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Background
Liver segmentation plays a key role in various clinical applications, such as liver diag-
nosis, tumor segmentation, and liver transplantation [1, 2]. This method faces a chal-
lenging problem because of the large variability, irregular shape, low contrast, and tissue 
adhesion of the live as well as intensified overlapping between organs. At present, liver 
segmentation can be divided into two categories: image- and statistical model-based 
methods.

Image-based segmentation uses image brightness, gradient, or texture [3, 4]. Peng 
et al. [5] proposed a convex variational model for liver semi-automatic segmentation in 
which gradient, local context-based edge detector, and regional appearance constraint 
are integrated to enhance the liver detection. Afifi et al. [6] proposed a liver segmenta-
tion approach in which the related information obtained between neighboring slices is 
integrated with the graph cuts algorithm to segment the liver in each CT slice. Chen 
et al. [7] introduced a strategic combination of the active appearance model, live wire, 
and graph cuts for liver segmentation. Peng et  al. [8] proposed a multiregion-appear-
ance-based approach with graph cuts to delineate liver edge. A geodesic distance-
based appearance selection is introduced, and the energy functions incorporating both 
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Methods:  This study proposes an automatic liver segmentation approach based on 
appearance and context information. The relationship between neighboring pixels in 
blocks is utilized to estimate appearance information, which is used for training the first 
classifier and obtaining the probability distribution map. The map is used for extracting 
context information, along with appearance features, to train the next classifier. The 
prior probability distribution map is achieved after iterations and refined through an 
improved random walk for liver segmentation without user interaction.

Results:  The proposed approach is evaluated using CT images with eight contem-
porary approaches, and it achieves the highest VOE, RVD, ASD, RMSD and MSD. It also 
achieves a high average score of 76 using the MICCAI-2007 Grand Challenge scoring 
system.

Conclusions:  Experimental results show that the proposed method is superior to 
eight other state of the art methods.
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boundary and region are modeled. Ai et al. [9] proposed a feature-learning-based ran-
dom walk method for liver segmentation using CT images. Seed points on the original 
test image were automatically selected.

Statistical model-based segmentation uses a large number of data to establish a general 
liver location or shape model. Xu et al. [10] developed a 3D-scale invariant feature trans-
form-based registration and designed an objective function to label the target image 
for liver segmentation. Salman et al. [11] discovered a feature-constrained Mahalanobis 
distance cost function to determine the active shape model, and liver segmentation is 
further achieved through a 3D graph cut. He et al. [12] proposed a three-level AdaBoost-
guided active shape model for rough segmentation, surface optimization and shape-fit-
ting refinement.

This study proposes an automatic context iteration-based liver segmentation by inte-
grating appearance and statistical information. The gray level co-occurrence matrices 
(GLCM) are first extracted for appearance representation and used to learn the first clas-
sifier. Then, the context features are obtained from a large number of training data with 
ground truth along with image appearance features to learn the next classifiers. After 
several iterations, a prior probability liver model is constructed and further segmented 
through an improved random walk. The main contributions of this work are summa-
rized as follows: (1) the context information rather than only appearance feature is used 
to construct the prior liver model, and (2) the improved random walk is introduced by 
integrating both the probability distribution map and original intensity image.

The rest of this paper is organized as follows. After the introduction, the methodology, 
including prior liver model construction and liver boundary determination, is described 
in “Methods” section. Evaluation results are presented in “Experimental results” section. 
“Discussion and conclusion” section concludes the paper.

Methods
Motivated in part by context feature extraction and machine learning, we propose an 
automatic liver segmentation method with two parts and shown in Fig. 1.

1.	 The prior model construction part contains the training step and test step. The 
appearance features are first extracted from the test image and training images with 
label map for classification. Then, the test probability distribution and training prob-
ability distribution with label map are obtained to extract the context feature. To 
achieve the final probability distribution map, both appearance and context features 
are used for classification on the several iterations.

2.	 Both intensity and probabilistic information are used by a prior model-based random 
walk to achieve the final segmentation result.

In this section, the appearance and context-based liver segmentation algorithm is pre-
sented in detail. This algorithm is comprised of prior liver model construction and prior 
model-based random walk.
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Prior liver model construction

Appearance feature is extracted by gray level co-occurrence matrix (GLCM), which 
reflects the distance and direction between different pixels. In the patch P centered on 
x, GLCM calculates probability p(a, b|d, θ.) wherein the intensity value a occurs with 
intensity value b in spatial distance d and direction θ. Level Q (a, b ∊ Q) in an image 
determines the size of GLCM (Q × Q). A number of GLCMs are produced for x accord-
ing to different values of d and θ. Twelve textural features U =  12 are used for each 
GLCM measuring the characteristics of texture statistics. These features are energy, 
contrast, correlation, homogeneity, entropy, autocorrelation, dissimilarity, cluster shade, 
cluster tendency, maximum probability [13], statistics variance, and sum mean [14]. The 
appearance feature for x is composed of textural features f dj ,θju , (u = 1, 2, . . . ,U) with 
given distance dj and direction θj(j = 1, 2, …J)

The training data set is denoted as Vi  ∊ RN×M and the corresponding label map is 
denoted as Vsi ∊ RN×M, i = 1, 2, …, I, and I is the number of training data. Training sam-
ple points are expressed with appearance feature fGLCM(xt) and the corresponding label 
yt

The first classifier is trained through the AdaBoost algorithm based on the appear-
ance features calculated on local image patch. Probability distribution maps P0(Vi) are 
obtained for the training data set using the learned classifier. We have

(1)fGLCM(x) =
[

f
d1,θ1
1 , f

d1,θ1
2 , . . . , f

d1,θ1
12 , . . . , f

dJ ,θJ
12

]T

(2)S0 =
{(

yt , fGLCM(xt)
)

, t = 1, 2 . . .T
}

.

(3)p0
(

yt = 1|xt
)

=
eH0(fGLCM(xt ))

eH0(fGLCM(xt )) + e−H0(fGLCM(xt ))

Fig. 1  Schematic diagrams for the proposed segmentation method
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As the largest organ located on the right side of human body, the liver features a special 
shape and is relatively fixed near other organs. The appearance and context information 
should be used for liver segmentation simultaneously. Figure  2 shows the appearance 
and context information extracted from the original image and the probability distribu-
tion map, respectively.

In the probability distribution maps, eight rays with 45∘ intervals are stretched out 
from xt, and a radius sequence is used to sample the context locations on each ray. The 
probabilities on the locations are used as context features f (u)cxt (xt). Afterward, a series of 
new training data set is constructed as follows:

where u = 1, 2, …, U denotes the iteration number. The second classifier based on the 
appearance and context features 

(

fGLCM(xt); f
(1)
cxt (xt)

)

 is identified to construct new 
probability distribution maps P1(Vi) in which the classification is expressed as

A similar learning procedure is performed to obtain U learned classifiers. The iteration 
procedure is shown in Fig. 3. Figure 3a shows the training data Vi (bottom line) and the 
corresponding segmented liver Vis (top line). Based on the appearance features extracted 
from the original image, the initial classification, denoted as p0(yt = 1|xt.), provides the 
probability distribution map P0(Vi) shown in Fig. 3b (top line). The appearance and con-
text features are then integrated and processed through multiple iterative classification 
(Fig. 3c, d) to obtain the final classification result pU(yt = 1|xt.), which is shown in Fig. 3e 
as the probability distribution map PU (Vi).

For the test data V, the prior liver model Vs is obtained through the sequence of clas-
sifiers based on both appearance and context features. The same procedure performed 
on the training data is implemented, including appearance feature extraction, context 
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Fig. 2  Appearance and context information extracted from the original image and probability distribution 
map, respectively. a Appearance information in the original image; b Context information in the probability 
distribution map
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feature extraction, classifier learning and iteration loop until convergence. The final clas-
sification result for each pixel constructs the probability distribution map PU (V ).

Prior model‑based random walk

The original text image and probability distribution map are defined as two corre-
sponding graphs. Nodes vi are pixels, and edges eij are produced between two neigh-
bor pixels. The original random walk [15] has two limitations: (1) the procedure is 
not automatic such that the seeds have to be manually appointed by the user and (2) 
only the intensity information is not distinguishable for liver segmentation. To address 
these problems, prior liver model is used for seed determination [16], that is, pixels xt 
with p(yt = 1|vt )= 1 are denoted as liver seeds, and pixels xt with p(yt = 1|vt )= 0 are 
denoted as background seeds. Both the intensity and probability distribution informa-
tion are utilized to calculate the most significant parameter of random walk, that is, the 
weight wij of eij:

where G(vi) and P(vi) are the pixel intensity value and corresponding probability distri-
bution value of the original image and probability distribution map, respectively, and α 
and β are the adjusting parameters. When liver pixel vi and background vj are near the 
liver edge with similar intensity values but different probabilities, relatively precise seg-
mentation result can be achieved.

According to the original random walk, the final probability of vi is determined by the 
minimum objective function as follows

(6)ωij = exp
(

−β

(

(1− α)
(

G(vi)− G
(

vj
))2

+ α
(

P(vi)− P(vj)
)2
))

(7)Es
spatial = xsTLxs =

�

ωij(v
s
i − vsj )

2, s.t. Lvivj =







dvi
−ωij

0

i = j
vi, vjare neighbors

others

Fig. 3  Illustration of the training procedure of prior liver model. Given training data and the corresponding 
segmented liver (a), the first classifier is learned based on appearance features and the initial probability dis-
tribution map (b) is obtained. Then the appearance and context features are combined to learn a subsequent 
classifiers (c, d). Here, the context features are extracted from the probability distribution map produced by 
the previous classifier. After U + 1 iterations, the final probability distribution map PU(xt) is realized (e)
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where xis is the probability of each pixel in the image belonging to the different classes, 
and s denotes the liver s = 1 or background s = 0. After finding the value of xis, we can 
determine to which class a certain pixel belongs:

Experimental results
In this section, the proposed method is evaluated on the MICCAI 2007 grand challenge 
data [17], which contains 20 3D abdominal CT scans with ground truth. Pixel spacing 
varies from 0.55 to 0.8 mm in x/y-direction, and slice distance varies from 1 to 3 mm 
[18]. Tumors, metastasis, and cysts with various sizes are included in most images. 
Transversal directions were acquired for CT scans with segmented livers. The number of 
slices in each scan varies between 64 and 394 with 512 × 512 resolution.

Rather than the whole CT scan, only a single slice that contains the largest liver is used 
as training data. Two scans randomly select in MICCAI 2007 grand challenge database 
serve as the test data. Eighteen slices contained in the remaining 18 scans are used as 
training data.

Objective evaluation

Five evaluations are implemented for assessing how the results of the proposed method 
B will generalize to the ground truth A. The five evaluation measurements are generally 
defined as follows [19].

Volume overlap (VOE):

Relative volume difference (RVD):

Average surface distance (ASD):

Root mean squared error (RMSD):

Maximum surface distance (MSD):

(8)label(vi) =

{

1, xsi ≥ 1/2
0, xsi < 1/2

(9)VOE = 1−
vol(A ∩ B)

vol(A ∪ B)

(10)RVD =
vol(A\B)

vol(B)

(11)ASD(A,B) =





�
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d(sA, S(B))+
�
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



�
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RMSE(A,B) =
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�
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�

�
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{
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sA∈S(A)

d2(sA, S(B)), max
sB∈S(B)

d2(sB, S(A))

}
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where vol(*) denotes the volume of the region *, S(*) is the surface voxel of the region *, s* 
is one of the voxels on the surface of the region *, and d(s∗1 , S(∗2)) = min

s∗2∈S(∗2)
||s∗1 − s∗2 || 

is the minimum Euclidean distance between corresponding voxels of two data surfaces. 
According to the above definition, VOE and RVD give the whole comparison for two 
segmented livers match, while ASD, RMSE and MSD indicate the difference of the pixel 
surface distance.

Context iteration‑based classification results

To detect the validity of context iteration, two kinds of classifications are illustrated. 
One classification is obtained with GLCM features, and the other is achieved with both 
GLCM and context iteration. In Fig. 4d, the liver can not be distinguished from mus-
cles and other organs when only GLCM features are utilized. Context iteration considers 
both texture and context information, as shown in Fig. 4e–h. The significance of the liver 
is substantially improved, whereas the non-liver areas are weakened by adding the con-
text feature to the texture feature.

The context iteration-based classifications of five slices are shown in Fig. 5. Figure 5a 
shows the original image. GLCM-based classification results are shown in Fig. 5b. The 
context iteration-based classification results for the first and fifth iteration are shown 
in Fig.  5c and d, respectively. Compared with the GLCM-based classification results 
shown in Fig. 5b1–b3, the probability difference between the liver and the background 
is large and the significance of the liver is substantially improved based on the five con-
text iteration, as shown in Fig. 5d1–d3. The red and yellow boxes in Fig. 5a4, a5 indicate 
similar intensity between the liver and the kidney or vessels (red box), and between 
the liver and muscle (yellow box). The liver cannot be segmented using only GLCM 
features, as shown in Fig. 5b4, b5. After considering context information, the contrasts 
between the liver and the other organs are apparent as shown in the red and yellow 
boxes in Fig. 5d4, d5. The prior probability model effectively provides the shape infor-
mation of the liver.

Fig. 4  Context iteration-based classification. a The original image; b the ground truth; c the contour profile 
of the liver; d GLCM-based classification result; e–h classification result based on four iterations
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Experimental error analysis

The segmentation results in six slices are displayed in the first two lines of Fig. 6. Three 
segmentation results are compared using different colors, particularly, the ground truth 
(green curves), GLCM-based segmentation (red curves), and context iteration-based 
classification (blue curves). The contents in the yellow boxes are enlarged to illustrate 
the details, as shown in the last two lines of Fig. 6. The GLCM-based classification evi-
dently resulted in over-segmented or under-segmented results because of the similar 
intensities between the livers and background. Context iteration-based classification can 
provide more precise segmentation than the GLCM-based classification. However, con-
text iteration-based classification is inadequate in the corner, as shown in Fig. 6d, e. This 

Fig. 5  Context iteration-based classification of five slices. a Original image; b GLCM-based classification 
result; c context iteration-based classification result for the first; d the five iteration
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finding is caused by the decrease in prior probability. The proposed method improves 
the segmentation results for the conjunction of the liver and kidney/muscle/vessels.

Two different segmentation results of the test data are shown in Fig.  7. Figure  7a–c 
illustrate the 2D segmentation results on the coronal, vertical, and transverse sections. 
The red contour profile indicates the ground truth, and the green contour profile indi-
cates the context-based iteration segmentation. The segmentation results accurately 
fit the liver edge, even in the concave region of the liver. The 3D segmentations of the 
ground truth and proposed methods are shown in Fig.  7d. Precise segmentation is 
obtained in the area indicated by the yellow arrow. Under-segmentation is produced in 
the area of the yellow box and should be improved in our future work.

Five evaluations, namely, VOE, RVD, ASD, RMSD and MSD, are implemented for 
assessing nine automatic segmentation methods (Table  1). The proposed method 

Fig. 6  Comparison of the results among the ground truth (green curves), GLCM-based classification (red 
curves) and context iteration-based classification (blue curves). The segmentation results in six slices are dis-
played in A–E, and the corresponding enlarged parts in the yellow boxes are shown in a–e
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achieves 7.83% VOE, 5.06% RVD, 1.06  mm ASD, 1.39  mm RMSD, 11.12  mm MSDD, 
1.39 mm RMSD, and 11.12 mm MSD. The corresponding score for test data is obtained 
by [18]. The comparative results show that the proposed method is superior to eight 
other methods with regard to the total score and exhibits a good applicability for liver 
segmentation. The total score of the proposed method is 76, which is higher than the 
standard score provided by [18]. This result indicates that the proposed method satisfies 
the requirement of clinical liver segmentation.

Discussion and conclusion
In this paper, we developed machine learning techniques for the automatic liver seg-
mentation in CT images. Appearance and context features are extracted for classifying 
image pixels based on AdaBoost algorithm. This classification provides the prior prob-
ability distribution map, which is combined with the original image to segment the liver 

Fig. 7  Two-dimensional segmentation results on different directions and 3D segmentation fusion. The first 
and second rows show two segmentation results of the test data. The coronal, vertical, and transverse sec-
tions of two data are shown in a–c columns. The 3D segmentations are shown in d column 

Table 1  The score comparisons of different automatic segmentation methods with MICCAI 
database

Methods VOE RVD ASD RMSE MSD Total

[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

Ours 7.83 69 5.06 73 1.06 74 1.39 80 11.12 85 76

Heimann [20] 7.77 70 1.7 88 1.4 65 3.2 55 30.1 60 67

Saddi [21] 8.9 65 1.2 80 1.5 62 3.4 52 29.3 62 64

Schmidt [22] 10.4 59 4.9 74 1.7 58 3.1 57 24 68 63

Chi [23] 9.1 65 26 73 1.7 58 3.3 54 30.8 60 62

Rusko [24] 10.1 61 3.8 72 1.7 58 3.5 53 26.7 65 61

Seghers [25] 10.7 58 6.8 64 1.8 55 3.2 56 25.2 67 60

Furukawa [26] 10.8 58 7.3 61 1.9 53 3.7 49 31.6 58 56

van Rikxoort [27] 12.5 51 1.8 80 2.4 40 4.4 40 32.4 57 53
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through the improved random walk. Five evaluations, namely, VOE, RVD, ASD, RMSD 
and MSD, are implemented for assessing the efficiency of the proposed segmentation 
method in MICCAI 2007 grand challenge database with 20 abdominal CT images. 
Experimental results show that the proposed method achieves significantly more accu-
rate results than the other eight state-of-art segmentation methods by comparing VOE, 
RVD, ASD, RMSD and MSD measurements. In addition, the total score of the proposed 
method is also higher than that of the ground truth which is manually labeled by medical 
experts.

The context features take full advantage of the context and high-level information. The 
intra-object configuration, and inter-object relationship are both considered to distin-
guish the organs with similar intensity. The saliency of liver is significantly improved 
compared to other organs.

However, several limitations of the proposed method still exist and should be 
improved in future work: (1) only an appearance is connected with context feature, 
which is somewhat limited and requires more explicit shape information; (2) after more 
features concatenated for expressing, the feature fusion method should be utilized to 
reduce the redundancy of features (3) the running time takes a long for the image analy-
sis, because all pixels containing in the image have to be analyzed on the serial calcula-
tion. GPU accelerated algorithm should be developed in our future work.

Abbreviations
GLCM: gray level co-occurrence matrix; VOE: volume overlap; RVD: relative volume difference; ASD: average surface 
distance; RMSD: root mean squared error; MSD: maximum surface distance.
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