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Abstract

It is well established that vascularization is critical for osteogenesis. However, adequate
vascularization also remains one of the major challenges in tissue engineering of bone. This problem
is further accentuated in regeneration of large volume of tissue. Although a complex process,
vascularization involves reciprocal regulation and functional interaction between endothelial and
osteoblast-like cells during osteogenesis. This prompted us to investigate the possibility of
producing bone tissue both in vitro and ectopically in vivo using vascular endothelial cells because
we hypothesized that the direct contact or interaction between vascular endothelial cells and bone
marrow mesenchymal stem cells are of benefit to osteogenesis in vitro and in vivo. For that
purpose we co-cultured rat bone marrow mesenchymal stem cells (MSC) and kidney vascular
endothelial cells (VEC) with polylactide-glycolic acid scaffolds. In vitro experiments using alkaline
phosphatase and osteocalcin assays demonstrated the proliferation and differentiation of MSC into
osteoblast-like cells, especially the direct contact between VEC and MSC. In addition, histochemical
analysis with CD31 and von-Willebrand factor staining showed that VEC retained their endothelial
characteristics. In vivo implantation of MSC and VEC co-cultures into rat's muscle resulted in pre-
vascular network-like structure established by the VEC in the PLGA. These structures developed
into vascularized tissue, and increased the amount and size of the new bone compared to the
control group (p < 0.05). These results suggest that the vascular endothelial cells could efficiently
stimulate the in vitro proliferation and differentiation of osteoblast-like cells and promote
osteogenesis in vivo by the direct contact or interaction with the MSC. This technique for optimal
regeneration of bone should be further investigated.

Introduction address these issues and to improve patients' well-being
Bone deficiency following trauma, resection of tumour,  bone tissue engineering has been proposed [1-4]. Tissue
periodontal disease or congenital malformation can be  engineering techniques have mainly been applied on
associated with functional and aesthetic problems. To  avascular tissue or on other tissue that can grow without
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an additional vascular supply, such as epithelia, cartilage
or large vessel substitutes [5,6]. However, one of the major
challenges in regeneration of bone tissue is its vasculariza-
tion because the center necrosis of the engineered bone
tissue will occur if blood supply (nutrition and oxygen)
cannot be established quickly [7]. Since diffusion of oxy-
gen in the active tissue is limited about 150 um from cap-
illary (mean of intercapillary distance (ICD) was 304 + 30
pum.)[8], vascularization becomes crucial in larger volume
of tissue-engineered construct. Growth factors, such as
vascular endothelial growth factor (VEGF), collagen type
II, myometrial prostaglandin E2, epithelial growth factor
and basic fibroblast growth factor (bFGF), have been
widely used to accelerate neovascularization in order to
regenerate damaged tissues [9,10]. Previously, in vivo sec-
ondary vascularization of engineered tissue was
attempted with partial success [11]. Alternatively, in vitro
construction of vascular stroma could serve as a scaffold
for soft or hard-tissue transplant.

Reciprocal regulation and functional interaction between
endothelial and osteoblast-like cells during osteogenesis
has been reported [1-4,11,12]. Villars et al suggested that
membrane proteins as well as systemic hormones and
growth factors have an active role in this process [12].
Therefore, to transplant large volume of engineered bone
tissue successfully, vascularized bone tissue with the
endothelial cells in three-dimensional scaffold in vitro
could be used [13]. This may not only solve the nutrition
and oxygen diffusion to the middle of the bone tissue
[14], but also stimulate osteogenesis by the endothelial
cells.

Although some of previous studies showed that vascular
endothelial cells and growth factors of vascular endothe-
lial cells could play a role in osteogenesis, it still didn't
document well if the direct contact or interaction could be
the best way to stimulate osteogenesis, especially in vivo.
We hypothesized that the direct contact or interaction
between vascular endothelial cells and bone marrow mes-
enchymal stem cells could be an optimal way to stimulate
osteogenesis in vitro and in vivo. Therefore, our objective
of present studies was to know what kind of interaction
the vascular endothelial cells could efficiently stimulate
osteogenesis in vitro and in vivo. To achieve our objective,
rat kidney vascular endothelial cells (VEC) and bone mar-
row mesenchymal stem cells (MSC) were cultured
together or alone on PLGA scaffold. The in vitro effect of
endothelial cells on osteogenesis by MSC was evaluated.
Additionally, MSC-plated PLGA or MSC and VEC-plated
PLGA were implanted into the rat's thigh and bone forma-
tion was evaluated by soft X-ray analysis and histologi-
cally. Our results demonstrated the dramatically effects on
osteogenesis in vitro and in vivo while the vascular
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endothelial cells directly contacted or interacted with the
bone marrow mesenchymal stem cells on PLGA scaffold.

Materials and methods

Isolation and culture of rat MSC and VEC

Animal experiments were approved by the Animal Care
and Use Committee of Jilin University. Male Wistar rats
(250 - 350 g, 6-8 weeks old) were anesthetized with
intramuscular administration of ketamine (60 mg/kg)
and xylazine (8 mg/kg). Bone marrow mesenchymal stem
cells were sterilely harvested from the femur and grown in
199 medium supplemented with 10-° M desacortone, 50
pg/ml ascorbic acid (Invitrogen), 1% L-glutamine, 10%
fetal bovine serum (Invitrogen), 100 U/ml penicillin G
(Invitrogen), 100 pg/ml streptomycin (Invitrogene,
Carlsbad, CA, USA). Osteogenetic potential and calcium
precipitation were evaluated by alkaline phosphatase
(ALP)[15] and von Kossa [13] staining, respectively. Rats'
kidneys were harvested, rinsed with PBS, and their cortex
dissected and sliced to 1-2 mm pieces. The tissue was then
digested for 2 hours with 0.25% collagenase (type II,
Sigma, St. Louis, MO, USA). Disperesed kidney vascular
endothelial cells (VEC) were collected and cultured in
endothelial growth medium (Technoclone, Austria).
CD31 and von-Willebrand factors staining were per-
formed using the ImmunoCruz Staining System (Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA)[16]. All
cultures were grown at 37°C in a humidified 5% CO,
atmosphere. After the second passage cells were observed
with transmission electron microscopy (HITACHI,
Japan)[17].

Fabrication of Scaffold

Polylactide-glycolic acid (PLGA) was synthesized using a
similar approach described by previous reports [18-20].
Briefly, 85:15 (mol:mol) copolymer of D,L-lactide and
glycolide (PLG) was milled and sieved to particles ranging
from 106 to 250 um. The PLGA particles were mixed with
5 g NaCl and molded to form a disc (1 cm x 1 cm x 0.5
cm) which was pressured at 800 Pa and under CO, to
form an interconnected polymer network. The disc was
immersed in ddH,O for 24 hour to leach NaCl which
resulted in a 95% porus scaffold with 25-400 um pores.
The disc was sterilized with gamma irradiation (Co-60)
without effects of physical and chemical characteristics.

In vitro three-dimensional co-culture models

MSC and VEC were cultured either with direct contact,
indirect contact, or separately. (1) In the direct contact
setup MSC and VEC (104 cells/well) were plated on a pre-
wetted PLGA disc in a 24-well plate. Two hours later
growth medium was added onto the cells. (2) In the indi-
rect contact setup MSC were cultured for 12 hours on pre-
wetted PLGA disc as described and then moved onto cul-
tured VEC in 24-well plates. (3) In the third setup MSC
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and VEC were cultured separately onto PLGA discs as
described above [21]. All cultures were grown for 5 days
with daily medium changes and then supernatant and
cells were harvested for osteocalcin and ALP assays. Pro-
tein was quantitated using BCA protein assay kit (Pierce,
USA).

In vivo rat's thigh model

Male Wistar rats (250 - 350 g, 6-8 weeks old) were anes-
thetized and their bilateral thigh areas were disinfected
and incised to expose and separate muscle fibers. PLGA
plated with either MSC and VEC or MSC alone and cul-
tured for 2 days were implanted into the right and left
thigh muscles, respectively. Skin incisions were sutured
and animals were administered a daily intramuscular
injection of Benzylpenicillin (10,000 U/day). 8 or 12
weeks following surgery the implants were harvested and
subjected to soft X-ray examination and subsequent image
analysis (NIH image software, National Institutes of
Health, USA) for determination of osteogeneic activity. In
addition, samples were stained with hematoxylin & eosin
and evaluated histologically.

Determination of ALP activity and osteocalcin synthesis
The ALP activity was determined using alkaline phos-
phatase detection kit (Sigma, St. Louis, MO, USA)[13].
Data were expressed as a ratio of unit (U) inorganic phos-
phate (Pi) enzymatically-cleaved in 30 min/mg protein.
Osteocalcin synthesis was determined using osteocalcin
radioactivity kit (Biosource, Germany)[19].

http://www.biomedical-engineering-online.com/content/6/1/41

Statistical analysis

All experiments were repeated 6 times. Data were analysed
with student t-test and multiple range test (SPSS 11.5,
Chicago, USA) and presented as mean =+ standard devia-
tion (SD). Differences were considered significant when p
< 0.05.

Results

Evaluation of MSC and VEC cultures

In the presence of desacortone and ascorbic acid and after
3 passages the morphology of MSC changed from fusi-
form monolayer to multilateral shaped, multilayer small
colonies. The cells demonstrated even higher proliferation
rate after 4 or 5 passages. After 7 days, a ALP-positive black
zone could be seen around the cells and von-Kossa-posi-
tive calcium deposition was noted. These results indicate
that MSC posses osteoblast-like characteristics. VEC were
CD31 and von-Willebrand-positive and had a round and
oval (stone-like) morphology arranged as a road array
(data not shown).

In vitro effect of VECs on MSCs osteogenic potential in the
three-dimensional co-culture

Five days after culturing MSC and VEC on PLGA the discs
were examined by scanning electron microscopy and the
results are presented in figure 1. MSC could be seen
adhered and extended on the PLGA surface with pseu-
dopodium present between the cells (Fig. 1A). Oval and
stone-like shaped VEC forming prevascular network-like
structures were also seen on the PLGA surface (Fig. 1B).
The osteogenic potential of the 3 culture setups on PLGA

Figure |
Image of the MSCs and VECs on the PLGA surface from scanning electron microscopy. A. MSCs adhere and extend on the

PLGA surface. The arrow indicates the pseudopodium (% 1000). B. VECs adhere on the PLGA surface as an oval and stone-like
shape (% 1000).
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was measured using ALP activity and osteocalcin synthesis
and the results are displayed in figure 2. Cultured MSC
had low ALP activity of 0.15 + 0.02 whereas indirect-con-
tract co-cultures of MSC and VEC had a higher activity of
0.44 + 0.05. Significant (p < 0.05) increase in ALP activity
(0.65 + 0.04 U/mg protein) was seen in direct contact co-
cultured MSC and VEC setup (Fig. 2A). Synthesis of oste-
ocalcin (a specific marker of bone cells) showed similar
results to those of ALP and are shown in Figure 2B. Direct
contact co-cultures of MSC and VEC had a significantly (p
< 0.05) higher levels of osteocalcin when compared to cul-
tured MSC. The rank order for osteocalcin synthesis was
direct contact > indirect contract > MSC. The data indicate
that in vitro direct contact between MSC and VEC induced
osteogeneis.
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Figure 2

ALP activity and osteocalcin synthesis from three-dimen-
sional co-culture in vitro. A. The ALP activity. B. Osteocalcin
synthesis. The data shown are the means * SD from six
experiments. (I) means indirect. (D) means direct.
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In vivo effect of VECs on MSC osteogenic potential

After 8 or 12 weeks following implantation specimens
were collected and examined by soft X-rays. The corre-
sponding radiographs are shown in figure 3. Eight weeks
post-implantation, diffuse radio-opacity could be seen in
the right thigh but not in the left (data not shown). This
difference between the right thigh (with the MSC and VEC
plated PLGA) and the left thigh (with the MSC plated
PLGA) was even more pronounced at 12 weeks after the
implantation (Fig. 3A and 3B). Densitometry of the vari-
ous samples was performed using the NIH-image software
and the results are displayed in figure 4. While the left
thigh was no different from control, a 2-fold increase in
density was seen in the right thigh (Fig. 3C). These results

300

X-ray density (OD)

PLGA

Control rat MSC+PLGA+VEC  Normal bone

Groups

Figure 3

Soft X-ray images from right and left thigh and X-ray density
analysis using NIH image software. A. Right thigh implanted
with the PLGA seeded with the MSCs and VECs. B. Left thigh
implanted with the PLGA seeded with the MSCs. C. X-ray
density analysis. The data shown are the means + SD from
six experiments.
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Hematoxylin and eosin staining of the implanted area from rat thigh and Quantitative measurements of new blood vessel and
new bone from HE staining slides. A. Control group at 8 weeks post-implanted. B. Experiment group at 8 weeks post-
implanted. C. Control group at 12 weeks post-implanted. D. Experiment group at 12 weeks post-implanted. Control is left
thigh implanted with the PLGA seeded with the MSCs. Experiment is right thigh implanted with the PLGA seeded with the
MSCs and VECs. Red arrow indicates PLGA material. Black arrow indicates new bone. Yellow arrow indicates blood vessel. E.
New blood vessel. F. New bone. Control is left thigh implanted with the PLGA seeded with the MSCs. Experiment is right
thigh implanted with the PLGA seeded with the MSCs and VECs. The data shown are the means + SD from six experiments.

Page 5 of 7

(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:41

suggest that addition of VEC to cultured MSC induced
osteogenesis in vivo.

Following soft X-ray analysis the samples were fixed in
formalin and stained with hematoxylin & eosin. Typical
histological pictures are presented in figure 4. Eight weeks
after implantation, new bone tissue could be seen both in
the left (Fig. 4A) and right (Fig. 4B) thighs. Four weeks
later, new blood vessels were also found in both thighs.
Histomorphometry of newly formed bone and blood ves-
sels was also performed and the results are shown in figure
4F and 4F. Eight and 12 weeks after implantation, a signif-
icant (p < 0.05) increase both in neovasculature and bone
formation could be seen in the right thigh (implanted
with MSC and VEC-plated PLGA) when compared to the
left thigh (implanted with MSC-plated VEC).

Discussion

Angiogenesis, the development of vascular network, is
essential for tissue growth and repair including bone
[22,23]. Vascularization of implanted bone tissue can
occur by in-growth of host blood vessels or to originate
within the implanted bone tissue. In-growth of new blood
vessels from the host progresses at a slow rate which is
inadequate for large volumes of bone tissue. Regenerated
bone containing potential blood vessel elements or blood
vessel-like structures can facilitate the vascularization
process [24,25]. These elements in tissue-engineered
implants could be critical to their survival [22].

In the present study, we have demonstrated the use of
direct contact or interaction between MSC and VEC for
formation of vascularised bone tissue in vivo. Previously
[26], we have shown that VEC could be successfully
enriched under specific conditions. CD31- and von-Will-
ebrand factor-positive VEC (data not shown) were cul-
tured on PLGA discs. These VEC formed pre-vascular
network-like structure on the surface of the PLGA (Fig. 1)
and were also osteocalcin-negative and had very low ALP
activity (Fig. 2). MSC are a good source for osteoprogeni-
tors cells or osteostem cells which can differentiate to
chrondogenic and osteogenic cells [27]. In vitro cultures
of MSC-plated PLGA had low levels of ALP activity and of
osteocalcin (Fig. 2). Addition of VEC either indirectly or
directly, especially directly, to the MSC-plated PLGA
increased the osteocalcin and ALP activity levels substan-
tially (Fig. 2). In vitro direct contact of the MSC and VEC
enhanced ~3.4 fold osteogenesis compared to MSC alone.
These results indicated that the differentiation of MSC
could be regulated not only by cytokines, but also by cell
direct contact [12].

In vivo experiments demonstrated that MSC-plated PLGA
implanted in the thigh muscle of the rat induced forma-
tion of new bone and blood vessels as seen in histological
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evaluation (Fig. 4). This newly formed bone could not be
detected in soft X-ray analysis (Fig. 3). MSC and VEC-
plated PLGA implanted in the rat's thigh led to substan-
tially more vascularized bone tissue being formed (Fig. 4).
In the case of MSC and VEC-plated PLGA newly formed
bone could be seen in soft X-ray analysis (Fig. 3). The
interaction of MSC and VEC is probably essential, com-
plex and mutual since both new blood vessels and bone
were generated. This effect of the MSC on the VEC is in
accord with previous report which showed that hMSC
could also secrete growth factors which stimulated
endothelial cell proliferation [28-30].

In conclusion, our results demonstrate that VEC can
enhance vascularization in engineered-bone tissue by the
direct contact or interaction with MSC in the rat in vivo.
This technique could be useful in repairing damaged bone
tissue.
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