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Background
Eye diseases such as diabetic retinopathy (DR) and one of its complications, which is 
known as diabetic macular edema (DME), are the most common causes of irreversible 
vision loss in individuals with diabetes [1]. United States spent in health care and associ-
ated costs related to eye diseases almost $500 million  [1] while prevalent cases of DR 
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were expecting to grow exponentially affecting over 300 million people worldwide by 
2025. Early detection and treatment of DR and DME play a major role to prevent unfa-
vorable effects such as blindness [2]. Screening programs on DR patients have been set 
up in many industrialized countries through the employment of fundus camera some-
times accompanied with optical coherence tomography (OCT) imaging. DME is char-
acterized as an increase in retinal thickness within one disk diameter of the fovea centre 
with or without hard exudates and sometimes associated with cysts [2]. Spectral domain 
OCT (SD-OCT) scanner provides depth-resolved tissue structure information encoded 
in the magnitude and delay of the back-scattered light by spectral analysis [3]. It is an 
adequate tool compared to fundus photography for DME identification.

Automated diagnosis applied to OCT imaging is still at an early stage as only academic 
works have been published and no commercial products are yet available [4]. Most of the 
pioneer works on OCT image analysis have focused on the problem of retinal layers seg-
mentation  [5, 6] or specific lesion (e.g., cysts) segmentation as explained in [7, 8]. More 
recently, spectral domain OCT (SD-OCT) databases with their corresponding ground-
truths were provided for benchmarking; for instance a challenge (OPTIMA) was organized 
as a satellite event of the MICCAI 2015 conference. The latest work of Fu et al. [9] shows 
promising results of quantitative grading of each individual slice of an OCT volume. The 
method relies on geometric and morphological features; however, the approach needs a 
standardization procedure which prevents it from being fully automated. It should be noted 
that the authors are providing the original images as a benchmark for the community. To 
the best of our knowledge, there are very few works like [9–11] addressing the specific 
problem of DME detection and its associated features detection from SD-OCT images. In 
this paper, we propose a solution for automated detection of DME on SD-OCT volumes.

State‑of‑the‑art on SD‑OCT classification
This section discusses state-of-the-art methods for classification of SD-OCT volumes.

Srinivasan et al. proposed a classification method to distinguish normal, DME, and age-
related macular degeneration (AMD) OCT volumes  [10]. The SD-OCT volumes were 
enhanced by (1) reducing the speckle noise through a denoising method, which enforces 
the sparsity in a specific transform-domain and (2) flattening the retinal curvature. Then, 
edge information was extracted using histogram of oriented gradients (HoG) descriptor 
for each B-scan of a volume and later used to train a linear support vector machine (SVM). 
This method was evaluated on a dataset of 45 patients equally subdivided into three classes 
and resulted into a classification rate of 100, 100 and 86.7% for normal, DME and AMD 
patients, respectively. The dataset used by [10] is publicly available but it was already pre-
processed (i.e., denoised, flattened, and cropped). Furthermore, this dataset does not offer 
a huge variability in terms of DME lesions. It also has different sizes for the OCT volumes, 
and some of them, without specifying which, have been excluded during the training; all 
these reasons prevent us from using this dataset to benchmark our work.

Venhuizen et al. [11] recently proposed a method to classify AMD and normal OCT vol-
umes using bag of words (BoW) models. The features in their work were extracted from a 
set of keypoints detected from each individual B-scan. A 9 px × 9 px texton was extracted 
around each selected keypoint and its dimension was reduced, from 81 to 9 using princi-
pal component analysis (PCA). A dictionary or codebook was created by clustering the 
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features extracted and each volume was represented in terms of a histogram represnting 
the codebook occurrences. These histograms were used as a final feature vector to train 
a random forest (RF) classifier; this classifier was evaluated on a dataset composed of 384 
SD-OCT volumes leading to an area under the curve (AUC) of 0.984.

Liu  et al.  [12] proposed a methodology for detecting macular pathology in OCT 
images using local binary pattern (LBP) and gradient information as attributes. Each 
B-scan was aligned and flattened and a 3-level multi-scale spatial pyramid was created. 
Additionally, edges were detected using Canny detector on the same pyramid. Subse-
quently, an LBP histogram was extracted for each of the layer of the pyramid. All the 
obtained histograms were concatenated into a global descriptor whose dimensions were 
reduced using PCA. Finally, a SVM with an Radial Basis Function (RBF) kernel was used 
as classifier. The method achieved good results in detecting different pathologies such as 
DME or AMD, with an AUC of 0.93 using a dataset of 326 OCT scans.

Lemaître et al. proposed another method based on extracted LBP features from OCT 
images and dictionary learning using BoW models [13, 14]. BoW and dictionary learning 
were used to perform volume classification rather than B-scan. In this method, the OCT 
images were first pre-processed using (NLM) filtering to reduce the speckle noise. Then, 
the volumes were mapped into discrete sets of structures namely: local, when these 
structures correspond to patches; or global, when they correspond to volume slices or 
the whole volume. Texture features were extracted using different mapping techniques 
like LBP or three orthogonal planes (LBP-TOP) then represented per volume using his-
togram, PCA, or BoW. The final feature descriptors per volume are classified using RF 
classifier. Classifying DME versus normal volumes was applied on a balanced dataset of 
32 SD-OCT volumes and the classification performance in terms of sensitivity (SE) and 
specificity (SP) of 87.50 and 75%, respectively was achieved.

On the same dataset, Sankar et al. [15] proposed a rather different approach, based on 
semi-supervised learning, to address the issue of an anomaly detection. In their method, 
the authors proposed a technique that not only allows the classification of the OCT vol-
ume, but also enables the identification of the abnormal B-scans inside the volume. This 
approach is based on modeling the appearance of normal OCT images with a Gaussian 
Mixture Models (GMM) and detecting abnormal OCT images as outliers. The classifica-
tion of an OCT volume is based on the number of detected outliers. Testing on 32 OCT 
volumes, their method achieved SE and SP of 93 and 80%, respectively.

Albarrak et al.  [16] proposed another classification framework to differentiate AMD 
and normal volumes. Each OCT slice undergoes two pre-processing routines: (1) a 
joint denoising and cropping step using the split Bregman isotropic total variation algo-
rithm and (2) a flattening step by fitting a second-order polynomial using a least-squares 
approach. Then, LBP-TOP and HoG features are extracted and combined from individ-
ual sub-volumes. These features are concatenated into a single feature vector per OCT 
volume and its dimension was reduced using PCA. Finally, a Bayesian network classi-
fier is used to classify the volumes. The classification performance of the framework in 
terms of SE and SP achieved 92.4 and 90.5%, respectively, This method’s results exceeded 
Liu et al. [12] results but using a dataset composed of 140 OCT volumes.

Table 1 summarizes the relevant informations for all methods and Table 2 shows their 
performances on a common dataset [17].
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Material
SD‑OCT data

The dataset used in the proposed algorithm has obtained an ethical approval and 
acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss 
Meditec, Inc., Dublin, CA) SD-OCT device  [13]. The dataset consists of 32 OCT vol-
umes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution 
of 1024  px ×  512  px. All SD-OCT volumes are read and assessed by trained graders 
and identified as normal or DME based on evaluation of retinal thickening, hard exu-
dates, intraretinal cystoid space formation, and subretinal fluid Within the DME sub-set, 
a large number of lesions has been selected to create a rather complete and diverse DME 
dataset (see Table 3).

Source code

The source code associated with the experiments presented thereafter is available in 
GitHub.1

Methods
Inspired by the previous methods, our classification pipeline is depicted in Fig. 1. This 
section explained into details each intermediate step.

Pre‑processing

Prior to feature extraction, the OCT volumes are pre-processed through denoising, flat-
tening, and cropping as shown in Fig. 2.

In the first step, speckle noise is attenuated through an image denoising strategy. Dif-
ferent denoising methods have been implemented and tested on synthetic images as well 

1  https://github.com/I2Cvb/alsaih-2016-sep.

Table 2  Summary of the classification performance in terms of SE and SP in (%)

Lemaitre et al. [13] Sankar et al. [15] Srinivasan et al. [10] Liu et al. [12] Venhuizen et al. [11]

SE 87.5 81.3 68.8 68.8 61.5

SP 75.0 62.5 93.8 93.8 58.8

Table 3  DME lesions types in SERI dataset

Type of lesions SERI volumes No. Type of lesions SERI volumes No.

Vitreomacular Traction 4 Fluid HE and cystoid spaces 1

Cystoid spaces with hard exudates 
(HE) causing central retinal 
thickening

1 Cystoid spaces causing parafoveal 
retinal thickening

1

Cystoid spaces causing central and 
parafoveal retinal thickening

1 CSR with HE causing retinal 
thickening

2

CSR (subretinal fluid) causing cen-
tral and parafoveal thickening

1 Cystoid spaces causing retinal 
thickening

3

Retinal thickening 2

https://github.com/I2Cvb/alsaih-2016-sep
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as on SD-OCT B-scan. The latter type of images are further processed by the layer seg-
mentation algorithm developed by Garvin et al.  [6]. Among the tested methods, a set 
of conventional filters are investigated: (1) mean filter, (2) median filter, (3) local statis-
tics filter (i.e. Lee filter [18]), (4) hard and soft thresholding in wavelet domain [19], (v) 
NLM [20], (BM3D) [21], k-SVD [22], a subspace technique [23], the (PGPD) [24] and the 
extension of NLM specifically designed for speckle noise, known as Optimized Bayesian 
NLM (OB-NLM) [25]. Each filter was optimized and the results were based on quantita-
tive evaluations as well as qualitative evaluations (i.e., layers identification) while apply-
ing on SD-OCT images.

The images are then flattened and cropped similarly to [10] and the only difference relies 
on the fact that the second order polynomail fitting of the retinal pigment epithelium 
(RPE) was performed in conjunction with random sample consensus (RANSAC) algo-
rithm. In the axial dimension, all images are cropped 325 px from over the RPE layer and 
30px under the RPE. In the lateral dimension, all images are cropped 340 px to the center.

Features detection

HoG features  [26] and LBP features  [27] were extracted from four levels using a mul-
tiresolution Gaussian image pyramid. LBP features were extracted from 32 px × 32 px 
non-overlapping patches (see Fig. 3). Additionally, rotation invariant and uniform (-ri) 
LBP features with various sampling points (i.e., {8, 16, 24}) with respect to different 
radius, (i.e., {1, 2, 3}), as well as non rotation invariant (-nri) LBP were extracted.

Fig. 1  The pipeline is composed of: (1) pre-processing, (2) feature extraction, (3) feature representation, and 
(4) feature classification

Fig. 2  Example of SD-OCT preprocessed OCT images. (1) Original image, (2) OCT-denoised image, (3) OCT-
flattened image, and (4) OCT-cropped image
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The number of patterns (LBP#pat) for each configuration is reported in Table 4. There-
fore, each slice is described by a feature vector which its size is equal to the number of 
patches multiply by the number of patterns (LBP#pat) as reported on Table 5.

HoG features were extracted with 4 px × 4 px cell size and 2 px × 2 px block size with 
1px overlap. Furthermore, the gradient orientation is discretized using 9 bin histogram 
resulting in feature vector size described in Table 6

Feature representation

The LBP and HoG features from patches using the multiresolution image pyramid were 
first represented in terms of concatenated histograms (later called to “Histogram” for 
this configuration).

This method resulted in a high dimensional feature space; therefore PCA was used 
to reduce the number of dimensions of the concatenated histograms (later called “His-
togram + PCA” for this configuration), resulting in a single feature vector per B-scan, 
subsequently a feature matrix per volume. Therefore, with the aim of providing a fea-
ture vector per volume, BoW approach was used in the last representation. Using the 

Fig. 3  Local mapping. Example of non-overlapping windows on 2D slices

Table 4  Number of patterns (LBP#pat) for different sampling points and radius ({P, R}) of the 
LBP descriptor

Sampling point for a radius ({P, R})

{8, 1} {16, 2} {24, 3}

LBP#pat 10 18 26

Table 5  Final LBP descriptor size per B-scan, after building the image pyramid for differ‑
ent sampling points and radius ({P, R}) of the LBP descriptor

Sampling point for a radius ({P, R})

{8, 1} {16, 2} {24, 3}

Feature vector size per B-Scan 180 324 468
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previously represented features (Histogram + PCA), BoW approach learned a diction-
ary and represented each volume by a histogram which captured the codebook occur-
rences (later called “Histogram + PCA + BoW” for this configuration).

Classification

Three different classifiers were used for comparison: RF, linear-SVM, and kernel-SVM. 
A similar classification strategies as in  [10] were used for the first two configurations, 
hence feature descriptors were used to train the classifiers in order to classify each 
B-scan. Subsequently, the SD-OCT volume classification was achieved based on the 
total number of diseased B-scans detected per volume, using the majority voting rule. 
Regarding the last representation using BoW, the volume classification was directly per-
formed as the histogram of the visual words was built for each SD-OCT volume.

Experiments and results
For the denoising, as shown in Table 7, BM3D led to the best peak signal-to-noise ratio 
(PSNR) and reduced noise on the SD-OCT image without affecting the key components 
(i.e., the layers on the SD-OCT images) compared to the other methods. These results 
are in adequation with those recently published by Fu et al. [9].

Once, the volumes were preprocssed using BM3D, the experiments were divided into 
two categories. Exp1 tested different configurations leading to first B-scan and finally 
volume classification. Therefore, Histogram and Histogram +  PCA representations of 
individual features as well as Histogram + PCA representation of the combined features 
were evaluated in this experiment. Later, only the feature representations leading to the 
best classification performance from Exp1 were used in Exp2, in conjunction with BoW, 
to perform a direct volume classification.

Table 6  Final HoG descriptor size per B-scan, after building the image pyramid

Level of the pyramid

{1} {2} {3} {4}

Feature vector size per B-Scan per level 266,112 63,468 15,120 3240

Total vector size per B-Scan 347,940

Table 7  PSNR (dB) for denoising algorithms considering speckle noise on synthetic images

Technique Lena Cameraman Baboon

Mean 28.73 22.38 28.84

Median 27.82 22.11 27.82

Lee 27.47 28.08 20.97

Wavelet 28.36 28.49 20.97

Subspace 28.31 26.33 25.42

BM3D 32.51 33.37 24.12

k-SVD 31.29 30.83 25.90

PGPD 31.57 32.55 25.84

OB-NLM 30.10 30.94 25.03



Page 9 of 12Alsaih et al. BioMed Eng OnLine  (2017) 16:68 

As previously mentioned rotation invariant (-ri) and non-rotation invariant (-nri) LBP 
features with various radius, {8,16, 24}, were tested. However, it was observed that LBP-
ri provided a better results and therefore only the results obtained with this configura-
tion were mentioned in the following part.

Both experiments were validated using leave-two-patients-out method, such that at 
each cross-validation iteration, a DME and normal volume were kept out to test while 
the remaining volumes were used to train. Thus, a total of 16 cross-validations were per-
formed. The results are reported in terms of SE and SP. Tables 8 and 9 show the results 
from Exp1 for individual and combined features.

The configurations which led to the best classification performance are highlighted in 
italic. These configurations were further tested in Exp2 (see Table 10) using BoW repre-
sentation. The optimal number of words has been selected heuristically while the num-
ber of components when applying PCA has been set to 40 and 20 for HoG and LBP 
descriptors, respectively, such that the most discriminative components are kept. PCA 
dimensions were selected empirically after a number of trials.

Discussion
Evaluations of individual features (see Table 8) show that the dimensionality reduction 
of the features and the use of Histogram +  PCA representation improved the results 
of B-scan classification. The reason for that, we have only 30 (no. of volumes, two left 

Table 8  Exp1—classification of  individual features while  represented using Histogram 
and Histogram + PCA

Classifier Metric Individual Features

Histogram Histogram + PCA

HoG LBP8-ri LBP16-ri LBP24-ri HoG
PCA

LBP
PCA

8-ri
LBP

PCA

16-ri
LBP

PCA

24-ri

Linear-SVM SE 68.7 62.5 75.0 68.7 75.0 87.5 75.0 81.2

SP 87.5 81.2 75.0 87.5 75.0 87.5 75.0 81.2

RBF-SVM SE 93.7 93.7 87.5 87.5 12.5 81.2 81.2 75.0

SP 6.2 25.0 25.0 50.0 87.5 81.2 87.5 87.5

RF SE 62.5 75.0 81.2 68.7 56.2 75.0 75.0 75.0

SP 100.0 81.2 87.5 93.7 93.7 81.2 93.7 93.7

Table 9  Exp1—classification of combined features using Histogram + PCA representation

Metric of combined features

HoGPCA +

Classifier Metric LBP
PCA

8-ri HoG
PCA

16-ri HoG
PCA

24-ri

Linear-SVM SE 68.7 75.0 68.7

SP 81.2 87.5 87.5

RBF-SVM SE 68.7 18.7 0

SP 81.2 93.7 100.0

RF SE 62.5 75.0 62.5

SP 81.2 87.5 87.5
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out for testing) multiply by 128 (no. of B-scan per volume) points in the space to be 
classified, while the dimension space is huge as shown in Tables  5 and 6. Using only 
Histogram representation, RF classifier led to the best performance followed by linear-
SVM. RBF-SVM classifier had the lowest performance for all the individual features due 
to overfitting. The performance was improved when the number of dimensions were 
reduced using PCA. Using the second representation the gap between the classifiers 
were reduced and the classification performances obtained were similar. Comparing 
individual features, LBP proved to be more discriminative than HoG features. This could 
be due to the rotation invariant property of LBP in comparison to non-invariant HoG 
descriptors.

Based on Table  9, the combination of LBP and HoG features did not improve the 
results but decreased the performance of individual features, the reason could be due to 
the higher dimensionality of the LBPPCA + HoGPCA. In this test, RF and linear-SVM had 
similar performance while RBF-SVM was overfitting.

As shown in Table 2, various methods were tested using the same dataset. The pipeline 
applied by these methods vary in terms of each step, denoising, features extraction and 
classifying, which appear in disparate results (refer to state-of-the-art section)

To conclude with Exp1, the highest classification performance was achieved using: 
LBPPCA8-ri  and linear-SVM, LBPPCA16-ri and RBF-SVM, LBP16-ri and RF, and finally LBPPCA16-ri and 
RF classifier. These configurations were later tested in Exp2 using BoW representation. 
The results obtained from Exp2 showed that Histogram + PCA + BoW representation 
led to lower the performance results. In fact, this approach represented each volume in 
terms of visual-B-scans rather than visual-patches or visual-sub-volumes, which could 
be a reason why BoW failed.

Limitations of study
Although this study shows some promising results, some limitations have to be raised. 
The current study is a proof of concept based on a rather small dataset. Additional 
experiments need to be carried out on a larger set using the post experiment analy-
sis, to show the robustness of our approach. The classification approach is the same as 
Srinivasan et al.  [10], training is done at the volume level and testing at the slide level 
with a majority vote to classify the volume. This implies that, DME volume (for train-
ing and testing) should contain more than half of the slides having presence of DME. 
We are currently working on Multiple instance learning to address this aspect  [7] and 
reinforce the training approach. Furthermore, the best classification performance with a 

Table 10  Exp2—classification results using Histogram + PCA + BoW representation

Histogram + PCA + BoW

Metric

Classifier # Words SE SP

LBPPCA
8-ri

Linear-SVM 10 62.5 75.0

LBPPCA
16-ri

RBF-SVM 30 81.2 50.0

LBP16-ri RF 40 56.2 50.0

LBPPCA
16-ri

RF 50 68.7 50.0
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sensitivity and a specificity of 87.5 and 87.5%, respectively, show that our method is still 
not ready for clinical purpose, with a too large false positive detection. It can be noted 
that the decision threshold of the classifier could be moved to increase the specificity of 
our approach to the detriment of the sensitivity. Despite our wish to foster Open Source 
and Data initiatives, the data used in this study are currently not available publicly to 
third-party, in the contrary to our implementation available in GitHub.

Conclusion
We presented an automatic classification framework for SD-OCT volumes in order to 
identify DME versus normal volumes. In this regard, we investigated a generic pipe-
line including preprocessing, feature detection, feature representation, and classifica-
tion. Besides comparing individual and combined features, different representation 
approaches and different classifiers were evaluated. The best results were obtained for 
LBP16-ri vectors while represented and classified using PCA and linear-SVM. As future 
work, we would like to extend the dataset in order to make it more challenging as well as 
also making it public.
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