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Background
Tissue elasticity and viscosity are closely related to pathological changes. Therefore, 
quantitative measurement of tissue viscoelasticity has important medical applications. 
The viscoelasticity measurement technology includes three steps. First, an internal or 
external dynamic, static, or quasi-static force is applied to the tissue to produce micro-
deformation or shear waves in the tissue. Second, an ultrasound imaging technique, 

Abstract 

Background:  Ultrasound transient elastography technology has found its place in 
elastography because it is safe and easy to operate. However, it’s application in deep 
tissue is limited. The aim of this study is to design an ultrasound transient elastography 
system with coded excitation to obtain greater detection depth.

Methods:  The ultrasound transient elastography system requires tissue vibration to 
be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient 
elastography system with coded excitation was designed. A central component of this 
transient elastography system was an arbitrary waveform generator with multi-channel 
signals output function. This arbitrary waveform generator was used to produce the 
tissue vibration signal, the ultrasound detection signal and the synchronous trigger-
ing signal of the radio frequency data acquisition system. The arbitrary waveform 
generator can produce different forms of vibration waveform to induce different shear 
wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo 
detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip 
Barker code and traditional pulse-echo detection were programmed on the designed 
ultrasound transient elastography system to detect the shear wave in the phantom 
excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro 
rat livers were used for performance evaluation of the two detection pulses.

Results:  The elasticity QA phantom’s results show that our system is effective, and the 
rat liver results show the detection depth can be increased more than 1 cm. In addi-
tion, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7–chip Barker coded 
excitation.

Conclusions:  Applying 7-chip Barker coded excitation technique to the ultrasound 
transient elastography can increase the detection depth and SNR. Using coded excita-
tion technology to assess the human liver, especially in obese patients, may be a good 
choice.
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magnetic resonance imaging (MRI), or optical imaging is used to detect the elastic defor-
mation, the shear wave amplitude, speed, or phase et al. Third, a mathematical model 
correlating the elasticity, viscosity, density and shear wave information is used to deduce 
the elasticity and viscosity modulus.

Several ultrasound elasticity techniques with different tissue vibrations have been 
reported in the past 20 years, including intravascular ultrasound elastography (IVUSE) 
[1], quasi-static ultrasound elastography [2–4], acoustic radiation force impulse imaging 
(ARFI) [5, 6], ultrasound vibro-acoustic imaging (USVA) [7, 8], shear wave dispersion 
ultrasound vibrometry (SDUV) [9], supersonic shear imaging (SSI) [10], external vibra-
tion transient elastography [11–13] and so on. Ultrasound-based elastography has the 
advantages of real-time, noninvasive, low-cost, et al. However, ultrasound-based elastog-
raphies have a common defect, in that the detection depth is limited because the ultra-
sound waves attenuate, and low amplitude shear waves attenuate quickly in the tissue.

One of the clinical applications of ultrasound elasticity technique is to quantitative 
evaluation of liver, for example, hepatic steatosis, liver fibrosis and cirrhosis. About 
50–80% obese patients [14] and 86–96% severely overweight people [15] are liver steato-
sis. However, ultrasound-based elastographies cannot provide robust shear wave motion 
detection in the obese patients. The shear wave elastography using the plane wave imag-
ing also suffers from poor penetration [16]. Recently, Echosens develop a probe dedi-
cated to obese patients and controlled attenuation parameter is developed to assess liver 
steatosis, too [17]. Lai reports that there are about one-third of obese patients have unre-
liable liver stiffness value measured by vibration-controlled transient elastography by 
Fibroscan [18]. Thus, it is necessary to develop the ultrasound-based elastography with 
bigger penetration.

One way to increase the detection depth is to apply coded excitation. There have been 
several research studies on coded excitation in an elastography technique. Peng and Liu 
applied coded excitation in the quasi-static elastography and shows that the SNR esti-
mation displacement can be improved, and that the strain noise can be reduced. And 
they apply chirp-coded pulse detection into a real-time ultrasound elastography system, 
experimental results also show that the SNR of strain image is increased [19, 20]. Song 
et al. using a 13-bit Barker code, a short chirp and a long chirp for shear wave detec-
tion, results show that the penetration depth can be increased 2, 3, and 4 cm respectively 
without decreasing the frame rate, field-of-view of plane wave imaging [16]. Although 
their studies prove that the coded excitation is an important tool to enhance perfor-
mance of medical ultrasound elastography, little attention has been paid to the effect of 
using coded excitation on the external vibration transient elastography.

In this study we tested the feasibility of using coded excitation on the external vibra-
tion transient elastography. This paper investigates the application of coded excitation 
on external vibration transient elastography. An external vibration transient elastogra-
phy system with coded excitation was designed. An elasticity QA phantom (Model 049-
CIRS Inc., Norfolk, VA) and in vitro rat livers were used to test the performance of our 
system. The elasticity QA phantom’s results show that our system is effective, and the rat 
livers’ results show that penetration depth and SNR are noticeably improved when using 
Barker coded excitation on the transient elastography system.
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Viscoelasticity mathematical model
For a homogeneous medium, the viscoelasticity mathematical model is as follow [21]:

where cs is shear wave propagation speed; μ1 and μ2 are shear elasticity and shear viscos-
ity of the medium, respectively; ρ is the mass density of the medium (most soft tissues 
ρ = 1 kg/m3 [22]); ω is the frequency of shear wave. However, since not all of the tissues 
are homogeneous, other models are used to measure elasticity and viscosity, and will 
result in different elasticity and viscosity values. Suppose shear viscosity is zero, that is, 
μ2 = 0, we get the linear elastic model as follows:

where the shear wave propagation speed cs is called group velocity. If the mass density ρ 
of the tissue is the same, there is one-to-one relation between the group velocity cs and 
the shear elasticity μ1 of the medium. Therefore, in our paper we used shear wave speed 
on behalf of elasticity.

Experiment setup
The system setup with arbitrary vibration waveform and coded excitation is shown in 
Fig.  1. The external vibration transient elastography system consists of two parts: tis-
sue vibration and pulse-echo ultrasound detection. The tissue vibration section is used 
to generate shear waves in medium, and the pulse-echo ultrasound detection section 
is responsible for detecting weak vibration information. Their details are described as 
follows:

Tissue vibration

As shown in Fig. 1 the tissue vibration part consists of an arbitrary waveform generator 
(LeCroy Arbstudio 1104, Leroy Corp., USA), a power amplifier (Type 2718, B&K, Den-
mark), a small mechanical vibrator (Mini-shaker Type 4810, B&K, Denmark), a trans-
ducer (2  MHz), and an elongated bar. The arbitrary waveform generator can generate 
a specified vibration signal, and then employ a power amplifier to drive the mechanical 
vibrator to excite tissue through the elongated bar. The small mechanical vibrator has 
a frequency range from direct current to 18 kHz, which is enough for elasticity study. 
The arbitrary waveform generator can produce tissue vibration waveform as required. 
For example, one period sine wave can be used at different frequencies to excite tissue, 
similar to suddenly beating the tissue; N cycles of sine pulses or a continuous vibration 
waveform at a frequency can also be used. Different forms of vibration waveform induce 
different shear wave propagation in the tissue, which is useful for measuring the viscoe-
lasticity of tissue.
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Pulse‑echo ultrasound detection

Pulse-echo ultrasound detection shown in Fig. 1 is composed of an arbitrary waveform 
generator, an ultrasound T/R system, a transducer, a data acquisition system (PCI-9846, 
ADLINK), and a PC. The arbitrary waveform generator generates two signals to drive 
the transducer. Likewise, the transducer driving signals produced by the arbitrary wave-
form generator are very flexible. Consequently, it can achieve either traditional pulse-
echo detection or coded excitation. The radio frequency (RF) signals are received by the 
transducer and captured by the data acquisition system. The sampled RF data are pro-
cessed offline in the Matlab (The MathWorks, Inc., Natick, MA, USA) environment.

In a conventional Doppler ultrasound system, the transmitting pulse contains sev-
eral cycles of sine wave whose frequency is identical to the central frequency of the 
transducer. However, coded excitation in a Doppler ultrasound system must transmit 
a phase-modulated waveform or a frequency-modulated waveform. Here, the arbitrary 
waveform generator is chosen to produce a phase-modulated waveform. For the prelimi-
nary experiment, a 7-chip Barker code was used for the coded excitation in our study 
and every chip of the Barker code consisted of four sine waves, abbreviated as 7c4w. The 
traditional pulse-echo detection emitted four sine cycles with a frequency of 2 MHz. The 
pulse repetition frequency was 7.4 kHz.

Here, the scatter’s vibration with time was described by the slow time signal. The 
slow time signal’s extracted algorithm was written by referring to the Doppler principle 
[23]. Shear wave speed can be calculated by the different peak time [21, 24], used in the 
FibroScan system. The data processing procedure is shown in Fig. 2. When coded exci-
tation mode is used, a matched filter was chosen for decoding, that is, the correlation 
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Fig. 1  Block diagram of experiment system
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calculations of the coded sequence and ultrasound echoes through multiplication and 
summation.

An ultrasound elastography system requires tissue vibration strictly synchronous with 
pulse-echo ultrasound detection. As shown in Fig.  1, the tissue vibration portion and 
the pulse-echo ultrasound detection portion work under the same clock source, which 
was 8 MHz for the whole system. It provided the clock signal to the arbitrary waveform 
generator and the data acquisition system. Tissue vibration signals, transducer driving 
signals, and the trigger signal of the data acquisition system were all produced by the 
arbitrary waveform generator. Therefore, the synchronization of the system could be 
achieved easily by ensuring that these three signals had a public cycle.

Evaluation of system performance
Elasticity QA phantom study

The developed transient elastography system was used first to measure the elasticity QA 
phantom, and the results were used to evaluate the system’s accuracy. The tissue vibra-
tion signal was a single sine wave, and the pulse width was 8.6 ms; the pulse repetition 
frequency was 7.4 kHz (results shown in Fig. 3). Figure 3b depicts the overall effect map 
acquired by drawing the slow time signals of different depths in one picture. This result 
revealed the vibration propagation process from shallow to deep. Figure 3a depicts the 
correspondence between the peak time and depth. The deep range was between 2 and 
7 cm under the surface. The line was the result obtained by curve fitting, whose slope 
was 2.7, this meant that the shear wave speed was 2.7 m/s. Under the same conditions 
we detected ten points, and the shear wave speed result was 2.9 ± 0.18 m/s. The normal 
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Fig. 2  Data processing procedure
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value of the elasticity QA phantom is 2.7–3.1 m/s. The elasticity value measured by our 
system was within the rational range, which indicated that our system was effective.

Rat liver study

The rat livers were also used to evaluate system performance. Sixteen rats, raised by 
Guangdong Medical Laboratory Animal Center under identically stable conditions, were 
used in our experiments. The rat liver was embedded in a phantom, and the distance 
between the liver and the surface was about 2 cm. The phantom was made from gelatin 
and water with a 1:9 ratio. All procedures in these studies were approved by Animal Care 
Committee of Shenzhen University and Guangdong Medical Laboratory Animal Center.

Figure 4 gives the slow time signals obtained by one of the rat liver at 5.5–6 cm depth 
using 7c4w coded excitation and traditional pulse-echo detection. A single sine impulse 
with a pulse width of 8.6 ms was used as the vibration signal. Obviously, the slow time 
signals obtained by using 7c4w coded excitation were more regular. These results show 
that the 7c4w coded excitation had better stability and anti-interference ability than 
traditional detection. In fact, coded excitation can increase the signal-to-noise ratio 
because the white noise in the echoes is reduced through the correlation calculations 
in the decoding process. Additionally, due to the equipment delay, the main vibration 
period was about 18 ms, which was very different from the vibration pulse width. The 
second peak was used to calculate the shear wave speed.

Fig. 3  a The correspondence between the peak time and depth; b The overall trend of the shear wave 
propagation in the elasticity QA phantom

Fig. 4  Slow time signals at 5.5–6 cm depth obtained by using different detection methods: a is using the 
7-chip Barker coded detection, and b is using traditional pulse-echo detection
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For coded excitation, the corresponding matched filters were used in the offline signals 
process algorithm. An obvious difference existed relating to the signal amplitude and 
the initial phase between the results obtained by using 7c4w and traditional detection. 
The difference has no influence on the measurement of shear wave speed, regardless of 
which difference (phase or peak time) is used to deduce the shear wave speed, the sub-
traction operation will remove the bias.

Figure 5 shows the entire trend of slow time signals in one of the rat livers. It was 
clear that the shear wave propagation was below 5 μm over 4.5 cm in Fig. 5b, while 
the shear wave propagation process detected by using the 7c4w coded excitation 
was still about 20 μm in the depth between 4.5 and 5.5 cm in Fig. 4c. The vibration 
amplitudes detected by 7c4w coded excitation were much bigger than those detected 
by traditional pulse-echo detection because there were multiplication and summa-
tion computation in the decoding algorithm. In addition, as shown by the results in 
Fig. 5c, the attenuation of the slow time signal amplitude was not obvious when depth 
was increased, which demonstrated the superiority of the coded excitation in meas-
uring the weak signals.

We detected three points from each rat liver, and then averaged those points after out-
lier removal. The shear wave speeds of the rat livers in different detection modes were 
shown in Table 1. A T test showed that the shear wave speed was not significantly differ-
ent (p > 0.05) between traditional detection and 7c4w detection. Results of sixteen rats 
show that the 7c4w coded excitation can improve the penetration depth by about 1 cm 
when the vibration amplitude is only several microns and the SNR is increased about 
15 dB.
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Fig. 5  Trend of slow time signals about the rat liver: a is the slow time signal at a depth of 3.5 cm; b is the 
overall trend of the shear wave propagation obtained by traditional pulse-echo detection; c is obtained using 
7c4w code detection
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Discussion
In our experiments, the tissue vibration signal is a single sine wave, therefore the slow 
time signal representing tissue vibration is shock attenuation curve. The first peak of the 
slow time signal is obviously stronger than the second, as shown in Fig. 5a. But the sec-
ond peak of the slow time signal is used to deduce the shear wave speed. This is because 
the slow time signal besides the first peak includes the tissue vibration and transducer 
moving information. If using the first peak of the slow time signal to calculate the shear 
wave speed, a new algorithm needs to be designed to remove the transducer moving 
information from the extracted slow time signal. The next work is to design such an 
algorithm.

This study investigates the feasibility of using coded excitation applied to the exter-
nal vibration ultrasound transient elastography. The performance of coded excitation 
and traditional pulse-echo detection are compared using the penetration depth and sig-
nal-to-noise ratio (SNR) which are the two main technical specifications of ultrasound 
elastography. Next, the in vivo study will be done to compare the performance of our 
ultrasound transient elastography system in quantifying the liver stiffness for the obese. 
Besides, different coded excitation waveforms or encoding filters need to be investigated 
to further improve the performance of the coded excitation.

Conclusions
An ultrasound transient elastography system with coded excitation is developed. The 
rigorous synchronization of the transient elastography system and coded excitation is 
executed by using an arbitrary waveform generator. The flexibility of the arbitrary wave-
form generator ensures that traditional pulse-echo detection, coded excitation, and dif-
ferent tissue vibration waveforms can be realized. Experiment results suggest that higher 
penetration depth and SNR can be achieved using the 7-chip Barker coded excitation for 
the ultrasound transient elastography system.
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