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Results: A new method for probabilistic atlas construction that uses a generalized
linear model is proposed. This method aims to improve the estimation of the prob-
ability to be covered by the liver. Furthermore, all methods to build an atlas involve
previous coregistration of the sample of shapes available. The influence of the geo-
metrical transformation adopted for registration in the quality of the final atlas has not
been sufficiently investigated. The ability of an atlas to adapt to a new case is one of
the most important quality criteria that should be taken into account. The presented
experiments show that some methods for atlas construction are severely affected by
the previous coregistration step.

Conclusion: We show the good performance of the new approach. Furthermore,
results suggest that extremely flexible registration methods are not always beneficial,
since they can reduce the variability of the atlas and hence its ability to give sensible
values of probability when used as an aid in segmentation of new cases.

Keywords: Anatomical atlas, Probabilistic atlas, Generalized linear model,
Coregistration method, Atlas variability

Background

With the increasing capabilities of computers, computational anatomy has become an
area of interest for medical diagnosis. In particular, lesion detection and surgery plan-
ning are very demanding tasks that require extracting the volume of an organ first. For
this purpose, image analysis algorithms such as registration or segmentation have to be
applied. However without prior knowledge of the organ, in terms of spatial and shape
information as well as variability, is difficult to provide a reliable volume. To overcome
this limitation most of the current state-of-the-art image analysis techniques use ana-
tomical atlases as a form of priori information like [1-3]. Atlases provide a map or chart
of the anatomy; they usually have geometric information about curve points or surfaces
or label information about voxels which correspond to anatomical regions or functions.
The atlases are normally constructed from populations of subjects and can be classified
in two main categories: statistical and probabilistic atlases. Both types were developed
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with different purposes and so, the techniques for their construction are quite differ-
ent, too. This paper focuses mainly on the comparison of probabilistic atlases, although
a simple example of statistical atlas is also tried, so the next sections of this introduction
will make reference to both types.

Statistical atlases

Statistical atlases provide a set of binary 3D shapes representing the prototypical shape
(mean) and different modes of variation. This allows the analysis of the shape vari-
ability, as they capture the organ variability within justified bounds. The most common
approach to analyze the shape variability is based on statistical shape models [4]. They
have been used for recognition and segmentation of different human organs and even
more specifically, for the description, analysis and modeling of the human liver. Con-
structing statistical shape models consists of extracting the mean shape and certain
number of modes of variation from a collection of training samples. The modes of varia-
tion that best describe the shape of the liver, are usually accomplished by using Principal
Component Analysis (PCA, [5]) as in [6, 7] or [8] in which pattern recognition tech-
niques are used for classification of liver cirrhosis. Other interesting applications include
the development of occupant finite element dummies used in crash biomechanics (see
[9], in which the authors use an Iterated Closest Point method for alignment followed
by Principal Component Analysis (PCA) or [10] which is a more evolved approach that
starts with automatically placed landmarks).

Statistical atlas based methods have been applied for segmentation of organs such as
the liver or the pancreas, see [11] and [12]. Nevertheless it is difficult to build a mean
shape of an organ given the large inter-subject differences or irregularities of the shapes,
therefore the mean shape of a particular set may be biased. Besides, when the eigen-
values of the PCA matrix, or at least two of them are very similar, it is difficult to have
a good representation. An appropriate way to cope with that is to use spherical har-
monics, as in [6]. Another of the main drawbacks of statistical atlases is that they only
provide possibles modes of variation (which are useful for identification of structures,
quantitative analysis and registration) but are more difficult to be used in segmentation.
A notable exception that successfully uses statistical shape models to segment the liver
in difficult cases is [13]; the key there consists of using not a single model for all the
shape but a multi-level local region based model.

Probabilistic atlases
In the framework of computational anatomy, a probabilistic atlas it is not only the aver-
age boundary of an organ or structure of the body, but the confidence or the complete
spatial distribution of probabilities that a voxel belongs to an organ. Interesting examples
can be found in [2, 14-16] or [17]. For each voxel the probability is computed from the
frequency of occurrence of mapped, mostly manual, segmentations. The main advantage
of using probabilistic atlases regarding statistical atlases is that they can be very useful to
find the most probable edges of a patient’s organ or structure of the body, specially when
the signal-to-noise level of the images is low.

In this paper we are particularly interested in probabilistic atlases for their further use
in segmentation. Some segmentation algorithms can interpret the value given by the
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atlas as an a-priori probability and use Bayesian methods to update it using the values of
the signal at that voxel or at neighbouring voxels as new information like in [18]). Other
algorithms can interpret it as a possibility of belonging to the set of voxels that are the
relevant structure and rely on fuzzy techniques and finally others can use the value as
initial function to apply level-set techniques. In the rest of this section it will explained
how probabilistic atlases have been built together with the improvement applied to get a
more accurate result.

So far one of the main approaches used for the construction of probabilistic atlases is
to register the binary shapes in the sample and look at each voxel to see how many of the
shapes cover it. This, divided by the number of shapes in the sample, is a crude measure
of the probability that voxel has of belonging to the ideal shape. This is used for example
in [2]. We will formalize this as the coverage function. Nevertheless, it is worth noting
that there are other more sophisticated approaches that estimate the likelihood func-
tion for each class (such in the case of multi-organ atlases) using a Gaussian kernel and
that use not only one, but several atlases to compose the final one according to the case
(patient) for which the atlas is to be used (see [19]).

Other possibilities for building probabilistic atlases use the distance function and
transformations of it. Intuitively, the distance function associated with a binary shape
is a function from the 3D space to the real numbers and measures how far each point
is from the shape. There are two variants: unsigned distance function, for which all the
points of the shape get a null value and those outside get the distance to the closest point
of the shape, and signed distance for which the outer points get a value as before and the
inner points get the value of their distance to the closest border with opposite (negative)
sign. There are few approaches that use the distance function to build atlases; relevant
works from Pohl are [20] and [21]. In this work signed distance function is related to
the logarithm of odds ratio (LogOdds). The LogOdds encode the certainty of objects’
boundaries in images. Unlike this work, the main idea presented in this paper regard-
ing atlas construction is the combination of both approaches, the coverage function
and the distance function, using a generalized linear model (GLM). This will be further

explained in “Probabilistic atlas: mathematical formulation” section.

Influence of the registration

It is important to note that for both approaches, statistical and probabilistic, the initial
raw data are examples of correctly segmented binary shapes. The procedure for seg-
mentation is of crucial importance to obtain a good atlas. Another extremely important
point is the alignment (in this context, coregistration) of the binary shapes of the sam-
ple, which is the first step before building the atlas. Hence one of the main goals of this
work is to investigate the influence of the alignment for the construction of atlas. Sev-
eral models for registration can be chosen, from the simplest ones (rigid transformations
composed by a translation plus a rotation) to the more complex and flexible models like
local deformations. The most complex models allow an almost perfect registration but
they contain many parameters that must be optimized. Moreover, the use of very flex-
ible models in this context is not always recommended, since by adjusting perfectly the
shapes to one of them (or to a prototypical shape) the intrinsic variability is lost and the
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atlas does not properly reflect an ideal shape but fits perfectly only in one of the sample
shapes.
The possible models of geometric transformation used for building the atlas will be

studied in more detail in “Different models for registration” section.

Contributions

The main contributions of this paper are twofold. In “Probabilistic atlas: mathematical
formulation” section, we propose a new method for probabilistic atlas construction that
integrates in a coherent way the two most used techniques: those based on the coverage
function and those based on the distance function. Later in “Numerical results” section,
a systematic study is done with a real case (liver atlas construction) to assess the influ-
ence of the method used for atlas construction and of the previous step of coregistra-
tion. Even applied to the particular case of an organ (liver), the evaluation method can be
reproduced for any other organ or shape.

Anatomical atlas building

In general, all kinds of atlases require a previous segmentation of the organ or structure
of interest since inputs are binary shapes. In our case, the liver to which the method
is applied was manually segmented by an expert radiologist using magnetic resonance
images (MRI explorations) from 19 subjects. Details on the sample composition and
acquisition methods and on the digital and real dimensions of the acquired images will
be explained in “Experiment condition and materials” section.

Segmentation can be performed either by automatic or manual methods, or by a com-
bination of both. Examples of the first approach are scarce in the case of the liver, due
to the great difficulty of its segmentation [22]. An organ very hard to segment, too, is
the brain (see [23]). Obviously, an inaccurate segmentation will diminish the quality of
the atlas, specially in the limiting surface of the organ, but it is extremely difficult, if not
impossible, to evaluate the importance of this factor since we have no access to a suf-
ficiently large database of the same organ present in the same cases and segmented with
different methods. This is why we have not attempted the quantification. Nevertheless,
should these examples be available, the evaluation method could be applied, too, with-
out changes.

It is important to note that one of the main purposes of an atlas is to use it for segmen-
tation. This means that the atlas must capture to some extent the mean shape, but also
the variations so it can reasonably adapt to a new case not previously seen and of course
not used for the construction of the atlas. This aspect is treated with special care in this
work.

Once the structures has been segmented and binary 3D shapes of the organ of interest
are available, they must be aligned (in the language of medical image, registered). The
registration process involves several choices. First, the different instances can be aligned
with one of the cases but then, it must be chosen with which one. Otherwise, if the
instances are registered to a common reference frame, such frame must be chosen, too.
The next step is the selection of a model of geometric transformation. The most popular
ones, in order of complexity, are translations (scarcely used for these purposes), rigid
transformations (translation plus rotation), rigid transformations with further global
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scaling, global affine deformations and locally variant deformations [24]. The more com-
plex ones give more accurate and visually pleasant results but, as we will argue later, this
not always leads to a better atlas, since it reduces the variability, and therefore the abil-
ity of an atlas to capture the shape variations and be useful for segmenting a new case.
The parameters of the geometric transformations have to be chosen so as to minimize a
chosen similarity function. The choice of this function may be also a relevant factor but
we considered its analysis out of the scope of this paper; therefore in our experiments
we have considered the same function for all geometric models: the function to be mini-
mized is the mean squared intensity difference. The different models compared in this
paper will be fully described in “Different models for registration” section.

Different models for registration

As stated in “Anatomical atlas building” section, the influence of the geometric model
used for coregistration before the actual construction of the atlas cannot be underesti-
mated. Few studies have been conducted to evaluate this point, but some of them are
very exhaustive like [25] for computed tomography (CT) images of organs in the abdom-
inal cavity. Most of the investigated strategies are local and non linear deformations; up
to 12 of them are compared in [26]. We are also interested in comparing very simple reg-
istration models and, as not every possible model can be tested, the decision has been to
use at least one significant representative of each transformation type, from the simplest
to the more complex ones. They include a rigid transformation (translation plus rota-
tion), a global scaling (translation plus rotation plus scaling about the center), an affine
global model and a local deformable model. As it will be shown in “Numerical results”
section, the quality of fit of these transformations with respect to the individuals used
to estimate them increase with the complexity, as it can be expected, up to the point in
which the coregistered shapes coincide in a virtually indistinguishable way (for the local
deformable model). Nevertheless, what seems an advantage becomes an inconvenience
when the resulting atlas is compared with a new shape (not used for constructing it). The
main objective of this paper is precisely to show how to balance the complexity so that
the result is accurate enough but also keeps sufficient shape variability.

The used geometric transformations (see [27], chapter 9) are as follows:

+ Rigid transformation consists of translation of all the shapes to a common origin
of their reference frames (3 free parameters in R3) plus rotations about that point
(another 3 free angles). This is expressed as

x' cos¢p —sing 0 cosg 0 sing 1 0 0 x X¢
y | = | sing cos¢p O 0O 1 o0 0 cosy —siny y |+ »
z 0 0 1 —sing 0 cos¢ 0 siny cosy z Zc

being (x',y',2’) the coordinates of the transformed point, (x, y, z) those of the origi-
nal point, (%, y¢, zc) the location of the translated origin and (¢, ¢, ¥) the three rota-
tion angles about each axis (other choices of angular representation can be used, too).
The usual way of determining the transformation is to search for the minimum of
a goodness of fit function (optimize) on the six free parameters. For this and all the
other transformations used the evaluation function to be minimized was the sum of
squared differences between the destination and the transformed original image.
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+ Global rescaling consists of the same rigid transformation formerly described plus
a rescaling of the shape (homothety) about the center of common alignment. This
gives a total of 7 parameters. Analytic expression is

/

x cos¢p —sing O cosp 0 sing 1 0 0 x X
y | =Ky | sing cos¢p O 0O 1 0 0 cosy —sinyr y |+ | v
z 0 0 1 —sing 0 cosg 0 siny cosy z Zc

where the meaning of the symbols is as before, with the only addition of Kj, (the
homothety constant). Determination of the value of the parameters this time was
done in batches of two successive optimization steps: rigid transformation (6 param-
eters) and homothety constant.

« Affine global model applies a linear transformation of the original coordinates with
an unrestricted 3 x 3 matrix plus an unrestricted displacement, which adds up to 12
parameters. Equation is

X moo m1o1 o2 X Xc
/
y = | mio m11 mi2 y |+ v
/
z moo M1 M) z Zc

where all m;; and (x, ¥, zc) keep constant values [by global transformation we mean
they do not depend on the (x, ¥, z) point]. The 12 parameters of this transformation
are determined by minimization as before.

+ As a representative example of a local deformation algorithm, a slight variation of
the original demons algorithm from Thirion [28] has been chosen. As stated in the
original paper, “This method considers the object boundaries in one image as semi-
permeable membranes and lets the other image, considered as a deformable grid
model, diffuse through these interfaces, by the action of effectors situated between
the membranes” The result, along with the deformed image, is a vector field (the
deformation field) that describes the displacement of each point.

All these methods need the choice of a reference case to which all others are registered.
It is not clear in real situations which case to adopt as reference. To overcome this diffi-
culty we have systematically registered to each of our available cases and we have chosen
as reference that which leads to a smaller average value of the evaluation function. This
is to get the optimal result for each method.

Probabilistic atlas: mathematical formulation

Once the shapes in the sample have been segmented and coregistered the probabilis-
tic atlas can be finally built. As previously stated, the most widely used way of building
probabilistic atlases consists of aligning the shapes and seeing then how many shapes
cover each voxel. The formalization uses random set theory [29]. A random (3D) ran-
dom set is a probabilistic model whose realizations are random compact subsets of the
3D Euclidean space. From now on, we will work with random compact sets denoted as
®. The realizations of a random compact set are binary shapes: sets of points, in this
case of R3 (but in general, R?) with the only restriction of being compact (but not neces-
sarily convex). For a fixed shape S, and for any point x € R?, 15(x) will stand for the set
indicator function, i.e.: 1s(x) = 1if x € S and 0 otherwise. For a random compact set ®
the value 1¢ (x) is a random variable taking values in {0, 1}. The probability of a point x
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belongs to the random set ® will be denoted by p(x) i.e. p(x) = E(1o(x)) = P(x € ®). If
we have a random sample of @ i.e. independent and identically distributed (as ®) random

compact sets @, . .., O, the (natural) unbiased estimator of p(x) would be
n
P =D 1e,@). (1)
i=1

which counts the number of shapes in the sample to which point x belongs. Given the
realizations, ¢1, . . ., ¢y, the corresponding estimate (denoted as the estimator) would be
p1(x) =Y 11 1g,(x). This definition (and the mentioned estimation method) for p(x) is
interpreted as the probabilistic atlas in most references [2, 14, 16, 30] and from now on
we will refer to it as normalized coverage function (NCF).

Certainly, p(x) captures in a very intuitive way the classical notion of probability. Also,
its threshold below 0.5 is sometimes considered as mean shape, and indeed it is a par-
ticular case of the so-called V'orobev mean [31]. But this definition for p(x) has some
drawbacks mainly related to the need to estimate the probability at each point in isola-
tion, i.e.: considering the random variable giving the coverage at that point as independ-
ent of those of all other points. This makes the thresholds below a given value of p(x)
(which are binary shapes) rougher than it would be expected of a summary shape.

A feasible alternative to solve this problem consists of using the distance function;
concretely, on finding a sensible relationship between the probability and the value of
the distance function at a given point or at some related points. The formal definitions
are as follows: given a binary shape, S, ds(x) will be the signed distance function to S:

minyeys d(x,y) ifx ¢S
ds(x) =< 0 ifx € 0S (2)
—minyeys d(x,y) ifx € int(S),

being d(x, y) the Euclidean distance between points x and y, 3S the boundary of S and
int(S) the interior of the set S. In a similar way, d¢ can be defined not for a fixed set but for
a random set ®. In this case, d¢ (x) is a random variable. Since 1¢(x) =0 <— d(x) > 0
and lo(x) =1 <= d(x) <0, it is clear that, given d(x), 1¢ (x) is known. Let the mean
distance function dj (x) be defined as

(%) = E(d(x, ). 3)
In practice, the mean distance function is estimated for a collection of samples ¢1, . . ., ¢,
as

. "~ dg, (x)

OED PR )

i=1

Like dg(x), d3 (%) is a signed quantity and similarly to the mean coverage, its thresh-
old below some value gives a binary shape that can also be considered as a mean shape,
being this time 0 a sensible threshold (a definition derived form the so-called Badde-
ley—Molchanov mean, [32]). The mean distance function is smooth so its thresholds are
smoother than those of the mean coverage function. This is one of the reasons why we
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will attempt to estimate the function p(x) using information about the mean distance
function. From now on, 4§ (x) will be denoted simply as d* (x).

Assuming that p(x) = f(d*(x)) (i.e.: the probability is a function of the mean distance
function) the goal is to find a sensible link between both. But p(x) is in [0, 1] and d*(x)
can take positive and negative values. We will resort to the usual approach in generalized
linear models: link input and output through a cumulative distribution function, a non-
decreasing function F : R — [0, 1]. From the value d* (x) its transformations using a set
of basis functions denoted as v(x) = (1, v1(d*(%)), ..., vp—1(d*(x)))" will be considered
(¢’ denotes the transpose of £). The following model will be assumed:

p(x) = F(Bv(x))

with B = (Bo,B1,...,Bp—1). The two usual choices for the link function F are the
cumulative distribution functions corresponding either to the logistic distribution or
the standard (Gaussian) distribution. In particular, we will use the logistic distribution
so p(x) = %. Let us consider a given point x¢. If p(x) is a smooth function then a
constant value for p(x) in a ball centered at x, B(xo, #) with & > 0, can be assumed. If
(%j, 1, (xj)) with j = 1,...,J denote the points located within B(xo, #), being J the num-
ber of such points, the local pseudolikelihood function for the i-th realization ¢; is given

by

J
[ W& 20p@)' S @ — peg)' =14, (5)
j=1

where w(x,x9) = K(|| x — x¢ || /h) being K a kernel function and /% a positive parameter,
the bandwidth. But we have a random sample of ® so the whole logarithm of likelihood
(loglikelihood) function can be written as:

n J
1B =logL(p) =Y (10g(w(xj,x0))
i=1 j=1 ©

+ 1o, (%)) log(p(x))) + (1 — 1o, (x;)) log(1 —p(xj))>.

Let ﬁ(xo) be the vector of parameters that maximize this global likelihood, i.e.:
B(xo) = argmaxg l(B). B will be found using appropriate optimization methods. The
estimator proposed for the probability function p(x) is finally:

eﬁ (x0)v(x0)

Plxo) = (N

1+ eB@ovxo)

whose value at each location xg constitutes our atlas. From now on we will refer to it as
generalized linear model (GLM).

Again, the thresholds of this new p(x) are also summary shapes (being the threshold
at 0.5 analogous to the mean shape) but they are smoother and (as it will be shown in
“Experimental study” section) more adjusted to new cases than the former definition
based only on the coverage. The reason for the smoothness is twofold: on one hand, the
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distance function is by itself smoother than the coverage function and moreover, the lin-
ear model takes into account global information, not only the value at point x, to esti-
mate p(x).

Finally, even centered on probabilistic atlases, the experiments of this paper make a
comparison not only between the previous normalized coverage-based function (NCF)
approach and our proposed generalized linear model (GLM) but also include a sim-
ple statistical atlas because this kind of atlas is commonly used so comparisons add a
wider perspective. The shape taken as basis for comparison is taken from a set of land-
marks automatically extracted from the samples. This brings some adjustments to have
a fair comparison: first, being the result a binary shape and not a probability map, not
all measures of goodness are appropriate. As stated in “Measures of goodness” section,
the Dice dissimilarity, Jaccard distance and Hausdorff distance can be applied but not
the mean probability. Another difficulty is that in our case input sample is composed by
binary shapes, not by landmarks with whose spatial coordinates a model can be built.
This has been solved by generating a network of landmarks fairly distributed on the sur-
face of each shape and recreating a binary shape from the result (a set of points) by filling
them using a viscous reconstruction. See details on its construction in “Implementation”
section.

Implementation
All the methods for atlas construction we analyze are formulated for the continuous
space (R?) but they have to be implemented using segmented discrete binary shapes.

In practical terms we really use the shape representation in digital form, i.e., as sets of
pixels/voxels in the sampled space Z2 with a binary value assigned, 1 meaning that the
point belongs to the shape and 0 that it doesn’t. As stated before, the available shapes
have to be obtained either by segmenting real images to extract the pixels/voxels that
fulfill a property, normally related to local visual features of the image like gray level,
color, texture or similar or, as in our case, by manual segmentation by a radiologist.
Coregistration with all the geometric transformation was implemented as C++ pro-
grams using the ITK toolbox [33]. The coverage functions and signed distance functions
were obtained from the binary coregistered images, also with C++ programs using the
ITK, as long as the final estimation of the probabilistic atlas. The optimization step in
the GLM method required a call to a function included in the locfit package [34] of the
statistical software R done from inside the C++ program using the Repp and Riuside
packages [35].

The linear model has been set up to use the simplest possible predictor (i.e.:
vix) = (1, Ziﬁ,(x))’) and the kernel function K and bandwidth /% used in the weight
w(xj,x0) of equation 5 have been left to the default values provided by the locfit pack-
age. The kernel function used is the tricube function given by K(x) = %(1 — |x|3)3 for
—1 < x < 1. The bandwidth selection has been used the default method given en [34].
See for details chapter 11 in [36]. A selected set of experiments were done using more
complex predictors like a second-order model (v(x) = (1, (,Aiﬁ,(x), (Elg)z(x))/) with no
significant differences in the final results. Illustrations of 3D results showing the atlas
obtained by the NCF and GLM methods are shown in “Graphical illustration” section.
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Axial view ' :
Coronal view
Fig. 1 Example of original images, as captured by the MRI scanner

The statistical atlas was also built with C++ programs and functions from the ITK
but requires further explanation. Since the method is based on landmark coordinates,
a method to extract automatic landmarks from the binary shapes was needed. Further-
more, the number of landmarks in each case must be the same and they should be con-
sistent, i.e.: orderly generated so that it can be assumed that the i-th mark of all cases
corresponds to an anatomically equivalent point. Automatically generated landmarks
(also known as semi-landmarks) are quite common [37]. Our idea to generate them
consists of slicing the liver along each dimension (x,y,z) with appropriately separated
slices. The separation is determined so that the number of slices along each dimension
is the same for all cases (i.e.: it is normalized to take into account length/width/height
of each shape). Then, for each slice the longest closed curve is found. Its length is nor-
malized and points distributed along it are taken as the landmarks. The distribution
is taken regularly along the curve length and the number of points, even different for
each slice (it is made to depend on the average length of the intersection curves) is the
same for the corresponding slice of all shapes. Principal component analysis is applied to
the landmark coordinates and the result is also a set of landmarks with its correspond-
ing variation modes. Since we need a binary shape to make significant comparisons,
the inner space was filled using a viscous reconstruction procedure similar to the one
described for 2D images in [38]. Viscous reconstruction is a morphological process that
starts from a seed and makes steps of successive openings, dilations, and intersection
with the marker image where in this case the marker image is precisely the set of land-
marks. Viscous reconstruction tends to underestimate the shape (it is a smaller shape,
contained inside the real one). To overcome this problem sometimes viscous reconstruc-
tion is applied twice: to the inner part of the shape, starting with an internal point as
the seed and to the outer part, starting with an outer seed. The final result is the volume
enclosed by the geodesic skeleton (in 3D, a surface) of the difference set between the
outer and inner reconstructions. In our case this was approximately calculated as the
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Baddeley—Molchanov mean shape between the inner and outer reconstruction. These
steps are shown in Fig. 1: automatically extracted landmarks, the viscous reconstruction
starting with an inner seed, the inverted viscous reconstruction of the complement of
the shape starting with an outer seed and the geometric mean of the inner and the outer
reconstructions, which is taken as the result.

Measures of goodness
The problem of evaluating the quality of an atlas, in our opinion, has not been widely
addressed in the literature. The atlas is sometimes used to evaluate other things, com-
monly the quality of a segmentation like in [39, 40] or the accuracy of models of light
propagation within the head [41] but the atlas itself is rarely, but occasionally [42]
assessed. First, its final quality is related to the initial segmentation of the shapes used
to build it and, even in manual segmentation procedures, with the protocols of organ
or lesion delineation [43]. It is not clear which quality indexes should be taken and nor-
mally those used to evaluate the quality of the geometric coregistration are used for
atlases, too. Some of these measures are widely accepted for evaluating binary shapes
like Dice index, Jaccard index and Hausdorff distance. Among those used for compar-
ing real-valued images, the mean of squared differences or the mutual information are
common choices. When the atlas is a binary shape (or a set of them) , the Jaccard, Dice
or Hausdorff are adequate to compare with a ground truth shape, and also other meas-
ures like compactness, specificity and generality as mentioned in [44]). But in the case
of probabilistic atlases the value of the probability has to do mainly with the location
of the point and therefore has no direct relationship with the signal value of a real case.
The obvious example is a more or less homogeneous organ like a liver whose signal value
in a MRI image is similar at all of its inner points and changes abruptly only near its
outer surface but the probability of belonging is higher for deep points and decreases
more smoothly near the border. This means that comparing probability with signal value
may not be a good approach, even if we adjust or normalize it, and that other measures
should be proposed to evaluate probabilistic atlases.

In this work we aim to exhaust all possibilities so when binary shape differences are
evaluated, the most popular indexes will be used. In all cases it is assumed that both
shapes are referred to a common frame and V(S) will stand for the volume of shape S.

« Dice or Segrensen-Dice coefficient:

. 2V (AN B)
Dice(A,B) = ———. (8)
V(A) + V(B)
+ Jaccard index or Jaccard similarity coefficient:
V(A N B)
AB)y= ———.
Jac(A, B) VAUB) 9)

» Hausdorff distance:

H;(A, B) = max  sup inf d(x, y), sup inf d(x, y) (10)
xcAYEB yeB xeA
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Dice and Jaccard indexes are real numbers in the interval [0, 1]. Hausdorff distance is a
real number greater than or equal to 0. Dice coefficient is not a distance between shapes
(the triangular inequality does not hold) nor is it Jaccard, at least directly, but the quan-
tity d(A,B) = 1 — Jac(A, B) is.

Most of the literature in anatomical shape analysis uses the Dice coefficient, which
is not always the best choice. Being based exclusively on volume, it does not take into
account differences of shape corresponding to few, but very significant voxels, specially
those belonging to thin, long structures (for instance, veins or a rib that incorrectly
appears as part of a vertebral spine segmentation).

Evaluation of the probabilistic atlas is more difficult. The main interest in having such
an atlas is to use it as an aid for segmentation [45]. In order to test its ability to fit well
to a new shape not previously seen, evaluation must be done with respect to shapes not
used to build the atlas. Moreover, it cannot be matched against original, unsegmented
cases since, as previously argued, signal values are not indicative of probability and there-
fore it is not yet possible to see to what extent the atlas matches the organ. The approach
we have taken is to use a leave-one-out procedure that builds the atlas using the several
proposed approaches with all but one patient and then to compare the result with the
correctly segmented organ (ground truth) of that patient; this is a common approach
for this purpose, like in [46] or [17]. The comparison between the segmented (binary)
ground truth and the probabilistic atlas (real-valued) is done in two ways: first, by defin-
ing as a figure of merit the average integral of the probability and second, by threshold-
ing the atlas and using the previously mentioned measures between binary shapes.

We are working with random compact sets contained within a set W. Mean probabil-
ity (Intp) of a probabilistic atlas P(x) inside a shape S is defined as

1 1

The integral % Jgp()dx is a sensibility measure. We measure the mean value of
the probability over the region that should be considered within the set S. The value
1-— W | WAS p(x)dx is a specificity measure. The difference considered in equa-
tion 11 would be greater for a higher sensibility and specificity. This measure is in[—1, 1]
and an atlas is more similar to a shape if Int, (P, S) is close to 1. In any case, lower values
correspond with a worse performance. It is not a distance since it compares heterogene-
ous entities (binary shapes and probability maps) but intuitively. If all shapes used to
build the atlas were exactly the same, the atlas would be a degenerate distribution taking
0 and 1 as its only values and identical to any of the shapes which would yield 1 as the
value for Int,. A case close to this happens when the geometric transformation used to
build the atlas is too flexible and eliminates the original variability.

With respect to the second possibility, thresholding the atlas to use the classical meas-
ures between binary shapes, an important point is the choice of the threshold. In order
to provide fair opportunities to all methods, a range of thresholds (0, 0.1, ... ., 0.9) for P(x)
has been tested and that which gives the best average result for each method has been
chosen.

It is important to note that, when using powerful deformable methods, most authors
use the same model of deformation, just inverting the transformation, to adapt the atlas
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to the case at hand. Results are obviously very good but this is only possible when the
concrete case has already being correctly or almost correctly segmented. We emphasize
that our results are useful in the opposite case: that in which the atlas is to be used to aid

in the segmentation of a new case.

Experiment condition and materials

The anatomical shapes used in this paper are binary shapes of manually segmented liv-
ers. The original images are dynamic perfusion magnetic resonance images (MRI) of
the abdominal cavity. There were a total of 39 explorations from 21 different patients,
13 men and 8 women, with ages between 15 and 73. Anthropometric data is given in
Table 1.

All volumes were taken under the same conditions. The scanner was from Philips
Medical Systems (model Ingenia 3.0T) and worked at 3T in Enhanced T1 High Resolu-
tion Isotropic Volume Excitation mode. Patients were in supine, head first, transverse
orientation and they were required to not breathe as much as possible during the acqui-
sition. Image resolution was of 256 x 256 pixels per slice and 133 slices per volume being
slices orthogonal to the machine displacement axis which was the axial (transverse)
axis of the patient’s body. The real dimensions of each voxel were 1.46 x 1.46 x 1.5 mm,
being 1.5 the separation between consecutive slices. For those patients with two or three
explorations (17 of them), they correspond to different time instants of the contrast dif-
fusion. A typical example with coronal, sagittal and axial sections of one case is shown in
Fig. 2.

Table 1 Anthropometric data of the patients

Sex Age Weight (kg) Height (m)
Female 42 56.3 1.58
Male 51 782 1.76
Male 59 752 172
Male 46 89.6 1.84
Female 68 49.5 1.52
Female 73 523 1.56
Male 32 74.5 1.75
Male 15 579 1.68
Female 28 65.1 1.74
Male 81 788 1.76
Male 79 81.2 1.72
Male 63 728 1.68
Male 58 70.7 1.76
Female 65 512 1.56
Male 51 72 1.70
Male 47 81 178
Female 48 68.5 1.72
Female 39 64.5 1.68
Male 67 90.3 1.88
Male 65 86.2 1.78

Female 42 70.3 1.66
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Landmarks Inner viscous reconstruction

Outer viscous reconstruction Geometric mean
Fig. 2 Statistical atlas reconstruction steps

The segmentation of the liver was done manually by an expert radiologist using soft-
ware from the group and a pen-tablet type computer to delineate the contour in each
slice and use that contour as the initial mark for the next slice, which can be deformed at
any point using the pen. Even with such aids, the process is slow and may take up to two
hours per exploration. As an illustration, the mean shape (using only the signed mean
distance function thresholded at 0) of each patient, or the only shape for the cases of

only one shape per patient, are shown in Fig. 3.

Experimental study

Graphical illustration

From now on, abbreviations for methods will be NCF (normalized coverage function),
GLM (generalized linear model) and STA (statistical atlas) followed by R (rigid trans-
formation), TRS (translation and rotation plus global scaling), A (global affine transfor-
mation) or D (local deformable transformation). The following figures show the atlas
obtained using all cases with the three proposed methods and with the four coregistra-
tion methods. For the NCF and GLM methods, whose result is a probability map, what
the Figs. 4 and 5 show is the threshold at level 0.5 (a binary shape). Figure 6 shows the
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Fig. 3 Mean shapes per patient of the segmented cases used in the study

results of the statistical atlas method. Also, for the NCF and GLM, slice cuts with the
probability scale are depicted in Figs. 7 and 8. All figures of the same type are shown
with the same scale and seen from the same point of view.

Regarding the visual appearance of the binary shapes (Figs. 4, 5, 6), a comparison
among the three atlas methods show that a rougher outer surface appears with the NCF;
such surface is quite smooth for the statistical atlas and very smooth for the GLM. This
is clearly a consequence of considering the global influence of all voxels through the lin-
ear model. Smoothness in this context (anatomical modelling) is usually considered a
desirable property and indeed smoothness constraints for the limit surfaces are some-
times requested in segmentation algorithms. On the other hand, excessive uniformity
may provoke the loss of fine details. In the case of the GLM this can be adjusted through
the model parameters, which is not possible for the other methods. The size (volume)
of the shapes is also a remarkable feature. The real size is only correctly reflected by the
statistical approach since this method works with real coordinates whereas for NCF and
GLM what it is shown is an arbitrary cut at some probability value (here, 0.5); but if size
is a relevant consideration, other cuts of GLM or NCF can be used so that the enclosed
volume approximates the mean volume of the shapes. Finally, the visual shape (to what
extent the atlas resembles a real liver) is clearly dependant on the registration method:
more complex geometric transformation give in general a better look, with the remark-
able exception of the GLM with local deformation, which leaves out a great part of the
liver showing what resembles artificial resections. But contrarily to intuition, and as it
will be shown in “Numerical results” section, a less appealing shape like that given by
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Affine trans. Deformable trans.
Fig. 4 Binary shapes obtained thresholding the NCF atlas at 0.5 using the four coregistration methods

the GLM with rigid plus global scaling transformation is nevertheless more effective in
terms of appropriately reflecting the probability of belonging to the liver.

Figures 7 and 8 show part (left half) of the binary shapes already shown together with a
plane cut depicting the probability given by the probabilistic atlases as color scale. Look-
ing at the NCF method, the limits of the liver are better located as the complexity of the
registration methods increases, up to to the point (local deformation) in which that atlas
is almost completely made of only close to 0 and close to 1 probability values, resembling
a binary shape. As stated before, this is not beneficial for keeping the variability of the
sample of shapes. Looking now at the GLM method, the former comments are applica-
ble, too, and furthermore the local deformation is particularly harmful for this method:
a substantial amount of the inner part of the liver disappears (is considered background)
because not enough shapes of the sample, after being registered to one of them, occupy
that area. This might be corrected by choosing another shape as the registration basis
but there is no objective criterion in advance. The shape that gave less than the sum of
squared differences in registration with respect to all others (which was our choice) it is
not always the best. In any case, not too flexible coregistration methods should be used
for building an atlas with GLM since the linear model needs an amount of variability in
the inputs to give account for new cases.
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Affine trans. Deformable trans.
Fig. 5 Binary shapes obtained thresholding the GLM atlas at 0.5 using the four coregistration methods

Numerical results

The proposed experiment is a leave-one-out procedure which allows a sufficient sample
size to get statistically sound conclusions and also makes sure the tests are done using an
atlas with respect to a new case. First, all cases were coregistered using each of the geo-
metrical transformations described in “Different models for registration” section.

Then, for each of the 39 explorations, atlases were built with all the explorations from
the other patients using the three analyzed methods: STA, CF and GLM. Finally, each
atlas is compared with the case left out using the measures stated in “Measures of good-
ness” section. Nevertheless, please notice that the STA atlas is only binary so the IProb
measure defined in Eq. 11 cannot be calculated. Also, the Dice (Eq. 8), Jaccard (Eq. 9)
and Hausdorff (Eq. 10) need binary shapes so their given values for probabilistic atlas
methods (CF and GLM) are the optimal ones, i.e., the thresholded versions that gave the
best result for each case. The values that will be shown in all tables of results are means
of each measure applied to each of the leave-one-out atlas with respect to all other cases.
The mean values together with their standard deviations are shown in Table 2.

Once the mean values have been found, and considering separately each similarity
measure, we can analyze differences between methods. Each possibility is compared
against all the others by means of a t test with the null hypothesis of equality of means.
The combination of the three atlas methods with the four registration methods gives
a total of 12 possibilities; therefore, there are 66 possible paired tests between differ-
ent possibilities. The threshold of adjusted p value for considering two methods as sig-
nificantly different is, as usual, taken as 0.05. The results given in Tables 3, 4, 5 and 6
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Rigid trans. Rigid+scaled trans.

Affine trans. Deformable trans.
Fig. 6 Statistical atlas using the four coregistration methods

highlight the comparisons whose p value is lower than this threshold. Each square of this
table has either two or three lines which are the mean value for the considered meas-
ure (method in the upper-row in the first line, method in the left-column in the second
line) and also the p value for the t test of difference of means in the third line, when it
is significant, and left blank when it is not. For each comparison, the winner method is
highlighted with the gray level of either, the upper row or the left column, as appropriate.

Discussion

Regarding the table of mean values (Table 2), it is important to highlight that the Dice
and Jaccard measures are quite similar for all the methods. This is also apparent by the
fact that only about half of the paired tests provided in Tables 3 and 4 for Dice and Jac-
card show significant differences between methods. Moreover, the significant differ-
ences do not follow a pattern related with the atlas method or the registration model.
This suggests that the power of these measures to discriminate between different results
is not optimal. We think this can be related to the fact of using only volume differences
and not real shape differences to compare shapes. Hausdorff distance has also not too
many significant differences. However, looking at the Hausdorff distance (Table 5) it
can be observed that most of them are concentrated in tests comparing different atlas
methods. This probably has to do with the ability of Hausdorff distance to capture shape
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Fig. 7 An axial cut of the probabilistic CF atlas. Red means higher value of probability, blue lower values

differences even between shapes of similar volume or highly overlapped. The highest
proportion of significant differences (all tests but one) correspond to the IProb measure
(see Table 6). This assertion is reinforced, as well, by the observed variation of the mean
values of each measure with respect to the global mean of it: Dice coefficient (second
column of Table 2) is between 0.670 and 0.749, a variability of 11% with respect to the
mean. The same calculations for Jaccard coefficient gives 17, 18% for Hausdorff distance
and 45% for the IProb. This leads us to concentrate for further analysis on the Hausdorff
and IProb measures.

Focusing on Hausdorff distance between atlas methods, and concentrating on the
coregistration, we can see that NCF does not show significant variations, whatever the
registration method used (no NCFx to NCFy are significant). Similar results can be
observed with STA with the exceptions of rigid and scaled rigid registrations being bet-
ter than affine and local deformation. On the contrary, GLM is significantly different in
four out of six comparisons, being again rigid and scaled rigid better than affine and
local deformable registrations.

Comparing now different atlas methods, again in terms of Hausdorff distance, NCF
outperforms STA for all registration models and also GLM for the affine and deformable
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Fig. 8 An axial cut of the probabilistic GLM atlas. Red means higher value of probability, blue lower values

Table 2 Mean values and standard deviations of each measure for each of the used regis-

tration and atlas building methods

Hausdorff Dice Jaccard IProb
NCFR 3833+ 1549 0.74 £0.07 0.60 £ 0.09 0.63 £ 0.07
NCFTRS 3849 £ 1592 0.74 £ 0.06 0.60 4+ 0.08 0.62 + 0.06
NCFA 3945+ 16.62 0.73 £0.08 059+0.10 067 £0.10
NCFD 39.24 £+ 16.38 0.71£0.09 056 +0.12 0.68+£0.10
GLMR 3837+ 13.71 0.73 £0.06 0.58 £ 0.08 0.69 £ 0.05
GLMTRS 38.07 +13.82 0.70 £ 0.07 0.55 £ 0.08 0.79 £ 0.03
GLMA 4034 £ 1597 0.73 £ 0.08 05940.10 057+ 007
GLMD 4292 +17.08 0.67 £ 0.07 0.50 £ 0.09 0.31+£0.03
STAR 4387 +17.64 0.73 £0.06 0.58 + 0.08 -
STATRS 44.09 +17.68 0.73 £0.06 0.58 £ 0.07 -
STAA 46.23 + 1838 0.72 £0.08 0.57 £0.09 -
STAD 4362 +16.86 0.71 £0.09 056 £0.11 -
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Table 3 Mean values of Dice coefficient and p value for the paired test of equality of means

NCFR | NCFTRS NCFA | NCFD GLMR | GLMTRS | GLMA | GLMD STAR | STATRS | STAA
0.750
NCFTRS 0.750

0.750 0.750
NCFA 0.740 0.740

0.750 0.750 0.740
NCFD 0.710 0.710 0.710
0.002 0.004

0.750 0.750 0.740 0.710
GLMR 0.730 0.730 0.730 0.730

0.750 0.750 0.740 0.710 0.730
GLMTRS 0.710 0.710 0.710 0.710 0.710

0.000 0.000 0.029 0.005
0.750 0.750 0.740 0.710 0.730 0.710
GLMA 0.730 0.730 0.730 0.730 0.730 0.730
0.046 0.007
0.750 0.750 0.740 0.710 0.730 0.710 0.730
GLMD 0.670 0.670 0.670 0.670 0.670 0.670 0.670
0.000 0.000 0.000 0.000 0.000 0.005 0.000
0.750 0.750 0.740 0.710 0.730 0.710 0.730 0.670
STAR 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730
0.007 0.010 0.019 0.000
0.750 0.750 0.740 0.710 0.730 0.710 0.730 0.670 0.730
STATRS 0.740 0.740 0.740 0.740 0.740 0.740 0.740 0.740 0.740
0.005 0.005 0.007 0.000
0.750 0.750 0.740 0.710 0.730 0.710 0.730 0.670 0.730 0.740
STAA 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720
0.008 0.018 0.046 0.000
0.750 0.750 0.740 0.710 0.730 0.710 0.730 0.670 0.730 0.740 0.720
STAD 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710
0.000 0.000 0.000 0.049

Table 4 Mean values of Jaccard coefficient and p value for the paired test of equality of means

NCFR | NCFTRS | NCFA | NCFD GLMR | GLMTRS | GLMA | GLMD STAR | STATRS | STAA
0.604
NCFTRS 0.602

0.604 0.602
NCFA 0.590 0.590

0.604 0.602 0.590
NCFD 0.568 0.568 0.568
0.013 0.022
0.604 0.602 0.590 0.568
GLMR 0.588 0.588 0.588 0.588
0.036
0.604 0.602 0.590 0.568 0.588
GLMTRS 0.552 0.552 0.552 0.552 0.552

0.000 0.000 0.022 0.006
0.604 0.602 0.590 0.568 0.588 0.552
GLMA 0.590 0.590 0.590 0.590 0.590 0.590
0.005
0.604 0.602 0.590 0.568 0.588 0.552 0.590
GLMD 0.509 0.509 0.509 0.509 0.509 0.509 0.509
0.000 0.000 0.000 0.000 0.000 0.009 0.000
0.604 0.602 0.590 0.568 0.588 0.552 0.590 0.509
STAR 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586
0.006 0.010 0.023 0.000
0.604 0.602 0.590 0.568 0.588 0.552 0.590 0.509 0.586
STATRS 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.588
0.004 0.004 0.010 0.000
0.604 0.602 0.590 0.568 0.588 0.552 0.590 0.509 0.586 0.588
STAA 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576
0.013 0.027 0.036 0.000
0.604 0.602 0.590 0.568 0.588 0.552 0.590 0.509 0.586 0.588 0.576
STAD 0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566
0.003 0.005 0.000

models (but it is not significantly different for the others). Finally, GLM outperforms
STA for all but deformable registration models and it is not significant in the deformable
case.

The conclusions drawn from the Hausdorff distance are that NCF and GLM are quite
similar, and better than STA and that the registration model should not be too complex.
Although introduction of local deformations is visually appealing and highly precise for
a particular case, it increases shape differences between atlas and new, unknown shapes.

Page 21 of 25



Dura et al. BioMed Eng OnLine (2017) 16:15

Table 5 Mean values of Hausdorff distance and p value for the paired test of equality
of means
NCFR NCFTRS NCFA NCFD GLMR GLMTRS GLMA GLMD STAR STATRS STAA

38.332
NCFTRS 38.495

38.332 38.495
NCFA 39.458 39.458

38.332 38.495 39.458
NCFD 39.242 39.242 39.242

38.332 38.495 39.458 | 39.242
GLMR 38.379 38.379 38.379 | 38.379

38.332 38.495 39.458 | 39.242 38.379
GLMTRS 38.074 38.074 38.074 | 38.074 38.074

38.332 38.495 39.458 | 39.242 38.379 38.074

GLMA 40.349 40.349 40.349 | 40.349 40.349 40.349
0.006 0.009 0.010 0.031 0.004
38.332 38.495 39.458 | 39.242 38.379 38.074 40.349
GLMD 42.926 42.926 42,926 | 42.926 42.926 42.926 42.926
0.002 0.002 0.017 0.000 0.008 0.004
38.332 38.495 39.458 | 39.242 38.379 38.074 40.349 | 42.926
STAR 43.879 43.879 43.879 | 43.879 43.879 43.879 43.879 | 43.879
0.000 0.000 0.001 0.019 0.002 0.001 0.006

38.332 38.495 39.458 | 39.242 38.379 38.074 40.349 | 42.926 43.879
STATRS 44.094 44.094 44.094 | 44.094 44.094 44.094 44.094 | 44.094 44.094

0.000 0.000 0.000 0.016 0.001 0.001 0.005
38.332 38.495 39.458 | 39.242 38.379 38.074 40.349 | 42.926 43.879 44.094
STAA 46.238 46.238 46.238 | 46.238 46.238 46.238 46.238 | 46.238 46.238 46.238
0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.001
38.332 38.495 39.458 | 39.242 38.379 38.074 40.349 | 42.926 43.879 44.094 46.238
STAD 43.626 43.626 43.626 | 43.626 43.626 43.626 43.626 | 43.626 43.626 43.626 43.626
0.000 0.000 0.002 0.000 0.001 0.000 0.016

Table 6 Mean values of IProb measure and p value for the paired test of equality of means
NCFR | NCFTRS | NCFA | NCFD || GLMR | GLMTRS | GLMA

0.633
NCFTRS 0.620
0.000

0.633 0.630

NCFA 0.675 0.675

0.000 0.000
0.633 0.620 0.675

NCFD 0.686 0.686 0.686

0.000 0.000

0.633 0.620 0.675 0.686
GLMR 0.698 0.698 0.698 0.698

0.000 0.000 0.000 0.011
0.633 0.620 0.675 0.686 0.698
GLMTRS 0.790 0.790 0.790 0.790 0.790
0.000 0.000 0.000 0.000 0.000

0.633 0.620 0.675 0.686 0.688 0.790
GLMA 0.568 0.568 0.568 0.568 0.568 0.568
0.000 0.000 0.000 0.000 0.000 0.000
0.633 0.620 0.675 0.686 0.688 0.790 0.568
GLMD 0.308 0.308 0.308 0.308 0.308 0.308 0.308
0.000 0.000 0.000 0.000 0.000 0.000 0.000

Looking now at the IProb (Table 6), as stated before, all comparisons but one show
significant differences. Separately for each atlas method, NCF is better when using aft-
ine or deformable models. We think this was not appreciated with Hausdorff distance
because HD looks specially at the shape boundaries whereas IProb takes into account
the whole volume values. GLM with itself is also different according to the registration
model. Again, rigid and rigid plus global scaling are better than affine and deformable,
and particularly rigid plus global scaling, which is also better than rigid only, gets a quite
good performance (i.e.: the average probability of this atlas into a new shape is a high
value, 0.79). Comparing now both atlas methods, GLM is better than NCF for the sim-
ple registration methods (rigid and rigid plus global scaling) but worse for the complex
ones (affine and local deformable). The smoothness introduced by the linear model with
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respect to the raw data of the NCF has advantages as long as the registration method
does not lessen the sample variability.

Finally, we must point out the limitations of this study. First, not every possible reg-
istration model has been used but only four of them because they were considered as
representative of widely used choices. It is also true that the local deformation algorithm
can in principle account for the most general deformation, there are several methods to
estimate it and it is possible that more fine-tuned estimation methods could improve
its performance. Also, the resulting atlas is only one and is applied to all shapes equally;
other methods are based on the use of multiple atlases and the choice of one at the time
of application. It might be possible, too, to apply different atlases to different regions
of the image or at different scales. Despite all these limitations, we think this study still
provides some valuable guidelines that can orient the choice of registration models and
the methods to build an atlas, either if only one atlas is used or if a collection of them is
to be generated.

Conclusions and further work

The experimental study in this work was aimed to highlight the differences between atlas
construction methods and its associated coregistration methods when used for anatomi-
cal purposes. The results show that, contrary to the first intuition, the use of a too com-
plex registration method is not always the best choice. Keeping the variability is specially
important, particularly for probabilistic atlases, if one wants the atlas be useful for seg-
mentation of new cases. Among the tested methods we have proposed a new one for
probabilistic atlas construction based on a sensible combination of probability of cov-
erage and distance function by using a generalized linear model. Also, a new measure
of performance of probabilistic atlases (IProb) that takes into account all the points of
the volume has been proposed, showing its advantages in terms of discriminatory power
with respect to more simple, frequently used measures based only on overlapping vox-
els. The combination of the proposed GLM atlas with a relatively simple registration
model exhibits a good performance and seems a promising methodology. It remains to
be proved to what extent these conclusions are valid for other organs or shapes which is
left as future work; preliminary results are being carried out using vertebrae and spinal
cord in [45].
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