (0.05) 0.80 (0.03) 0.77 (0.14) 0.70 (0.16) 0.71 (0.05)

Non-imaging variables 0.83 (0.03) 0.82 (0.02) 0.82 (0.11) 0.69 (0.09) 0.74 (0.05)

CXR + non-imaging variables 0.87 (0.06) 0.85 (0.04) 0.80 (0.04) 0.68 (0.08) 0.74 (0.06)
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p = 0.7). Although median durations on IMV did not differ between groups, there 
were more survivors than non-survival around 10 days of IMV. The number of days 
on IMV ranged from 1 to 51.

Predictive models of the duration of IMV were constructed in similar configura-
tions. Correlation analysis of predicted and actual duration on IMV for all 15 experi-
ments was performed on the validation dataset. The correlation plots, the quantitative 
values of slopes, intercepts, correlation coefficients, p values, mean absolute error 
(MAE), and root mean squared error (RMSE) of the prediction are summarized in 
Fig.  4 and Table  3. Correlations were stronger for the combined imaging and non-
imaging clinical data than pCXR data alone or non-imaging clinical data alone (except 
the day 1–5 pCXR which showed the strongest (R2 = 0.8) correlation). Correlations 
for non-imaging data alone were slightly stronger than those for pCXR data alone. 
With respect to MAE, the best prediction performance was obtained using both 
pCXR and non-imaging clinical data over five consecutive days, which predicted the 
duration on the ventilator to within 2.56 ± 0.21 (95% CI) days.

Discussion
The temporal characteristics of clinical variables and pCXR from the first five days on 
IMV offer important insights into disease progression. There have been no studies to 
date that systematically investigated the temporal evolution clinical variables and pCXR 
during IMV. Deep learning predictions of in-hospital mortality and duration on IMV 
using combined imaging and non-imaging data outperformed either one alone. Deep-
learning predictions using longitudinal data outperformed those using single time-point 
data. The best prediction performance was obtained using both pCXR and non-imaging 
clinical data over 5 consecutive days, yielding an accuracy of 85% for predicting mortality, and 
an MAE of 2.56 days for predicting the duration on IMV.

Fig. 3  Histogram of days on IMV of the dead and alive group. Note that to maintain the same cohort that 
had at least 5 consecutive day data, patients with < 5 days of data were excluded from subsequent analysis
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The relatively poor prediction performance using only single-time-point pCXR data alone, 
non-imaging data alone, and their combination is not unexpected as patients who were admit-
ted to the ICU are in various stages of the disease severity. Data at a single time point are less 
accurate in predicting mortality or the continued need for IMV. Although a few studies have 
used single-point admission data to predict clinical outcomes in COVID-19, there is currently 
no consensus as to which clinical variables are most predictive of eventual clinical outcomes 
[29, 31–35]. Using 5-day instead of 1-day pCXR data, prediction of mortality improved AUC 
from 0.69 to 0.80 (21% improvement), and prediction of duration on IMV markedly improved 
MAE from 5.3 days to 3.11 days (41% improvement).

Prediction performances by pCXR and non-imaging data are similar, with non-imaging 
data models performing slightly better. It is also interesting to note that prediction with day 
1–5 pCXR performed better than all day 1 and day 1–3 clinical variables, suggesting that lon-
gitudinal pCXR may have prognostic value. pCXR has limited utility in COVID-19 manage-
ment to date and the majority of clinical management decisions currently rely on laboratory 
tests, clinical and vital signs. This is due in part to the incompletely understood pCXR dis-
ease progression, and the lack of standardized quantitative measures of disease severity from 

Fig. 4  Correlation plots of predicted and actual duration on IMV of the validation dataset (onefold in fivefold 
cross-validation) for nine experiments. Yellow lines are lines of linearity
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radiology reports to track changes longitudinally. pCXR can offer better insight into progno-
sis and expected duration of treatment than previously known. This data can then be used 
to anticipate future ICU bed needs and counsel patients and family members regarding the 
upcoming clinical course and the likelihood of survival.

Predictive models using a combination of non-imaging and pCXR data outperformed either 
alone, as indicated by AUC and correlation analysis. Predictive models using longitudinal 
data outperformed those using single time-point data. Moreover, the error bars were smaller 
with day 1–5 combined data compared to day 1–3 and day 1 data. For data closer to the out-
come, prediction performance using day 1–5 data was better than that using day 1 data. Simi-
larly, prediction performance using day 3–5 was better than that using day 1–3 data. AUC 
appeared to further increase with additional time points in this cohort and additional studies 
(i.e., including data of all 7 days) are needed. Nonetheless, these findings together suggest that 
deep learning of longitudinal pCXR and clinical variables have prognostic value. There have 
been no studies to date that used deep learning to predict mortality and duration on IMV with 
which to compare our findings.

Although previous studies have identified a few clinical variables [1, 2, 29, 36–41] and pCXR 
[14, 22–26, 28, 42] associated with COVID-19 infection, only a few studies have attempted 
to develop methods to predict mortality and disease severity. Essentially all studies today 
employed a single time point, usually at admission, and not longitudinal data. Our study is 
novel because it included longitudinal clinical variables data and pCXR.

This study had several limitations. This was a retrospective study that entails potential resid-
ual confounding and selection bias. This model only works with 5 consecutive days of data 
(from IMV admission). It has not been tested for any 5 days of data. The sample size is rela-
tively small from a single hospital, which may not generalize to other settings. Using a larger 
sample size would be helpful, but the sample size of IMV COVID-19 patients was inher-
ently limiting. Prospective study and testing on multiple institutional data with large 

Table 3  Performance metrics of models predicting days on ventilator using pCXR alone, non-
imaging data alone and their combination

Values in parentheses are standard deviations

MAE mean absolute error

Slope Intercept R2 p MAE

Day 1 CXR 0.19 (0.08) 8.5 (1.1) 0.18 (0.09) 0.059 5.30 (0.42)

Non-imaging variables 0.27 (0.10) 11.0 (1.3) 0.50 (0.14)  < 0.001 4.67 (0.33)

CXR + non-imaging variables 0.07 (0.02) 11.0 (2.1) 0.11 (0.04) 0.120 4.54 (0.36)

Day 5 CXR 0.32 (0.08) 8.03 (1.9) 0.32 (0.11) 0.002 5.01 (0.44)

Non-imaging variables 0.40 (0.12) 7.94 (1.7) 0.25 (0.19)  < 0.001 4.88 (0.38)

CXR + non-imaging variables 0.41 (0.15) 6.73 (2.1) 0.37 (0.20) 0.008 4.21 (0.56)

Day 1–3 CXRs 0.51 (0.13) 6.49 (1.3) 0.58 (0.11)  < 0.001 3.41 (0.32)

Non-imaging variables 0.62 (0.18) 3.76 (1.1) 0.54 (0.12)  < 0.001 3.13 (0.35)

CXR + non-imaging variables 0.47 (0.12) 7.69 (1.2) 0.53 (0.11)  < 0.001 2.96 (0.33)

Day 3–5 CXRs 0.57 (0.16) 8.85 (1.6) 0.52 (0.12)  < 0.001 3.14 (0.57)

Non-imaging variables 0.62 (0.17) 5.43 (1.1) 0.50 (0.15)  < 0.001 3.11 (0.32)

CXR + non-imaging variables 0.59 (0.17) 6.79 (1.3) 0.51 (0.13)  < 0.001 3.05 (0.41)

Day 1–5 CXRs 0.60 (0.13) 6.55 (1.1) 0.80 (0.18)  < 0.001 3.11 (0.25)

Non-imaging variables 0.62 (0.12) 6.26 (1.0) 0.69 (0.18)  < 0.001 2.88 (0.25)

CXR + non-imaging variables 0.69 (0.10) 3.52 (0.7) 0.66 (0.15)  < 0.001 2.56 (0.24)
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sample sizes are needed to attain generalizability. COVID-19 pandemic circumstances 
are unusual and evolving, depending on the location and timing of the outbreak. The 
decision to place patients on mechanical ventilators and mortality rates may depend on 
an individual hospital’s patient load, practice, and available resources. Access to mechan-
ical ventilators in this cohort was not a limiting factor in our hospital. It is conceivable 
that our model might not work for patients from other hospitals because their patients 
were more or less severe, among others. This study did not account for treatment effects. 
Patients were treated per standard of care and complete treatment details were not avail-
able on this dataset. It is generally challenging to account for treatment effects and dif-
ferent patients could respond differently to the same treatments. Our model did not 
account for other important variables such as types of symptoms, duration of symptoms, 
and co-infection, or other in-hospital developed medical issues that led to IMV. We nar-
rowly focused on how CXR and clinical variables obtained from day 1–5 consecutive 
predict mortality. Our model also might not work on data from the second COVID-19 
wave. This is not because the model is wrong, but rather we believe that it is necessary 
to retrain the models with local data. To date, it is generally not trivial for hospitals to 
share clinical COVID-19 data because of lack of infrastructure to do so seamlessly or 
concerns about patient data privacy, among others. Future studies may investigate pre-
dictions using radiologist clinical pCXR scores, and whether pre-intubation CXR pre-
dicts the need for IMV.

Conclusion
Deep learning applied to pCXR and clinical variables reveals that serial data mark-
edly improve the prediction of mortality and length of time on mechanical ventilation. 
In principle, pCXR could also be used to monitor disease progression and treatment 
response, optimize mechanical ventilator settings, determine when to safely extubate, 
and predict clinical outcomes in COVID-19 patients. However, the temporal progres-
sion of COVID-19 lung infection on pCXR is not completely understood [11]. These 
approaches, pending further confirmation, may facilitate prognosis, care planning, and 
resource allocation early in the course of critical care.

Methods
Study design, population, and data collection

This retrospective study was approved by our Institutional Review Board with an exemp-
tion of informed consent. Our study followed the Strengthening of Reporting of Obser-
vational Studies in Epidemiology (STROBE) reporting guidelines for cross-sectional 
studies (http://​www.​equat​or-​netwo​rk.​org/​repor​ting-​guide​lines/​strobe/).

Input variables

The input variables include serial pCXR, demographic information (age, sex, ethnic-
ity, and race), chronic comorbidities (smoking, diabetes, hypertension, asthma, chronic 
obstructive pulmonary disease, coronary artery disease, heart failure, cancer, immuno-
suppression, and chronic kidney disease), serial vital signs (heart rate, respiratory rate, 
pulse oxygen saturation, systolic blood pressure, temperature, diastolic blood pres-
sure, mean arterial pressure, FiO2, pCO2, HCO3, pH, pO2, hematocrit, potassium, and 

http://www.equator-network.org/reporting-guidelines/strobe/
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sodium), and serial laboratory tests (C-reactive protein, D-dimer, ferritin, lactate dehy-
drogenase, lymphocyte count, procalcitonin, alanine aminotransferase, brain natriuretic 
peptide, troponin, white blood cell, and aspartate aminotransferase).

Statistical methods

Statistical analyses were performed in SPSS v26 (IBM, Armonk, NY). Categorical vari-
ables are presented as frequencies and percentages, and the comparison between groups 
was made using χ2 tests. Continuous variables are presented as medians and interquar-
tile ranges (IQR), and the comparison between groups was made using Mann–Whitney 
U tests.

Outcome measures

The two outcomes were in-hospital mortality and the duration of IMV in days (i.e., how 
much time the patient needs to be on IMV). A total of 15 predictions were made as fol-
lows: Patient mortality and duration on IMV were predicted using either: a) data from 
the first day of IMV only (day 1 data); b) data from the fifth day of IMV only (day 5 data); 
c) data from the first three consecutive days of IMV (day 1–3 data); d) data from con-
secutive days 3–5 of IMV (day 3–5 data); or e) data from the first five consecutive days of 
IMV (day 1–5 data). Predictions were made using: i) pCXR data alone, ii) non-imaging 
data alone, and iii) both pCXR and non-imaging data.

Deep‑learning architecture

The architecture of the deep learning algorithm (Fig. 5) consists of three main inputs: serial 
pCXRs, serial non-imaging features, and demographics/comorbidities. A 2D convolu-
tional neural network (CNN) module designed to capture image patterns from pCXRs was 
based on VGG-16, a classical CNN architecture that has been widely proven to be effec-
tive [43]. The 2D CNN module consists of five convolutional blocks: the first two blocks 
have two convolutional layers while the last three have three convolutional layers. The 

Fig. 5  Architecture of the deep learning algorithm
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last convolutional layer in each block is set to a stride of two to replace the maxpooling 
in the original VGG architecture, which is proven to be better in the ability of non-linear 
fitting [44]. In order to balance the computing burden and effectiveness of the system, the 
number of channels is reduced from 64-128-256-512-512 in the original VGG network to 
16-32-64–128-128 in our system. The activation function ‘ReLU’ is followed by each con-
volutional layer to introduce non-linearity into the system. Batch normalization layers are 
deployed as well to ensure the stability of the training and reduce the risk of overfitting. 
After normalization, longitudinal features including serial vital signs and serial laboratory 
tests are then concatenated with the image patterns extracted from pCXRs before being 
fed into one long-short time memory (LSTM) layer, which is a deep learning technique 
aiming at processing time-series data. LSTM layer is a type of recurrent neural network 
(RNN) layer. Compared to traditional RNN layers, LSTM can control memory over time 
and the flow of information into and out of the layer through the use of three “gates”, the 
input, output, and forget gates [45]. SGD optimizer was used with a learning rate of 1e-4. 
Nesterov momentum was applied with momentum set as 0.9 to avoid local minima for 
loss. Categorical cross-entropy was used as the loss function to measure the difference 
between predicted results and ground truth. The training process lasted for 20 epochs. 
Inside of the LSTM layer, 200 hidden units are deployed, and the hyperbolic tangent (tanh) 
function is set as the activation function. After that, non-longitudinal features including 
demographic information and chronic comorbidities processed by three fully connected 
layers are concatenated with the output from LSTM and then all features extracted from 
three resources are fed into three more fully connected layers to make the final predic-
tions. Between the last three fully connected layers, two dropout layers with a drop rate of 
0.1 are deployed to prevent overfitting.

Performance evaluation

To predict mortality (binary variable), ROC analysis was employed with area under 
curve (AUC), accuracy, precision, recall, and F1 score. Results are reported in five-
fold cross-validation. Figure  6 shows a diagram of the cross-validation process. In 

Fig. 6  Diagram showing how data are divided for k-fold cross-validation
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stratified fivefold cross-validation, the dataset was split into five subsets, each with the 
same sample size and with an equal ratio of samples from each outcome class. Four-
fifths of the data were used to train the model while one-fifth of the data were held 
out for validation, creating an 80%:20% of training:validation split. This is repeated 
five times so each fold was used as the validation set once. The performance reported 
was the averaged of the five repeats. Each fold was evaluated using the same metrics: 
accuracy, AUC, specificity, and sensitivity. Individual values for each fold were not 
reported, rather an average value with standard deviation is shown in Tables  2 and 
3. The internal validation hold set was treated as a testing set and was not touched in 
the training process. There was no external validation of data from another institu-
tion due to difficulty in obtaining such detailed data. DeLong statistical test was used 
to compare AUC differences between groups. A p-value < 0.05 was considered to be 
statistically significant. To predict duration on IMV (continuous variable), correlation 
analysis was employed. Slopes, intercepts, correlation coefficients, p values, and mean 
absolute errors (MAE) were calculated.

To minimize overfitting, we employed the following approaches: (1) ReLU was used 
as the activation function and batch normalization layers were deployed to minimize 
overfitting; (2) fivefold cross-validation was used; (3) regularization was used; (4) 
early stopping of the training was deployed when no improvements were seen for 10 
epochs, and (5) only clinical variables that were relevant to predicting mortality from 
our previous studies were used.
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