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Background
In medical signals for obtaining the heart activity, such as electrocardiography (ECG), 
photoplethysmography (PPG) and ballistocardiography (BCG), respiration components 
with different strengths are present. While there are many approaches for extracting 
the respiration from ECG (ECG-derived respiration) and PPG, respiration extraction 
from BCG signals is still a neglected topic [1] even though in BCG signals the respi-
ration component is usually the dominant one. In the last years, the importance of 
measuring the respiratory rate in a hospital setting has been reported in many publi-
cations, e.g. for the early prediction of deterioration [2, 3] or opioid-induced respira-
tion depression with respect to postsurgery analgesia [4, 5]. As pointed out in [6], it is 
still one of the vital signs which is highly underestimated by medical staff who usually 
need to manually count it. Apart from a hospital setting, the respiratory rate is also an 
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Background:  Measuring the respiratory rate is usually associated with discomfort for 
the patient due to contact sensors or a high time demand for healthcare personnel 
manually counting it.

Methods:  In this paper, two methods for the continuous extraction of the respiratory 
rate from unobtrusive ballistocardiography signals are introduced. The Hilbert trans-
form is used to generate an amplitude-invariant phase signal in-line with the respira-
tory rate. The respiratory rate can then be estimated, first, by using a simple peak detec-
tion, and second, by differentiation.

Results:  By analysis of a sleep laboratory data set consisting of nine records of healthy 
individuals lasting more than 63 h and including more than 59,000 breaths, a mean 
absolute error of as low as 0.7 BPM for both methods was achieved.

Conclusion:  The results encourage further assessment for hospitalised patients and 
for home-care applications especially with patients suffering from diseases of the res-
piratory system like COPD or sleep apnoea.
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important measure in other settings including for example sleep analysis with respect 
to sleep-related breathing disorders, such as sleep apnoea [7]. For sleep analysis, poly-
somnography is the gold standard, but comes with many obtrusive sensors which may 
cause discomfort for the patients. This then leads to the “First Night Effect” and is there-
fore thought to be one of the main causes for it [8, 9]. BCG sensors can address these 
problems by providing a way of continuous, unobtrusive measurement of the respiratory 
rate [10] and in the case of polysomnography might even be able to replace most of the 
device [7, 11, 12]. However, it should be noted that in contrast to, e.g. wrist-worn devices 
for pulse oximetry and photoplethysmography (PPG), no information about the oxygen 
saturation can be obtained. Nevertheless, BCG sensors can detect changes in the mor-
phological structure of the heart beat and thus provide valuable information [13].

Several approaches for extracting the respiratory rate from classical and unobtru-
sive signals exist. Analysis methods are usually based on either Fourier analysis, wave-
let decomposition, or selective filtering combined with a peak detection. For example, 
Karlen et  al. [14] as well as Watanabe et  al. [15] developed algorithms based on the 
short-time Fourier analysis. The signal, either respiratory flow or a BCG signal, is first 
band-pass filtered to remove noise and in the case of the BCG signal also the modulated 
heart-related signal. The signal is then windowed and for each window the maximum 
frequency of the Fourier transformation is calculated. This frequency is assigned as the 
respiratory rate for that window. Zhu et al. [16] developed a method in which the BCG 
signal is decomposed by means of a wavelet decomposition. The respiratory rate is then 
obtained by a peak detection on one of the scales. Alihanka et al. [17] as well as Erkin-
juntti et al. [18] band-pass filtered the BCG signal and applied a peak detection on the 
filtered signal to calculate the inter-breath intervals and thus the respiratory rate. Paalas-
maa et al. [19] developed a filter-bank such that the signal is low-pass filtered at specific 
corner frequencies. A peak detection is applied on each of the low-pass filtered signals 
and the respiratory rate is chosen for a pre-defined window for the signal in which the 
inter-breath intervals exhibit the least variability. Their algorithm also includes a motion 
artefact detection such that segments with motion are discarded. Wang et al. [20] devel-
oped a method based on adaptive interference cancellation. Here, the respiration wave-
form was recovered using a BCG without respiration as a reference signal such that the 
heart-related signal and noise are adaptively filtered. Finally, Harada et al. [21] developed 
a peak detection with motion artefact suppression. First, the signal is low-pass filtered. 
Then, the inter-breath intervals are calculated. Inter-breath intervals are only accepted 
if the amplitudes of the signal surpass a certain threshold. Changes in posture are also 
tracked.

Different from the aforementioned methods, in this paper two new methods based 
on selective filtering and the Hilbert transform for obtaining the respiration from BCG 
signals are presented. Deviating from other approaches using the Hilbert transform for 
extracting the heart rate, as in, e.g. [22, 23], the phase signal of the Hilbert transform is 
used instead of the amplitude signal. The approach is similar to the one used in Empirical 
Mode Decomposition for estimating the instantaneous frequency in multi-component 
signals which was first postulated by Huang et al. [24]. A sleep laboratory data set con-
sisting of nine records of healthy individuals lasting more than 63 h and including more 
than 59,000 breaths is used for assessing these approaches [25]. Furthermore, breathing 
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rate variability (BRV) metrics [26] are used to assess whether short-term effects can be 
captured. The methods are compared with two methods from literature, i.e. from Karlen 
et al. and Paalasmaa et al. [14, 19].

The paper is structured as follows. First, breathing rate variability metrics are revised. 
Second, the results of our new approaches for estimating the respiratory rate in terms 
of mean absolute error, root-mean-square error and BRV parameters are presented, fol-
lowed by a discussion and conclusion. Finally, the method, i.e. the new approaches for 
the extraction of the respiratory rate are introduced.

Breathing rate variability

Analogous to the heart rate variability (HRV) metrics [27–29], breathing rate variability 
(BRV) metrics can be defined to capture statistical change in the inter-breath intervals 
(IBI) for resting individuals and thus the breathing rate variability [26, 30]. In [26] it was 
shown that several parameters in the time domain as well as in the frequency domain 
and the non-linear domains exhibit higher values in meditating individuals. It was 
speculated that breathing rate variability can capture the short-term effects of the nerv-
ous system and can be used to measure stress. In this paper, the following metrics are 
used for accessing the presented algorithms: mean inter-breath interval (MIBI), stand-
ard deviation of IBI intervals (SDBB) and root mean square of successive IBI differences 
(RMSSD). Additionally, very-low-frequency (VLF), low-frequency (LF) and high-fre-
quency (HF) band measures such as VLF absolute power, LF absolute and relative power 
and HF absolute power have been compared.

Results
The proposed approaches (see Methods section) were tested on a data set providing a 
full polysomnography and an additional BCG from nine healthy subjects in a sleep labo-
ratory while sleeping [25]. The BCG sensor used in the study was an electro-mechanical 
film sensor (EMFi; Emfit Ltd, Vaajakoski, Finland). EMFI is an oriented polypropylene 
film which is placed between two electrodes. Pressure on the EMFI leads to an elec-
tric field by moving charges on the boundaries between air voids and the layered poly-
propylene. These charges produce mirror charges on the electrodes which can thus be 
measured [31]. The sensor ( 30 cm× 60 cm ) was positioned under a thin foam layer on 
top of a mattress. The BCG signal was sampled with 200Hz . A respiratory flow signal 
from the polysomnography was used as reference (sampling rate of 10Hz ) for extracting 
the ground truth for the respiratory rate. The respiratory rate was extracted using peak 
detection. For that, the signal was filtered by a second-order Butterworth bandpass filter 
with cut-off frequencies at 0.1Hz and 0.5Hz . Then, peaks were detected using the find-
peaks-function of MATLAB (The Mathworks). The minimum peak distance was defined 
to be 2.2 s to avoid the annotation of local maxima. Since artefacts also occurred in the 
reference signal, each reference signal and its peak detection were manually checked and 
artefacts annotated to exclude them in the evaluation. For each subject, the respiratory 
rate was calculated using the previously presented methods. First, a peak detection on 
the phase signal of the Hilbert transform, and second, the filtered derivative of the Hil-
bert transform’s phase signal were calculated. For the peak detection, the same param-
eters as for the reference were used. The performance of these algorithms was compared 
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with the approach from Karlen et al. [14] and with the algorithm of Paalasmaa et al. [19] 
by means of the mean absolute error (MAE) and the root-mean-square error (RMSE). 
As visible in Table 1, both methods are able to accurately estimate the respiratory rate. 
While the performance of the peak detection achieves MAEs of as small as 0.69 BPM 
(mean across all individuals is 1.19 BPM ), the filtered Hilbert phase derivative estima-
tion is slightly less accurate with MAEs as small as 0.71 BPM (mean across all individu-
als is 1.49 BPM ). As visible through the RMSEs, the trajectory and thus breathing rate 
variability can also be captured. Another observation that can be made is that for indi-
viduals 5 and 6, the estimation by the filtered Hilbert phase derivative is much worse 
in comparison to the peak detection. In these recordings, strong motion artefacts were 
present. The peak detection has the advantage that the next peak location is limited to 
a physiological meaningful interval and therefore is naturally closer to the real value. In 
contrast, the frequency range of fRR,filt. is not limited and no motion artefact detection 
and exclusion criterion were used. As visible in Table 2, the approach from [14] and the 
algorithm from [19] are less accurate for all subjects even though no rejection of motion 

Table 1  MAE and RMSE for the two newly developed algorithms, namely the peak detection and 
filtered phase derivative for each individual data set, as well as mean and variance across the data 
sets

Subject MAEpeak (BPM) MAE(fRR,filt.)  (BPM) RMSEpeak (BPM) RMSE(fRR,filt.) 
(BPM)

1 1.0133 0.9338 2.4795 2.1606

2 1.0378 1.0966 2.2614 2.7046

3 1.2212 1.2146 2.8401 2.8260

4 0.8632 0.7854 1.9597 1.9611

5 2.0258 2.9025 3.5064 5.0844

6 1.8381 3.5504 3.2011 6.0620

7 0.7474 0.8357 1.6673 2.0976

8 1.2305 1.3888 2.5367 2.8137

9 0.6940 0.7077 1.8490 1.8645

Mean 1.1857 1.4906 2.4779 3.0638

Variance 0.2155 1.0409 0.3854 2.2155

Table 2  MAE and RMSE of reference methods of [14] and [19] from literature

Subject MAE[14] (BPM) MAE[19] (BPM) RMSE[14] (BPM) RMSE[19] (BPM)

1 2.3609 2.2394 3.0778 3.5719

2 2.7337 2.8780 3.6254 4.4147

3 3.0300 3.0364 4.0274 4.6449

4 2.3358 2.1109 3.0538 3.5097

5 3.8015 4.7098 5.2576 8.3815

6 4.2238 4.4550 6.2964 6.8651

7 2.2534 2.4365 2.9410 4.1007

8 2.3549 2.7381 3.0796 4.4749

9 2.4976 2.5958 3.2010 3.9580

Mean 2.8435 3.0222 3.84 4.882

Variance 0.5084 0.8714 1.3898 2.7104
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artefacts as in the proposed algorithms from Paalasmaa et al. was used. It can also be 
seen that again the estimations of subjects 5 and 6 are less accurate. The newly presented 
algorithms also outperform these approaches in terms of RMSE.

To further evaluate whether BRV can be captured, breathing rate variability parame-
ters for each method and the reference were compared. Note that BRV parameters based 
on the change in respiration intervals cannot be reflected by fRR,filt. as it is a continu-
ous function and does not provide inter-breath intervals. This also holds for the base-
line methods. The BRV time measures mean IBI, SDBB and RMSSD, and the frequency 
measures VLF, absolute and relative LF power, absolute and relative HF power and LF–
HF ratio were evaluated. From Fig. 1, it can be seen that the mean IBI across all records 
can be captured with a vanishing error. In contrast, it can also be seen that local dynam-
ics reflected by SDBB and RMSSD are only captured with a median error of around 16% 
and 42% , respectively. In terms of frequency parameters, it can be seen in Fig. 2 that the 
peak detection captures the power in each frequency band with a median error between 
7% and 17% . The filtered phase derivative’s median error lies between 5% and 25% out-
performing the peak detection only in the LF band. It is visible that the HF band has a 
particularly high error and large variance, which could be caused by insufficient filtering 
such that there are residual BCG shape-related artefacts. This supports the findings from 
the SDBB and RSSD, i.e. long-term trends are captured well while local features lack 
accuracy. Compared with the baseline methods, it can be stated that both methods cap-
ture the VLF and LF range more accurately and are similarly accurate in the HF range. It 
should be noted that for both baseline methods, different sensor setups were used and 
especially for the method of [19] slight changes in waveform can have a strong impact 
diminishing the accuracy which is especially visible in the lower frequency measures.

Discussion and conclusion
Two methods based on the Hilbert transform and the Hilbert–Huang spectrum were 
presented to accurately and robustly estimate the respiratory rate from BCG data. It 
was shown that the methods are invariant to changing amplitudes due to a change in 
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Fig. 1  Relative absolute error of time-domain measures for all subjects
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mechanical coupling between the sensor and the patient. It could also be shown that, 
while the error in mean respiratory rate is low, higher order statistics reflected by 
BRV parameters still lack accuracy, especially in the case of the filtered phase deriva-
tive. The estimation is computationally inexpensive since the Hilbert transform can 
be computed by means of the fast Fourier transform. Nonetheless, for employing the 
estimation in real-time, a windowed approach would be necessary. Nevertheless, the 
higher accuracy outweighs the increased computational cost. However, the analysis 
also has some limitations. First, for evaluation of the algorithms only healthy subjects 
were investigated. Therefore, a proper analysis with regard to different sleep-related 
diseases has to be conducted. In terms of COPD patients and patients suffering from 
sleep apnoea, it can be expected that the methods, especially the phase derivate can 
still be used. In COPD patients, a change in waveform and amplitude can be expected 
which does not severely influence the methods since they are chosen in a way that 
waveform and periodicity are separated. Since the periodic waveform is disrupted 
during apnoea phases, two effects can be expected. First, the estimated respiratory 
rate by the first approach will drop. Second, there might still be peaks in the phase 
signal during these phases such that the second approach might detect them. The 
amplitude signal might be employed to tackle this problem. Last, the algorithms were 
compared on our data set. Therefore, an influence of the data quality cannot com-
pletely be ruled out. However, the compared methods only provide a much coarser 
resolution and average the respiratory rate and thus are less accurate and are there-
fore less suitable for BRV calculations. For future work, a fusion strategy using several 
unobtrusive sensors could improve the estimation as well as different filtering proce-
dures and motion artefact detection. Especially, a comparison and combination with 
wrist-worn sensors would be interesting. Furthermore, BRV parameters based on the 
instantaneous respiratory rate generated by the proposed approach should be defined 
and evaluated.
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Method
Due to the positioning of the sensing elements of cardiac measurement modalities (for 
example ECG and BCG), the recorded signals do not only capture the periodic reac-
tion of the heart, but also capture respiration in form of a frequency modulation and/or 
amplitude modulation. Thus, they can be described by so-called “intrinsic mode func-
tions” (IMF). An IMF is charaterised by a cosine function with a time-dependent fre-
quency and amplitude. The BCG signal can be assumed to consist of mainly two intrinsic 
mode functions [22, 23], in form of an amplitude modulation, i.e. an IMF associated with 
the heart rate superposed by one associated with the respiratory rate, i.e.

Here, A describes the amplitude signal, f describes the frequency and n(t) describes addi-
tive noise and motion artefacts. HR and RR refer to the IMF for the heart rate (HR) and 
the respiratory rate (RR). Similar to [22, 23], to separate the respiratory IMF from the 
one associated with the heart, a Butterworth bandpass filter with cut-off frequencies at 
0.1Hz and 0.5Hz , according to respiration rates of 6 and 30 breaths per minute (BPM), 
can be used. The residual signal can thus be assumed to consist only of the IMF for the 
respiration as well as additive filtered noise and motion artefacts

Applying the Hilbert transform to this IMF then leads to the so-called analytic 
component

where i denotes the imaginary unit. The analytic component is a complex phasor, where 
ARR(t) represents the waveform of the signal and the complex exponential function its 
periodic repetition. Therefore, the phase signal of s̃+ can be assumed to be periodic with 
the respiratory rate. The respiratory rate can then be extracted by differentiation of the 
phase signal ϕs̃+(t):

This frequency signal is further median-filtered to remove artefacts due to phase discon-
tinuities which appear periodically with the respiratory rate. Additionally, the signal is 
low-pass filtered to remove BCG shape-related artefacts [19] in which additional peaks 
in the phase signal of one respiration appear (see Fig. 3). For filtering, a Butterworth low-
pass filter with a cut-off frequency of 0.1Hz is applied since the oscillation’s frequency 
was found to be around 0.2Hz.

Furthermore, the frequency can also be calculated with a peak detection directly on 
the phase signal ϕs̃+ since it has clear peaks at its discontinuities, i.e. at phase jumps from 
π to −π . An example can be seen in the bottom plot of Fig. 4. Each of the saws represents 

(1)s(t) =
∑

i∈{HR,RR}

Ai(t) · cos(2π fit)+ n(t).

(2)s̃(t) = ARR(t) · cos(2π fRR(t)t)+ ñ(t).

(3)s̃+(t) ≈ ARR(t) · exp(i2π fRR(t)t),

(4)fRR(t) =
1

2π

dϕs̃+(t)

dt
with

(5)ϕs̃+(t) = arg(s̃+).
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one breathing cycle. For the peak detection, it is advantageous that the phase signal is 
independent of amplitude changes in the BCG signal which often appear due to a shift 
in position of the subject on the sensor (see Fig. 4). The complete workflow is depicted 
in Fig. 5.

As a baseline for comparison, two methods from literature were chosen. First, the 
approach from Karlen et al. [14] originally for flow signals was adapted to BCG sig-
nals. The BCG signal was resampled to 50Hz and band-pass filtered with a third-order 
Butterworth bandpass filter with cut-off frequencies at 0.1Hz and 0.5Hz to remove 
the heart’s IMF. Subsequently, the signal was windowed by a Hamming window. Each 
segment has a length of 2048 samples which corresponds to 40.96 s . The signal was 
then transformed into the Fourier domain. The DC-component was removed and 
only the frequencies smaller than 8Hz are analysed. The peak in the spectrum is cho-
sen to be the respiratory rate. Second, the method from Paalasmaa et  al. [19] was 
used. The BCG signal here was resampled to 300Hz . To discard segments in which 
motion artefacts occur, the signal was split into segments of 10 s . Each window’s peak-
to-peak value, i.e. lowest to highest amplitude, was calculated. If the peak-to-peak 
value was found to be larger than twice the average, 15 s before and after the segment 
were discarded. The signal was then low-pass filtered with four low-pass filters with 
different cut-off frequencies, i.e. 0.154Hz , 0.22Hz , 0.33Hz and 0.5Hz . A peak detec-
tion was applied on all four signals. For every 3 s, a respiratory rate was chosen from 
the four signals by the inter-breath intervals. The rate of that signal was chosen in 
which the variability with respect to the amplitude of the last five cycles was smallest. 
The variability V for each interval was calculated by

with bi being the amplitudes at the start of each interval.

(6)V = max
2≤i≤5

= |log(bi)− log(bi−1)|,
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MAE	� Mean absolute error
MIBI	� Mean inter-breath interval
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RMSE	� Root-mean-squared error
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