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Background
Surgical procedures are traditionally supported with pre-operative images, such as the 
computed tomography (CT) images and magnetic resonance (MR) images. The image 
quality can be very good, while when it comes to the surgical procedures, the link 
between images and patient is lost. In this regard, it can be intuitively displayed as an 

Abstract 

Background:  Biomechanical deformable volumetric registration can help improve 
safety of surgical interventions by ensuring the operations are extremely precise. How-
ever, this technique has been limited by the accuracy and the computational efficiency 
of patient-specific modeling.

Methods:  This study presents a tissue–tissue coupling strategy based on penalty 
method to model the heterogeneous behavior of deformable body, and estimate the 
personalized tissue–tissue coupling parameters in a data-driven way. Moreover, consid-
ering that the computational efficiency of biomechanical model is highly dependent 
on the mechanical resolution, a practical coarse-to-fine scheme is proposed to increase 
runtime efficiency. Particularly, a detail enrichment database is established in an offline 
fashion to represent the mapping relationship between the deformation results of 
high-resolution hexahedral mesh extracted from the raw medical data and a newly 
constructed low-resolution hexahedral mesh. At runtime, the mechanical behavior 
of human organ under interactions is simulated with this low-resolution hexahedral 
mesh, then the microstructures are synthesized in virtue of the detail enrichment 
database.

Results:  The proposed method is validated by volumetric registration in an abdomi-
nal phantom compression experiments. Our personalized heterogeneous deformable 
model can well describe the coupling effects between different tissues of the phan-
tom. Compared with high-resolution heterogeneous deformable model, the low-reso-
lution deformable model with our detail enrichment database can achieve 9.4× faster, 
and the average target registration error is 3.42 mm, which demonstrates that the pro-
posed method shows better volumetric registration performance than state-of-the-art.

Conclusions:  Our framework can well balance the precision and efficiency, and has 
great potential to be adopted in the practical augmented reality image-guided robotic 
systems.
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overlay of pre-operative images onto the patient’s body, which creates an augmented 
reality environment that enables surgeons to visualize the structures of interest  [1]. 
Imaging looks inside the patient’s body, exposing the patient’s anatomy beyond what is 
visible on the surface.

A variety of methods have been developed to provide intra-operative image registra-
tion, which can be mainly classified into rigid and non-rigid registration. Rigid regis-
tration is generally applied when the target anatomy fulfills the criterion of rigidity 
and spatial distortions are not introduced in the image acquisition process  [2]. It is a 
relatively quick and straightforward process that uses a rigid motion model with rota-
tion and translation parameters of the target objects where tissue deformation can 
be ignored. Unfortunately, purely rigid transformation is not sufficient to describe 
the mechanical behaviors of human organ for most of the surgeries. To this end, this 
technique cannot produce an optimal alignment when human organ undergoes defor-
mations caused by external forces (such as surgical tools) or natural motions (such as 
respiration). In such cases, non-rigid registration is required when the imaged anatomy 
non-rigidly deforms between acquisitions, which can provide a relatively accurate align-
ment for cases of non-rigid deformations. Readers can refer to  [3] for a thorough and 
comprehensive introduction of non-rigid registration.

Moreover, non-rigid registration can be broadly classified as either surface registration 
or volumetric registration. Both of these two approaches have advantages and weak-
nesses. Surface registration methods  [4–10] have been shown to accurately align the 
highly complex morphological details on the surface of the human organ. Although these 
methods can offer the possibility to achieve visually coherent surface registration, they 
are limited to surface overlay without considering heterogeneous internal structures, 
such as vessels and tumors. In this regard, it is crucial to consider volumetric registra-
tion [11, 12]. Generally, volumetric registration methods can provide a correspondence 
field across the entire human organ, including common target regions (such as tumors 
and vessels) that are not in the domain of the surface-based alignment procedures.

Biomechanical model has proven to be a promising way for non-rigid volumetric reg-
istration  [11, 13–20], which can accurately estimate the motion of in-depth volumet-
ric structures. The finite element method (FEM) is the most widely used physics-based 
approach for developing deformable model, which can accurately describe the mechani-
cal behaviors of human organ as continuous medium. Many researchers have reported 
certain success in achieving accurate volumetric registration based on FEM model. 
However, conventional FEM is so complicated that makes solution procedure time-con-
suming, which limits its application in clinical practice [21]. In this paper, we employ the 
total Lagrangian explicit dynamics (TLED) FEM to model the mechanical response of 
human organ under interactions. This is because TLED FEM is an efficient numerical 
algorithm that is based on the FEM while using the total Lagrangian formulation, where 
stresses and strains are measured with respect to the original configuration which allows 
for pre-computing of most spatial derivatives before the commencement of the time-
stepping procedure [22]. Besides, TLED FEM is capable of handling both geometric and 
material non-linearities, which is beneficial to perform the large deformation analysis 
induced by tool–tissue interactions. In addition, the accuracy of the FEM relies heav-
ily on the quality of geometric models meshes, while the geometric models of human 
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organs are often complicated and irregular for representing the morphological details of 
the organs. Here we directly extract the uniform hexahedral mesh from the segmented 
medical images, which can greatly reduce the complexity of volumetric geometric mesh 
reconstruction and provide the high-quality mesh for biomechanical modeling.

In this paper, we are motivated to achieve fast volumetric registration for both sur-
face and in-depth anatomical structures, where we have to determine the location of 
target region with great accuracy and avoid damaging the vessels which are needed for 
the post-operative rehabilitation of human organs. The contributions of this paper are as 
follows:

• • Personalized heterogeneous deformable model. Our deformable model is based on 
a uniform and high-resolution hexahedral mesh directly extracted from the MR 
images, which is beneficial for the accuracy of TLED FEM analysis. A novel and 
effective tissue–tissue coupling strategy based on penalty method is proposed to 
model the in-depth anatomical structure of deformable body, and the personalized 
tissue–tissue coupling parameters are estimated in a data-driven way.

• • Coarse-to-fine scheme. We propose a coarse-to-fine scheme to reduce the computa-
tional complexity of heterogeneous deformable model for fast volumetric registra-
tion. In more detail, we perform the TLED FEM on low-resolution hexahedral mesh 
first and then synthesize the microstructures using a detail enrichment database con-
structed by the high-resolution heterogeneous deformable model.

Methods
Materials

In this paper, we employ the triple modality 3D abdominal phantom (Model 057A, 
Computerized Imaging Reference Systems, Inc.) as the experimental object. It is a plas-
tic model for medical education usage including artificial liver, vessels and tumors. In 
addition, the anatomical structures of the phantom can be identified by 3D MR images, 
which are acquired using Siemens 3T MAGNETOM Trio system in Paul C. Lauterbur 
Research Center For Biomedical Imaging, Shenzhen Institutes of Advanced Technology, 
Chinese Academy of Sciences. The scanned images of the phantom being compressed is 
used as the ground truth to validate the proposed volumetric registration method. The 
phantom has the advantage of providing controllable boundary conditions, and has been 
widely used as the experimental material to verify the registration method such as some 
other similar work of Lavely et al. [23] and Serban et al. [24]. To acquire 3D MR images 
of abdominal phantom under different compressions, we build a containing device by 
3D printing technique to facilitate applying displacements during the MR imaging. The 
compression positions are on top of phantom and the MR scanning scene are shown in 
Fig. 1. We totally obtained 6 image datasets which consist of a dataset of initial status 
and 5 datasets of compressions (marked as A, B, C, D, E), and each dataset consists of 
111 MR images. In addition, we label 25 landmarks (11 landmarks on liver surface and 
14 internal landmarks inside the liver) in the initial status dataset and 5 compression 
datasets as groundtruth. Those landmarks are selected according to the structure of the 
tissues or organs, such as the internal surface or corners.
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Hexahedral mesh construction

In this paper, we focus on the cases when lesions (such as tumors) are present inside the 
parenchyma, these can be taken into account also from the mechanical point of view as 
they usually introduce significant heterogeneity. This heterogeneity can be straightfor-
wardly included in the model through volumetric mesh. In this regard, hexahedral mesh 
or tetrahedral mesh  [11–13] are often employed rather than triangular mesh. Note that 
traditional volumetric registration methods are based on reconstructed tetrahedral 
mesh, while the reconstruction process may cause loss of precision. Considering that 
the segmented MR images are pixel level representation of the scanned phantom, we can 
avoid this limitation by directly constructing the hexahedral mesh. More importantly, we 
concentrate on improving the efficiency of volumetric registration, however, the tetra-
hedral mesh is usually irregular and contains distorted elements when deforms [25, 26], 
which requires re-meshing and results in huge computational cost and makes the simu-
lation time-consuming [27, 28]. While the hexahedral mesh is known to be efficient in 
terms of stability and computational cost [25, 26], and hexahedral mesh presents better 
accuracy and efficiency than tetrahedral mesh in solid mechanics and structural engi-
neering problems [29].

Thus, we directly construct a uniform high-resolution hexahedral mesh from the 3D 
MR images of vascularized liver. First, we manually segment the 3D MR images of vas-
cularized liver, which can be classified as parenchyma, vessels and tumors. By setting 
the resolution (74 × 18× 54), we divide each MR images into voxels and construct the 
uniform hexahedral mesh by connecting voxels in each MR image. The hexahedral mesh 
construction process can be observed in Fig.  2. Note that each hexahedron can only 
serve as one kind of tissue element, and the relationship between landmarks and the 
hexahedral mesh are established using the landmarks’ pixel coordinates.

Fig. 1  Experiment configurations

Fig. 2  Hexahedral mesh construction
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It is worth noting that there are truly jaggy structures in our method around the hexa-
hedral boundary no matter what kind of resolution it uses, and this will degrades the per-
formance of our method in a certain degree. However, this is a kind of inevitable precision 
loss in the process of geometric mesh generation, even for the commonly adopted triangu-
lar mesh or tetrahedral mesh, since converting the raw medical images to surface/volumet-
ric mesh leads to the loss of precision. Theoretically, the higher resolution the hexahedral 
mesh is, the more accurate registration method is. In this regard, we adopt a relative high 
resolution 74 × 18× 54 to reduce the precision loss induced by jaggy structures as much 
as possible. Meanwhile, the coarse-to-fine scheme proposed in this paper guarantees our 
registration efficiency is not influenced by the high-resolution hexahedral mesh.

Personalized heterogeneous deformable model

In this work, we propose a personalized heterogeneous deformable model to accurately 
and efficiently model the mechanical behavior of human organ under interaction, aiming 
at achieving fast volumetric registration. The overall process is illustrated in Fig. 3.

High‑resolution heterogeneous deformable model

Taking liver tissue containing a tumor as an example, the hexahedron containing both 
part of tumor and soft tissue is called boundary hexahedron. Here the shared vertices 
of liver hexahedral and tumor hexahedral meshes forms the internal surfaces and these 
vertices are called internal surface vertices. By representing the internal surface vertices 
using their neighboring hexahedral vertices, the coupling forces can be transmitted to 
the neighboring hexahedra vertices whose displacements can also be reflected on the 
internal surface vertices.

Fig. 3  Complete pipeline of personalized heterogeneous deformable model for real-time volumetric regis-
tration
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As shown in Fig. 4, purple vertices are parenchyma (such as liver soft tissue), red ver-
tices are lesion (such as tumors), which are separated by the internal surface. Here we 
define P = {p1, p2, ...} as the parenchyma vertices, Q = {q1, q2, ...} as the lesion vertices. 
As the parenchyma and the lesion are coupled all the time on the boundary, here we 
treat boundary vertex i as two corresponding splitted vertices bpi and bqi, called bound-
ary vertices, which are on the same position and obviously they should keep in contact at 
every time step. We define BP = {bp1, bp2, ...} as boundary vertices of parenchyma and 
BQ = {bq1, bq2, ...} as boundary vertices of lesion. The high-resolution heterogeneous 
deformation is described as follows: first, we exert a displacement by the interactive tool 
on the parenchyma vertices and the new position of each parenchyma vertex is solved 
with TLED FEM. The boundary vertices are not involved in the TLED FEM modeling 
and they are represented by its support domain using moving least-squares (MLS) [30], 
as shown in Fig. 4.

Suppose two corresponding boundary vertices bpi and bqi, P�
i  and Q�

i  are their sup-
port domain, respectively. At time step t, after applying boundary condition on the 
parenchyma vertices, the parenchyma boundary vertices and lesion boundary vertices 
are calculated by the following equation.

where �p,i,�q,i are shape functions according to the MLS method.
During the mechanical coupling procedure, bpi and bqi suffer a coupling force and 

induce lesion to deform. Here we propose a tissue–tissue coupling strategy based on 
penalty-based method [31], which is a computationally simple and effective solution for 
collision response between parenchyma, tumor and vessels. The coupling force is

where δt = bpti − bqti  is the interpenetration of parenchyma and lesion, kc is a person-
alized tissue–tissue coupling coefficient to calculate coupling force in heterogeneous 

(1)bpti = �p,iP
�,t
i , bqti = �q,iQ

�,t
i

(2)f
coupling
i,t = −kcδ

t

Fig. 4  Heterogeneous structure of deformable model. The purple line is the parenchyma and the red line is 
the lesion. The boundary vertices are splitted into two vertices which respectively represent parenchyma and 
lesion. The imaginary line represents that there are now springs and the boundary vertices not involved in the 
TLED FEM modeling, which are represented by its neighboring vertices using MLS method. The green points 
represent the new positions of vertices on the hexahedral model in the next time step
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deformable model. For computing the coupling forces between parenchyma and tumor, 
parenchyma and vessels, kc is represented by kc,s−t and kc,s−v, respectively.

After obtaining the coupling force between lesion boundary vertex bqi and paren-
chyma boundary vertex bpi, we transmit the coupling force to their support domain Q�,t

i  
and P�,t

i , respectively.

Then the parenchyma vertices and lesion vertices are solved with the TLED FEM and 
the support domains of boundary vertices bpi and bqi’s are updated as P�,t+1

i ,  Q�,t+1
i , 

respectively. The positions of bpi and bqi in the time step t + 1 are

Actually, on the boundary, the parenchyma and lesion are coupled all the time, and they 
satisfy the Signorini’s law [32]:

where ⊥ indicates there is a complementarity relation between δt+1 and f couplingi,t+1 . The 
workflow of the high-resolution heterogenous deformable model is illustrated in Fig. 5.

Data driven parameters estimation

To precisely model volumetric deformation, we have to obtain the tissue–tissue coupling 
parameters for our heterogeneous deformable model. It is unrealistic to find univer-
sal coefficients kc,s−t and kc,s−v which fit all the patients and circumstances [33]. There 
is an important variation of values when it comes to the parameters estimation of our 
deformable model. The parameters should be selected according to the personalized 
application.

From the experimental data, we adopt 3 datasets of compression for parameters esti-
mation and the other 2 datasets of compression for validation through calculating the 
landmarks’ registration errors. For each dataset for parameter estimation, deformation 
can be described as:

(3)Ftq,i = f
coupling
i,t �q,i, Ftp,i = −f

coupling
i,t �p,i

(4)bpt+1
i = �p,iP

�,t+1
i , bqt+1

i = �q,iQ
�,t+1
i

(5)0 ≤ δt+1 ⊥ f
coupling
i,t+1 ≥ 0

Fig. 5  The workflow of the high-resolution heterogenous deformable model
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where Xt+1 is the deformed position set of vertices on high-resolution heterogeneous 
deformable model. Xt are the vertices on undeformed high-resolution heterogeneous 
deformable model. K(kc,s−t , kc,s−v) are the tissue–tissue coupling parameters of the high-
resolution heterogeneous deformable model, and they are obtained by the following 
equation,

where Xt+1
g  is the groundtruth set of 25 landmarks. The parameters are trained by pairs 

of the landmarks positions on the high-resolution heterogeneous deformable model.

Dynamics

In this paper, we model the dynamics of human organ using the following mathematical 
formulation:

where M is the constant mass, X is the current nodes’ displacements. D(Ẋ) is the 
damping force, K(X)X represents elastic force, and R is the current applied force field 
equivalently distributed to each node of the object’s mesh. In addition, we model the 
deformable body as Neo-Hookean material.

Coarse‑to‑fine scheme

The high-resolution heterogeneous deformable model can provide a promising way for 
volumetric registration with high fidelity. However, it needs too much computational 
cost. To achieve fast volumetric registration, we propose a coarse-to-fine scheme which 
numerically coarsens the high-resolution hexahedral mesh into a low-resolution hexa-
hedral mesh of 24 × 18× 18. Each vertex on low-resolution hexahedral mesh can find 
a corresponding vertex on the high-resolution hexahedral mesh. As shown in Fig. 6, in 
a 2D illustration, h1, h2, ..., h9 are vertices of the high-resolution hexahedral mesh. After 
constructing the low-resolution hexahedral mesh, P = {h1, h2, h3, h4} are served as the 
vertices of low-resolution hexahedron Hj, X = {h5, h6, h7, h8, h9} are the microstructures 
which are synthesized by MLS method, �i are shape functions.

(6)Xt+1 = K(kc,s−t , kc,s−v)X
t

(7)arg min
ki∈K

{�Xt+1
g − K(kc,s−t , kc,s−v)X

t�2}

(8)MẌ +DẊ + K(X)X = R

Fig. 6  High-resolution hexahedral mesh and low-resolution hexahedral mesh
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However, there is a difference between high-resolution and low-resolution hexahedral 
meshes. For the high-resolution hexahedral mesh, the parenchyma and lesion are sepa-
rated from each other by the internal boundary as shown as the two splitted vertices and 
imaginary line, which have no direct connection with the parenchyma or lesion hexa-
hedral mesh. The force transmission between parenchyma and lesion is realized by the 
internal boundary vertices using MLS method. For the low-resolution hexahedral mesh, 
the parenchyma hexahedral and lesion hexahedral meshes are connected directly and 
force transmission between them is also direct. For each material’s hexahedral mesh, we 
assign different Young’s modulus for them, each hexahedron’s tissue type is determined 
by the largest number of pixel inside that hexahedron. To achieve accurate volumetric 
registration with low-resolution hexahedral mesh, we store the mapping relationship 
between vertices on high-resolution hexahedral mesh and corresponding low-resolution 
hexahedral mesh using MLS method on different compression conditions (respectively 
50 different displacements and 20 different orientations at each of the 5 compression 
positions) to build a detail enrichment database.

At runtime, we can employ the low-resolution hexahedral mesh to achieve fast first-
step deformation, and then synthesize the microstructures according to the detail 
enrichment database. During the construction of detail enrichment database, each 
hexahedron on low-resolution hexahedral mesh is regarded as an element. Besides, we 
can use the 8-vertices on low-resolution hexahedral mesh to describe all the vertices in 
corresponding high-resolution hexahedral mesh by MLS method. For the t-th displace-
ment, the ith 8-vertices element Hi’s all shape functions can be calculated using MLS 
method, donated as,

After constructing the detail enrichment database, for a specific displacement exerted 
on the phantom we need to find out the corresponding deformation information 
under the similar compression conditions in the detail enrichment database to syn-
thesize the microstructures. Suppose the ith 8-vertices element Hi’s 8 vertices are 
Pi = (Pi,1,Pi,2, ...,Pi,8), for low-resolution hexahedral mesh element Hc, the microstruc-
tures can be calculated as,

Figure 7 explains the mechanism of how to construct the mapping between two levels 
of hexahedral meshes. First, we construct the low-resolution hexahedral mesh accord-
ing to the high-resolution hexahedral mesh and calculate the mapping relationship by 
MLS method [30]. Then, we build the detail enrichment database by deforming the high-
resolution heterogeneous model and recording the mapping relationship between high-
resolution and low-resolution hexahedral meshes. Finally, we compute the deformation 
of the low-resolution hexahedral mesh, and synthesize the microstructures to achieve 
the final deformation of the high-resolution hexahedral mesh.

(9)�j,t = (φj,1,�j,2, ...,�j,8)
(t), j ∈ Hi

(10)xj = �T
j,tPi
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Experiments
We conducts several experiments to validate our method mainly from two perspectives: 
accuracy and efficiency. Young’s modulus for parenchyma, vessel and tumor used in the 
phantom are respectively 2× 105, 106 pa and 5× 106pa pa, and the Poisson’s ratio for 
them are 0.49. All experiments are conducted on a PC equipped with Intel Xeon CPU 
E3-1230 V2 (3.30GHz) CPU, 4G RAM and NVIDIA GeForce GTX 650 Ti.

Data-driven parameters estimation We divide the five compressions datasets into 
two groups (three training datasets and two validation datasets). Figure 8 illustrates the 
volumetric liver registration results on training datasets (A,  B and C) and validation 
datasets (D and E). Each row represents the data from one compression position. For the 
phantom, we have labeled 25 landmarks on five cross sections, which are corresponding 
to the five column in Fig. 8. Each column represents a MR image section with landmarks. 
To estimate the personalized parameters accurately, we iteratively conduct the deforma-
tion experiments for high-resolution heterogeneous deformable model until obtaining 
the minimum average target registration error (TRE) for training datasets. It is observed 
from the training datasets A, B and C in Fig. 8 that the calculated results (red crosses) 
are consistent with the groundtruth (green crosses). The minimum average TRE of the 
training datasets is 2.00 mm. The estimated tissue–tissue coupling parameters kc,s−t and 
kc,s−v are 600 and 500 N/m respectively. The average computation time per frame for 
high-resolution heterogeneous deformable model is 344.83 ms and the average frame 
rate is 2.9 fps. By applying the estimated parameters on validation datasets, we obtain 
the volumetric registration results with average TRE 2.55 mm, which demonstrates the 
effectiveness of the estimated personalized parameters.

Coarse-to-fine scheme We build a low-resolution deformable model and construct 
a details enrichment dataset by deforming high-resolution heterogeneous deformable 
model and recording the mapping relationship using the MLS method. In our method, 
we direct perform deformation on low-resolution deformable model and synthesize the 
microstructures according to the detail enrichment dataset. The deformation results 
of our method (low-resolution deformable model with detail enrichment database) are 
illustrated in Fig. 9, which demonstrates that the calculated results are consistent with 
the groundtruth. Figure 10 shows the TRE of high-resolution heterogeneous deformable 
model and our method, respectively. We demonstrate the deformation comparisons in 
volumetric registration for high-resolution heterogeneous deformable model and our 

Fig. 7  The mechanism of the coarse-to-fine scheme
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method. At equilibrium we obtained the displacements of both solutions for dataset E 
(see Fig.  11a, b). Then we measured the difference of the displacements computed by 
the two approaches. Results are presented in Fig. 11c (using the same scale as the initial 
displacements). The average TRE is 3.27 mm, which indicates the coarse-to-fine strategy 
can achieve registration results with good accuracy.

In addition, we visualize the intermediate deformation poses of our hexahedral mesh 
and the corresponding positions of the 25 landmarks in this progress. As shown in 
Fig. 12, we divided the 25 landmarks into three types: surface landmarks, tumor land-
marks and vessel landmarks, since these three kinds of landmarks are doctor’s structures 
of interest. We compare the positions of the 25 landmarks in these deformed model with 
the ground truth, which indicates that the calculated landmark positions are approach-
ing the ground truth gradually during the registration process.

Comparison We validate our method (low-resolution deformable model with detail 
enrichment database) from the following perspectives:

Fig. 8  Parameters estimation and validation of personalized heterogeneous deformable model for volumet-
ric liver registration. The red crosses represent the calculated results by our method, and the green crosses are 
the ground truth. Here rows a, b, c, d and e are the selected images of the 5 scanned MRI datasets, which 
are obtained from the 5 compression experiments on the phantom. The resolution of this high-resolution 
deformable model is 74× 18× 54
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• • Compare the overall registration accuracy and performance of our method with 
the registrations using high-resolution heterogeneous deformable model and Han 
et al.  [13], which is also a non-rigid registration method based on the TLED FEM 
while without considering the tissue heterogeneity.

• • Compare the surface and internal registration results of our method with the above 
two registration methods respectively, demonstrating the accuracy of heterogeneity 
representation of our method.

Fig. 9  Volumetric liver registration results by our method. The red crosses represent the calculated results by 
our method, and the green crosses are the ground truth. Here rows a, b, c, d and e are the selected images of 
the 5 scanned MRI datasets, which are obtained from the 5 compression experiments on the phantom. The 
resolution of low-resolution hexahedral model is 24× 18× 18

Fig. 10  TRE comparison of high-resolution heterogeneous deformable model and our method
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Figure 13a illustrates the average TRE of volumetric registration on our method, high-
resolution heterogeneous deformable model and Han’s work [13] for datasets A, B, C, D 
and E. It can be observed that the average TRE of Han’s method (7.74 mm) for datasets 
A, B, C, D and E are all larger than those of high-resolution heterogeneous deformable 
model (2.22 mm) and our method (3.42 mm). Because the high-resolution heteroge-
neous deformable model includes the tissue–tissue coupling process in the volumetric 
mesh, which results in less registration error than Han’s method, which did not include 
the tissue–tissue coupling process. Besides, our method first deforms the low-resolution 
hexahedral mesh and then synthesizes the microstructures of the high-resolution hexa-
hedral mesh according to the detail enrichment database, which is constructed by the 
mapping relationship of the deformed high-resolution heterogeneous deformable model 

Fig. 11  Deformation results comparison using high-resolution heterogeneous deformable model and our 
method. The color bar in a and b represent the vertices displacements by high resolution deformable model 
and our method respectively, while the color bar in c represents the difference of vertices displacements 
between high resolution deformable model and our method 

Fig. 12  3D visualization of the phantom’s deformation and the landmarks’ deformation trajectory
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and low-resolution deformable model. The detail enrichment database itself already 
includes the effects of the tissue–tissue coupling process.

Meanwhile, we evaluate the registration accuracy of 11 surface landmarks and 14 
internal landmarks on the phantom model respectively, as shown in Fig. 13b. For high-
resolution heterogeneous deformable model, the average TRE of surface landmarks 
and internal landmarks are respectively 2.45 and 2.04 mm. While for our method, 
the average TRE of surface landmarks and internal landmarks are 3.46 and 3.38 mm, 
respectively. Using Han’s method, the average TRE of surface landmarks and internal 
landmarks are 6.39 and 8.81 mm, respectively. Experimental results indicate our method 
can well describe the heterogeneity of human organ, and achieve better registration 
accuracy than Han’s method [13].

In addition, we achieve 27.2 fps of volumetric registration by our method with the 
average computation time 36.76 ms, this frame rate can fulfill the requirement of real-
time tracking system. It is also worth noting that at the expense of accuracy for about 
1 mm, our method can speed up 9.4× than the high-resolution heterogeneous deform-
able model, as well as about 9.4× faster than Han’s method which is applied on the high-
resolution deformable model. The experimental results demonstrate that our method 
can well balance the computational efficiency and accuracy.

Discussion and conclusion
In this paper, an efficient personalized heterogeneous deformable model is presented 
for volumetric registration. Our method includes three core components: a heterogene-
ous deformable model, a personalized tissue–tissue coupling strategy and a coarse-to-
fine scheme. In more detail, we propose the high-resolution heterogeneous deformable 
model for a uniform and high-resolution hexahedral mesh and model the mechanical 
behavior of heterogeneous anatomical structure with TLED FEM and penalty method. 
Besides, we present a data driven parameters estimation method for the high-resolution 
heterogeneous deformable model to obtain the tissue–tissue coupling parameters of our 
method in vivo for FE analysis. In addition, we put forward a coarse-to-fine scheme to 
achieve fast volumetric registration, which is to first perform the volumetric deforma-
tion on the low-resolution hexahedral mesh and then synthesize the microstructures 
according to the detail enrichment database. We have tested the high-resolution het-
erogeneous deformable model and our method with the real compression of phantom 

Fig. 13  Average TRE of high-resolution heterogeneous deformable model, our method and Han et al. [13] 
respectively
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in five experiments. The experimental results indicate our method can achieve fast and 
accurate registration results, which are essential for clinical applications.

Biomechanical deformable model is an effective way to reliably predict deformation for 
volumetric registration and many researchers have demonstrated good non-rigid reg-
istration that meets the accuracy requirements of specific surgery. Al-Mayah et al. [17] 
proposed a 3D FEM based biomechanical model for image registration of head and neck 
cancer treatment, they applied the linear elastic material properties to their method and 
adopted linear geometry. Oktay et  al.  [16] proposed a linear FEM deformation based 
registration method for pre-operative and intra-operative 3D image fusion for laparos-
copy surgery. Though the linear FE analysis is an approximation that makes the analysis 
of the structure more tractable, the assumptions of linearity are often not adequate for 
real tissues which often undergoes nonlinear behaviour. Compared with the work of  [16, 
17], our TLED FEM analysis adopts nonlinear elastic material properties which can 
provide more accurate biomechanical analysis. Hopp et  al.  [15] presented a nonlinear 
biomechanical FEM analysis based registration method for X-ray mammograms with 
DCE-MRI volumes. The mean TRE was 13.2 mm that was within the clinically relevant 
range. However, the deformable body was modelled as homogeneous soft tissue which 
could not describe the deformation distribution inside the soft tissue. Thus their method 
is not suitable for the registration of organs with internal heterogeneous structures such 
as tumors or vessels. To address the heterogeneous issue, Haouchine et al.  [11] used a 
deformable volumetric biomechanical model accounting for heterogeneity and anisot-
ropy in hepatic surgery guidance with the best tumor registration accuracy of 2.5 mm. 
Samavati et al. [18] proposed a biomechanical model with heterogenous material prop-
erty for deformable prostate image registration with average registration accuracy of 4.8 
mm, also they have presented a hybrid biomechanical intensity based deformable image 
registration method for lung 4DCT [19] and achieved average registration accuracy of 
2.9 mm. Han et al. [13] proposed a patient-specific biomechanical modeling framework 
for heterogeneous breasts based on nonlinear FEM solver, which achieved relative accu-
rate volumetric breasts registration with the best registration accuracy of 3.18± 1.69 
mm by anisotropic heterogeneous model. They assigned different material properties 
for different tissues to construct the heterogeneous structures. Different from the above 
heterogenous models, our method constructs the heterogeneous deformable on a uni-
form and high-resolution hexahedral mesh directly extracted from the MR images for 
investigating the motion of liver’s vessels and tumors, and the different types of tissues 
are coupled by a penalty method. The proposed high-resolution heterogeneous deform-
able model achieves average registration accuracy of 2.22 mm on a fine resolution grid 
of 74 × 18× 54. Our method achieves average registration accuracy of 3.42 mm on a 
low-resolution grid of 24 × 18× 18 with detail enrichment database, while the method 
of Han et al. [13] achieves TRE of 7.74 mm.

In spite of high registration accuracy achieved by our heterogeneous model, the 
efficiency due to the tremendous computation has limited the applications of many 
work [11, 13, 18, 19], whose registration process is time-consuming. However, the effi-
ciency is an essential issue in the image-guided surgery for the reason that even in a few 
seconds the registration target would deform or shift a lot which could lead to the failure 
of the registration. It is crucial to develop a fast biomechanical model based registration 
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methods which incorporate the advantages of high accuracy and efficient computation. 
To achieve fast volumetric registration, we propose a practical coarse-to-fine scheme 
and establish a detail enrichment database at the preprocessing stage. At runtime, we 
simulate the mechanical behavior of the low-resolution hexahedral mesh and synthesize 
the micro-structures in virtue of detail enrichment database. With the expense of accu-
racy for about 1mm, our method can speed up 9.4× than the high-resolution heteroge-
neous deformable model.

There are certain limitations of our method. In clinical practice, the personalized 
Young’s modulus is unknown while it is very essential for the construction of person-
alized deformation model. We plan to obtain the patient-specific Young’s modulus 
by ultrasound elastography in  vivo  [34]. Besides, the accuracy of the low-resolution 
deformable model is not as accurate as the high-resolution one, so that we plan to incor-
porate the generalized moving least squares (GMLS) [35] into our coarse-to-fine scheme 
to improve its accuracy. In addition, we intend to improve the setup of boundary condi-
tions for the temporal registration phase, which is an important and challenging prob-
lem. Besides, we will also adopt our method to align the pre-operative volumetric liver 
MR images to intra-operative ultrasound image and obtain quantitative errors on real 
data.
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