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Abstract
Background: State-of-the-art signal processing methods are known to detect information in
single-trial event-related EEG data, a crucial aspect in development of real-time applications such
as brain computer interfaces. This paper investigates one such novel approach, evaluating how
individual classifier and feature subset tailoring affects classification of single-trial EEG finger
movements. The discrete wavelet transform was used to extract signal features that were classified
using linear regression and non-linear neural network models, which were trained and
architecturally optimized with evolutionary algorithms. The input feature subsets were also allowed
to evolve, thus performing feature selection in a wrapper fashion. Filter approaches were
implemented as well by limiting the degree of optimization.

Results: Using only 10 features and 100 patterns, the non-linear wrapper approach achieved the
highest validation classification accuracy (subject mean 75%), closely followed by the linear wrapper
method (73.5%). The optimal features differed much between subjects, yet some physiologically
plausible patterns were observed.

Conclusion: High degrees of classifier parameter, structure and feature subset tailoring on
individual levels substantially increase single-trial EEG classification rates, an important
consideration in areas where highly accurate detection rates are essential. Also, the presented
method provides insight into the spatial characteristics of finger movement EEG patterns.

Background
Electroencephalography (EEG) is a long-established
method for investigation of event-related cortical process-
ing, where the electrical activity of the brain is recorded in
high-resolution real time by scalp electrodes. The result-
ing collection of signals is highly complex, being multi-
variate, non-stationary, extremely noisy and high-
dimensional [1]. These inherent properties result in anal-
ysis difficulties traditionally overcome by offline averag-
ing of numerous events, time-fixed to a stimulus. In
contrast, machine learning approaches provide tools for

detection and classification of cortical patterns in real
time. Moreover, these methods are valuable for efficient
data dimensionality reduction and feature selection,
issues which receive growing attention in neuroscience as
hardware technology, particularly multi-channel EEG and
fMRI, offers increasingly improved spatial and temporal
resolution.

The real-time pattern identification potential is particu-
larly important for applications such as brain computer
interfaces (BCI) – devices allowing the brain to directly
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control external appliances through the detection of given
cortical patterns. Studies in this area have shown that it is,
for example, possible to distinctly differentiate between
the single-trial EEG patterns produced during right and
left finger movement, both actual and imagined, in seden-
tary subjects [2,3].

Much motor-based BCI-research has focused exclusively
on the primary motor cortex, restricting signal registration
to a few predefined, mainly central, electrode locations [4-
8]. However, motor actions generate relevant EEG activity
in other complementary areas as well [9-11]. Aspects that
vary not only throughout movement but also between
individuals, such as dipole orientation, affect the spatial
EEG pattern and make it difficult to predict which elec-
trodes provide relevant information without imposing
potentially restricting assumptions about the signal
source. Similarly, BCIs typically limit EEG signal charac-
terization to preset frequency ranges. Studies focusing on
optimizing individual feature sets have, however,
reported that between subjects, areas and frequencies
most relevant for laterality discrimination vary widely
[10-12]. As pointed out by Graimann et al [11], a BCI
based on only one phenomenon, such as the event-related
potential or event-related synchronisation and desynchro-
nisation, will be less robust and accurate than a BCI based
on both or more.

Including all possible signal features would, however,
result in an extremely high dimensional feature space,
given the myriad of methods for transforming and
describing the EEG signal mathematically. As a conse-
quence of the curse of dimensionality [13], the number of
observations must be drastically increased as the feature
space grows in order to maintain the same classification
results. The extent of the acquired EEG signals is for prac-
tical reasons limited and thus the number of features used
must be minimized.

Common methods of dimensionality reduction include
principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) where the original features are math-
ematically projected onto a lower-dimensional space.
Here, however, we look at dimensionality reduction from
a combinatorial perspective and attempt to detect which
combination of a limited number of features carry rele-
vant information. This process, referred to as feature sub-
set selection, involves discarding redundant or irrelevant
features while promoting ones that maintain or improve
classification accuracy [10,14]. An optimized feature set
leads to faster, computationally more efficient and, most
importantly, more accurate classification. Also, a properly
designed feature selection process generates a feature rele-
vance ranking, describing how well signal components
capture elements of the cortical processing related to given

stimuli. There are two distinct approaches to feature sub-
set optimization, termed wrapper and filter feature selec-
tion [15]. The former involves simultaneous and
continuous optimization of classifier parameters and fea-
ture subset. The filter method, on the other hand, involves
feature subset selection independent of classifier parame-
ter optimization. The wrapper approach typically gives
better results due to maximal integration between classi-
fier and feature subset, yet filter feature subset selection is
sometimes preferred since it usually requires less compu-
ter resources.

The combinatorial aspect of feature selection has been
successfully explored by evolutionary algorithms (EA),
within BCI research [11,12], and other areas [16,17],
although not in combination with classifier tailoring. EAs
are population-based optimization methods inspired by
Darwinian evolution, which can, by proper parameter
coding, optimize classifier and feature subsets by either
the wrapper or filter approach. EAs are also suitable for
optimizing classifier parameters, such as multilayer artifi-
cial neural network (ANN) weights and architecture
[18,19]. ANNs can, given proper design and training,
solve any classification problem and have proven effective
at generalizing to unseen data [20]. However, standard
ANN design procedures require complete external specifi-
cation of the network architecture, typically based on
time-consuming empirical exploration or crude system
assumptions. In contrast, network optimization using EAs
allows the architecture to evolve much like in biological
systems, rendering user intervention or system postula-
tions dispensable. Moreover, allowing evolution of not
only internal architecture, but also the included features
directly performs feature subset selection in a wrapper
fashion. Other classification schemes, such as multiple
linear regression (MLR), can be similarly optimized [21].

There is reason to believe that systematically tailoring clas-
sifiers and feature subsets for every individual will maxi-
mize extraction of relevant information, as opposed to
noise, from the EEG. Consequently, the aim of this study
was to design and compare methods for automatic classi-
fier tailoring and feature subset optimization in order to
maximize EEG pattern detection accuracy. The results
have in part been previously presented in poster format
[22].

Methods
EEG Acquisition and Pre-Processing
The study was performed in accordance with the Declara-
tion of Helsinki and approved by the Göteborg University
ethics committee. Four healthy untrained subjects, three
female and one male, aged 24–43 years, one left-handed,
participated in the study. The subjects, comfortably seated
in a chair, were instructed to move either the left or the
Page 2 of 8
(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:32 http://www.biomedical-engineering-online.com/content/6/1/32
right index finger in a brisk, self-paced manner according
to cues presented on a screen. The interval between the
randomized cues was four seconds. Each cue was pre-
sented for three seconds, during which the subject moved
the finger at a self-determined point. Between 250–900
movements were registered for each subject. Movements
were recorded with accelerometers attached to the fingers
(EGAX-5 monoaxial, Entran Inc., Fairfield, NJ, USA). EEG
was acquired at a sampling rate of 256 Hz using active
electrodes and the Active Two digital EEG amplifier and
recording system from Biosemi, Inc. (Amsterdam, The
Netherlands), with 32 scalp electrodes positioned accord-
ing to the extended 10/20 system.

After amplification, the acquired data was high-pass fil-
tered with cutoff frequency of 1 Hz and a reference average
of all channels was subtracted. No notch filter was used.
Epochs of -1000 to +500 ms relative to movement were
extracted and visually inspected for eye blink artifacts. All
data processing was performed with Matlab™(The Math-
works, Massachusetts, USA) software. In order to limit
computing times, only 100 movements, randomly
selected, were retained per subject. The epochs were
divided into training (80%) and validation (20%) data
sets containing equal numbers of left and right finger
movements.

Feature Extraction using Wavelets
The wavelet transform has been shown to be more effec-
tive in single-trial EEG characterization than traditional
processing approaches [23]. The continuous wavelet
transform (CWT) treats a function of time in constituent
oscillations, localized in both time and frequency [24].
The CWT is defined as follows:

where * denotes complex conjugation, τ is referred to as
the translation, giving the position in time, and s the scale
parameter, which is inversely related to the frequency con-
tent. Ψ(τ) is called the mother wavelet, and in this study
the standard Daubechies function is used. The discrete
wavelet transform (DWT), in turn, is the result of selecting
scales and translations based on powers of two, yielding a
more efficient yet as accurate analysis.

In order to limit the analysis to a smaller number of dis-
criminative signal features, the DWT was applied to the
difference of the average of the right and left finger move-
ment epochs of the training data set, and the five coeffi-
cients accounting for the largest portions of the difference

(i.e. with the largest amplitude) were established. This
approach is a modified version of the discriminant pursuit
method [25]. Thus, five coefficients were extracted for
each of the 32 EEG channels, totaling in a feature pool of
size 160 for classification. The processing was performed
using the Matlab wavelet toolbox.

Classifiers
Two classifiers were investigated in this study: the non-lin-
ear artificial neural networks (ANNs) and multiple linear
regression (MLR).

An ANN is a biologically inspired information processing
paradigm comprised of a network of highly intercon-
nected units called neurons [20]. A feed-forward network
is constructed by connecting a number of these neurons in
layers. The output of a neuron in layer j, out of m, is com-
puted as:

where n is the number of units in the preceding layer, xi is
the outputs from the preceding layer, and wij are the corre-
sponding weights. The sigmoidal activation function used
here is:

An ANN learns a given task by training, that is, adapting
its weights according to given training data. A properly
designed and trained network is insensitive to noise and
can approximate solutions to problems it has previously
not been exposed to. ANNs fully model the task internally
and no mathematical parameterization of the problem is
required. The ANN topology must, however, be specified,
either by optimization methods or empirically.

The MLR model, for a system with m observations and n
features, is typically stated as:

where, for pattern number j, out of m, yj is the category
estimation, xij is the i : th feature in the feature subset of
size n, and αij and βj are parameters that must be estab-
lished.

Evolutionary Classifier and Feature Subset Optimization
There are two distinct stages to our classification proce-
dure: classifier parameter approximation and feature sub-
set selection. In the wrapper feature selection approach,
the classifier parameters and feature subset are tailored to
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the given problem simultaneously. In contrast, for filter
feature selection the classifier parameters and the feature
subsets are optimized separately. In the filter approach,
traditional methods (least squares estimation for the MLR
and standard back-propagation [20] for the ANNs) are
used for establishing the classifier parameters, whereas in
the wrapper scheme these (including ANN topology) are
determined using evolutionary algorithms (EAs).

An EA is an optimization scheme inspired by Darwinian
evolution, where potential problem solutions are
encoded as individuals in a population [26]. A fitness
measure is computed for each individual, after which var-
ious genetic operations, including reproduction, muta-
tion and recombination are applied. A few individuals
that will parent the next generation are selected according
to a given stochastic scheme, in which probability of selec-
tion is related to relative fitness. To ensure that the maxi-
mum fitness of the population never decreases, the fittest
individual is replaced in the new population unchanged.
This process is repeated until performance decreases, evo-
lution stagnates, or a pre-set number of generations have
been completed.

In this study, tournament selection is used and the fitness
is computed as the proportion of correctly classified
epochs. Crossover has been proven to ruin rather than
improve the distributed structure of ANNs [18], and has
therefore been omitted. Mutation operations are
attempted according to given mutation rates, and can be
either structural (modifying classifier architecture, i.e.
ANN topology) or parametric (modifying classifier
parameters, i.e. ANN weights, MLR parameters and fea-
ture substitution). The wrapper mutation operations are
summarized in tables 1 and 2. ANN hidden neuron addi-
tion is performed by adding a neuron with weak, random
weights.

The ANN weights are mutated as follows:

w = ηc + rw

where c is a random number in the range [-3 3] and r is a
random normally distributed number in the range [0 2].
That is, depending on the random numbers, the classifier
parameters are modified drastically or partially. η is a
mutation step control parameter that initially is set to 1
and adjusted downwards if evolution stagnates.

The ANN and MLR feature substitution operation, utilized
for both filter and wrapper optimization, involves substi-
tuting a given feature for another, randomly selected from
the pool of unused features. Although not done here, it
should be pointed out that the number of features can

also be subject to optimization for the wrapper as well as
the filter approach.

The algorithms were implemented in Matlab and C on a
standard PC by one of the authors (M. Åberg), and
EEGlab software was used for scalp visualization [27]. For
reference, randomly selected feature subsets were evalu-
ated as well.

In summary, the following classification schemes were
investigated:

1. Linear random: Multiple linear regression with least
squares estimation of classifier parameters and a ran-
domly generated feature subset.

2. Non-linear random: Artificial neural networks with
back-propagation weight estimation and a randomly gen-
erated feature subset.

3. Linear filter: Multiple linear regression with least
squares estimation of classifier parameters and optimiza-
tion of feature subset.

4. Non-linear filter: Artificial neural networks with back-
propagation weight estimation and optimization of fea-
ture subset.

5. Linear wrapper: Multiple linear regression with optimi-
zation of classifier parameters and feature subset.

6. Non-linear wrapper: Artificial neural networks with
optimization of weights, architecture and feature subset.

For the filter methods, 50% of the training data was used
for evolutionary fitness computation, and 50% was used
for establishing classifier parameters. The fitness was com-
puted on fully trained classifiers. For the wrapper meth-

Table 2: Wrapper MLR mutation operations

Parametric mutation operations
Coefficient mutation
Threshold mutation

Structural mutation operations
Feature substitution

Table 1: Wrapper ANN mutation operations

Parametric mutation operations
Weight mutation

Structural mutation operations
Feature substitution

Weak hidden node addition
Hidden node removal
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ods, where classifier parameter estimation and feature
subset optimization are integrated, only one training
dataset is required for evaluating the fitness.

Results and Discussion
Results
Summary of data
A 32-channel EEG was recorded during self-paced index
finger extension for four untrained subjects. The acquired
data was pre-processed, and 100 epochs of one second
before onset of movement and 0.5 second after were
extracted. The data was divided into 80% training and
20% validation data. The discrete wavelet transform was
applied the EEG signal and five coefficients for each chan-
nel were obtained, resulting in 160 features in total. Clas-
sification of the resulting right/left finger movement
epochs were attempted using multiple linear regression
(MLR) and non-linear artificial neural networks (ANN)
with different degrees of evolutionary optimization,
including filter and wrapper feature selection.

Prediction accuracy
Due to the random nature of evolutionary algorithms and
ANN training, each method was run 10 times and the best
validation result was obtained. This process was repeated
five times, and an average was formed and reported here.
In order to compare the different approaches under simi-
lar conditions, all methods were restricted to select only
10 out of the 160 features. Random classification results
in a score of 50%. The subject mean classification per-
formances appear proportional to classifier complexity
(Fig. 1). The non-linear methods performed consistently
better than the linear approaches (subject mean for linear
random, filter and wrapper: 58.75%, 63.25% and
73.50%, respectively; for non-linear random, filter and
wrapper: 67%, 69.75.%, 75%, respectively; p = 0.016
using Friedman's non-parametric two-way ANOVA to test
for the difference between linear vs. non-linear on subject
levels while adjusting for possible method effects [28]).
The random feature selection achieved a significantly
lower score (linear: 58.75%, non-linear: 67%) than the
high-performing wrapper classifiers (linear: 73.50%, non-
linear: 75%; Friedman, p < 0.01, including adjustment for
multiple comparisons), whereas not enough subjects were
included to establish any significance of the observed dif-
ference between filter (linear: 63.25%, non-linear:
69.75%) and random or wrapper. There was a 7%
increase in discrimination success between non-linear fil-
ter and non-linear wrapper, whereas the increase between
linear filter and linear wrapper was more drastic at
13.95%. There was high variability between subjects in
terms of preferred classifier: for subjects 2 and 3, for exam-
ple, there was little difference between the wrapper and
non-linear filter methods. The variability is, however,

much lower for the wrapper approach (average range 5%)
than the other methods (average range 10.25%).

Feature subset selection
The constitution of the final feature subsets differs
between algorithm runs. However, taking all selected fea-
ture subsets into account, a selection frequency ranking is
obtained. When the ranking is plotted per EEG channel, it
is clear that some electrodes discriminate finger move-
ments better than others (Fig. 2). There is large variation
in spatial preference between individuals, yet one pattern
is discernible: either of FC1, C3 or Cz is highly selected in
all subjects. Plotting the frequency of selection against the
wavelet coefficients, on the other hand, did not reveal any
time or scale preference.

Discussion
This study has demonstrated that individual classifier tai-
loring and feature subset selection significantly improves

Classification performanceFigure 1
Classification performance. Subject mean validation 
accuracy for the six approaches using only 10 features and 
100 patterns. Subject range is indicated by the error bars. 
The performance appears to increase with increased classi-
fier complexity and tailoring, and the non-linear methods 
perform better than the linear (p < 0.05). The mean differ-
ence between wrapper non-linear and wrapper linear is 
small, suggesting that a high degree of classifier and subset 
tailoring is more critical than non-linearity. The random fea-
ture selection performance is significantly lower than the 
high-performing wrapper classifiers (p < 0.01).
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single-trial limb laterality discrimination, and that the
optimal EEG channels differ much between subjects.

It should be noted that this study has focused on compar-
ing classifiers rather than maximizing prediction accura-
cies. The number of features as well as the maximum
generations allowed in the evolutionary algorithm were
heavily limited due to time and computer restrictions.
Similarly, the number of included movement epochs was
reduced to only 100, a factor that significantly decreases
the prediction accuracy. The non-linear classifiers per-
formed better than the linear approaches, agreeing with
previous studies [29,30]. Interestingly, the improvement
between linear and non-linear classifiers is 14.04%,
10.28% and 2.04%, respectively, for the random, filter
and wrapper approaches. This observation suggests that as
the association between classifier training and feature
selection increases, the non-linearity of the classifier
becomes less important. In the evolutionary approach,
the tailored feature subset is allowed to express either

non-linearities or linearities in the data – whatever suits
the given classifier optimally. More data is, however,
required to establish this theory statistically.

The spatial preference found in this study partially agrees
with previous research, which focuses on a few central
electrodes for finger movement classification [4-8]. Chan-
nels FC1, C3 or Cz, highly selected in all subjects, are
located close to the left-hand side motor cortex. Interest-
ingly, C4, the right-hand side equivalent, is not ranked
high in any subject, including the left-handed subject 3.
Also, in three out of four subjects, P7 or P4 in the parietal
regions, with no major established connection to motor
areas, are ranked highly. However, the results can in part
be explained by investigating the geometrical orientation
of the electric fields (dipoles) generated by the activated
neurons. For example, projecting the event-related poten-
tial for subject 3 on a human head model reveals that the
signal source at peak EEG activity before the movement, -
39 ms, has a tangential orientation. These results are in

Feature selection frequencyFigure 2
Feature selection frequency. Relative frequency of selection for all four subjects per EEG channel (A) and projected on a 
head model (B). There are clear selection preferences, and although there is high inter-subject variation, FC1, C3 or Cz is 
highly selected in all subjects. Individual rankings have been scaled to the range [0 1], and the reported results are from the lin-
ear filter method.
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accordance with the physiological orientation of the
pyramidal neurons responsible for finger movement. The
neurons are located in the finger area of the motor cortex,
which in turn is located within the central sulcus [9,31].
These pyramidal neurons are aligned along the surface of
the cortex, thus generating a tangential dipole [1]. During
the course of movement, different areas with different
dipole orientations are activated, and it is therefore diffi-
cult to manually predict what combination of electrode
locations will provide most useful information for lateral-
ity discrimination.

Different areas of the cortex are likely to be of varying
importance at different times throughout a movement
epoch, and each wavelet coefficient corresponds to a given
scale – translatable into frequency – and point in time. In
this study, however, no single wavelet coefficient was sig-
nificantly more frequently selected than any other, indi-
cating either that there was no time or frequency
preference or that these wavelet coefficients capture the
dynamics during finger extension cycle poorly. Not
restricting the feature pool to a given number of wavelet
coefficients based on an average, as was done here, could
potentially resolve this issue.

Ideally, the feature pool would consist of several different
types of signal parameters other than wavelet coefficients,
such as Fourier frequencies, power spectral densities and
autoregressive coefficients. Other state-of-the-art classifi-
ers, such as support vector machines, can also be incorpo-
rated into the algorithm.

Conclusion
The evolutionary design was successful in optimizing clas-
sifier parameters and structure, including input features.
Higher degrees of tailoring resulted in increased classifica-
tion accuracies, and non-linear classifiers achieved better
results than linear. There was high variation between the
resulting features selected for each subject, indicating that
a systematic method for accommodating individual vari-
ability is useful for single-trial EEG analysis.
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