The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation
Kimble R Dunster*†1,2,4, Mark W Davies†2,3 and John F Fraser†4

Address: 1Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 2Grantley Stable Neonatal Unit, Royal Women’s Hospital, Brisbane, Queensland, Australia, 3Dept of Paediatrics & Child Health, The University of Queensland, Brisbane, Queensland, Australia and 4Critical Care Research Group, Department of Intensive Care Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia

Email: Kimble R Dunster* - k.dunster@qut.edu.au; Mark W Davies - Mark_Davies@health.qld.gov.au; John F Fraser - John_Fraser@health.qld.gov.au
* Corresponding author †Equal contributors

Abstract

Background: Perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse.

This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet.

Methods: Using a model lung, perfluorocarbon vapour loss during humidified partial liquid ventilation of a 3.5 kg infant was approximated. For each test 30 mL of FC-77 was infused into the model lung. Condensers were placed in the expiratory limb of the ventilator circuit and the amounts of PFC (FC-77) and water recovered were measured five times. This was repeated with the condensers placed at the ventilator exhaust outlet.

Results: When the condensers were used as the expiratory limb, the mean (± SD) volume of FC77 recovered was 16.4 mL (± 0.18 mL). When the condensers were connected to the ventilator exhaust outlet the mean (± SD) volume of FC-77 recovered was 7.6 mL (± 1.14 mL). The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb.

Conclusion: Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77) can be recovered during partial liquid ventilation without altering the function of the ventilator circuit. This volume of PFC recovered was just over twice that recovered with the condensers connected to the ventilator exhaust outlet.

Background
Perfluorocarbon (PFC) liquids seem to be physiologically ideal for liquid ventilation, yet have two major drawbacks - economic and environmental. Being photochemically stable, PFC liquids have a high global warming potential [1] and contribute to the greenhouse effect [2]. It would
seem prudent to limit PFC loss during partial liquid ventilation (PLV), both to prevent PFC vapour entering the atmosphere and to reuse the recovered PFC liquid. As all the lost PFC is in the exhaled gases, an opportunity exists to recover the PFC.

We have previously shown that up to 95% of PFC liquid can be recovered from vapour using chilled condensers [3,4] in place of an expiratory ventilator circuit. These studies, however, did not employ a ventilator and tidal breathing as would be found during clinical use of partial liquid ventilation. Also, the use of a model lung which is being ventilated by a neonatal ventilator presents the possibility of using the condensers attached to the ventilator exhaust outlet rather than in place of the expiratory circuit.

The aims of this study were: to determine how much PFC liquid could be recovered from expired gases (containing an approximate amount of perfluorocarbon vapour that would be found during partial liquid ventilation) using a conventional neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit; to determine if PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet; and to compare the amount recovered with the two methods.

Methods

We aimed to approximate the water and FC-77 concentrations found in the expired gases during partial liquid ventilation of an approximately 3.5 kg infant. A pressure-limited, time cycled neonatal ventilator (Bear Cub, Bear Medical Systems, Riverside, California) was set to deliver air at 60 breaths per minute with a positive end expiratory pressure of 5 cmH₂O, a peak inspiratory pressure of 25 cmH₂O, an inspiratory:expiratory ratio of 1:1 and a flow rate of 10 Lmin⁻¹. A humidifier (MR600, Fisher & Paykel Healthcare, Auckland, New Zealand) was set to give a chamber outlet temperature of 39°C and an inspiratory limb outlet temperature of 37°C, as is commonly used in clinical practice. A self-filling chamber (MR290, Fisher & Paykel Healthcare, Auckland, New Zealand) and conventional heated inspiratory circuit (Fisher & Paykel Healthcare, Auckland, New Zealand) were used. A sponge (#00-005, Multigate Medical Products, Sydney, Australia) was placed in the outlet of the circuit manifold as an FC-77 evaporator. The circuit manifold, FC-77 evaporator and model lung were placed in a water bath (MD, Julabo, Seelbach, Germany) at 37°C. In this configuration, the lung had a tidal volume of 15.2 mL, an airway resistance of 140 cmH₂OL⁻¹s⁻¹ and a dynamic compliance of 0.9 mL/cmH₂O. The set up of the experimental apparatus is shown in Figures 1 and 2.

For each test 30 mL of FC-77 (vapour pressure = 9.99 kPa at 37°C) [5,6] was infused onto the evaporator over a one hour period to approximate the loss rates found in animal studies [11]. At the conclusion of each test the condensers were warmed to ~2°C to ensure any water ice had melted, the volumes of water and FC-77 in each trap were measured and the total volumes calculated. The percentage of theoretical maximum recovery was calculated. The lung

Figure 1

Apparatus configured with condensers as the expiratory line. V = ventilator, H = humidifier, W = water, P = perfluorocarbon inlet, E = perfluorocarbon evaporator, I = heated inspiratory line, E_L = short expiratory line, L = model lung, B = 39°C water bath, C_1 = I°C condenser, C_2 = -30°C condenser, T_1, T_2 = traps

Figure 2

Apparatus configured with condensers on the ventilator outlet. V = ventilator, H = humidifier, W = water, P = perfluorocarbon inlet, E = perfluorocarbon evaporator, I_L = heated inspiratory line, E_L = short expiratory line, L = model lung, B = 39°C water bath, C_1 = 1°C condenser, C_2 = -30°C condenser, T_C, T_1, T_2 = traps
was inspected for the presence of FC-77. All measurements were performed five times.

Use of condensers as the expiratory line
This configuration of the experimental apparatus is shown in Figure 1. The air, water vapour and FC-77 vapour from the lung passed through an expiratory limb consisting of two series-connected condensers and a short non-cooled section of tubing returning the gases to the ventilator. The first condenser consisted of two coaxial ventilator circuits (modified from prototype circuits, 10 mm internal diameter, smooth bore, 1 m long, Fisher & Paykel Healthcare, Auckland, New Zealand), with a total condensing surface of 0.063 m², cooled to 1°C (2219 Thermostatic Circulator, LKB, Bromma, Sweden) [3,4]. The second condenser consisted of a 1 m length of stainless steel tubing (13 mm internal diameter, 1 mm wall thickness) with a condensing surface of 0.041 m², cooled to -30°C (9102 Circulator, Polyscience, Niles, Illinois, USA) [3,4].

Use of condensers on the ventilator outlet
This configuration of the experimental apparatus is shown in Figure 2 and is the same as above, with the following changes. A conventional expiratory limb and trap (Fisher & Paykel Healthcare, Auckland, New Zealand) were used. The foam muffler was removed from the ventilator exhaust and the exhaust connected to the condensers. In addition to the circuit flow (10 L min⁻¹) the ventilator discharges gas from a jet pump, used to overcome pressure drop in the expiratory limb, through the exhaust [7]. The total flow from the exhaust was measured at 16 L min⁻¹.

Theoretical maxima for condensation of water and perfluorocarbon
The gas stream would be saturated with water vapour which has a density of 44 mg L⁻¹ at 37°C and 5.2 mg L⁻¹ at 1°C [8]. Therefore a theoretical maximum of 38.8 mg of water could be condensed for each litre of this gas passing through the humidifier. This corresponds to a maximum hourly water recovery of 23.4 mL at 10 L min⁻¹ through the humidifier. This corresponds to a maximum theoretical recovery for water and 99.0% (± 1.08%) for FC-77.

When the condensers were connected to the ventilator outlet the mean (± SD) volume of water recovered was 20.8 mL (± 1.65 mL) and the mean (± SD) volume of FC-77 recovered was 16.4 mL (± 0.18 mL). The mean (± SD) proportion of infused FC-77 recovered was 54.8 (± 0.60) percent. These volumes recovered correspond to 89.1% (± 7.06%) of the theoretical maximum recovery for water and 99.0% (± 1.08%) for FC-77.

The volume of water (p = 0.65, t-test) and the percentage of maximum theoretical recovery (p = 0.17, t-test) did not vary depending on the condenser configuration. The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb (p < 0.0001, t-test with Welch's correction), but the percentage of maximum theoretical recovery did not differ with the condenser configuration (p = 0.18, t-test with Welch's correction).

Discussion
For environmental and economic reasons it is beneficial to minimise the loss of PFCs during both partial and total liquid ventilation. PFCs do not support bacterial growth, biological materials will not dissolve in them and no chemical decomposition occurs at body temperature. As such, any recovered PFC can easily be washed and filtered.
for reuse in the same patient. All PFC loss occurs through evaporation and the PFC vapour all passes through the expiratory limb of the ventilator circuit and then to the ventilator exhaust. This provides two opportunities to condense the PFC vapour for reuse. Both perfluorooctyl bromide (vapour pressure = 1.47 kPa at 37°C) [6] and FC-77 (vapour pressure = 9.99 kPa at 37°C) [5,6] can be condensed during partial or total liquid ventilation.

The amount of vapour passing into the exhalation line during PLV depends on factors such as the surface area of the PFC-air interface, temperature and flow rate. Evaporative loss rates of 1.1 to 6 mlkg\(^{-1}\)hr\(^{-1}\) have been reported for partial liquid ventilation using perfluorooctyl bromide [9-12]. Higher loss rates, of around 7 mlkg\(^{-1}\)hr\(^{-1}\), have been reported for the more volatile FC-77, which was used in these experiments [13]. Thus, over 10 L of PFC might be lost in an adult patient every day.

These same factors will effect condensation of the PFC vapour. The vapour pressure and, hence, the vapour density, of the PFC will impact on the efficiency of any condensation system. For example, with a lower vapour pressure than FC-77, less perfluorooctyl bromide is lost during ventilation and is more readily condensed (the condensability of PFC vapour increasing as vapour pressure decreases).

Using a neonatal ventilator with tidal breathing from a model lung, we studied the recovery of FC-77 with a loss rate of 30 mlhr\(^{-1}\). These experiments [13] showed recovery that can achieved with ventilators and circuits designed an expiratory circuit condenser with a small surface area, which does not significantly alter conventional ventilator circuits or other equipment. We have designed heat and PFC exchangers fitted to the endotracheal tube may be also used to minimize PFC loss during PLV, with a conservation efficiency of 60% for perfluorooctyl bromide [15].

Schrader et al obtained a 90% recovery rate for perfluorooctyl bromide in animal studies utilizing PLV [14] by using a complicated rebreathing system. Specially designed heat and PFC exchangers fitted to the endotracheal tube may also be used to minimize PFC loss during PLV, with a conservation efficiency of 60% for perfluorooctyl bromide [15]. The high dead space in these devices would make them unsuitable for neonatal ventilation. Additionally, these methods require highly specialized ventilator circuits or other equipment. We have designed an expiratory circuit condenser with a small surface area, which does not significantly alter conventional ventilator function and achieves PFC recovery similar to other methods. The only additional equipment required are two circulating chillers.

Further cooling of the second condenser would increase the recovery. Cooling to dry ice temperature (-78°C) would increase the theoretical maximum recovery of FC-77 to >99% of the infused volume with the condensers as the expiratory limb and 98% with the condensers on the ventilator exhaust.

Ventilator settings suitable for neonates were studied and further studies will be necessary to determine the PFC recovery that can achieved with ventilators and circuits suitable for paediatric and adult ventilation.

Conclusion

Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77) can be recovered from exhaled gas containing an approximate amount of perfluorocarbon vapour that would be found during partial liquid ventilation of newborn infants, without altering the function of the of the ventilator circuit. This volume of recovered PFC was just over twice that recovered with the condensers connected to the ventilator.
exhaust outlet where only 25% of PFC liquid (FC-77) could be recovered. In both cases the amount of PFC recovered was ≥ 89% of the theoretical maximum recovery.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
KRD conceived the study, participated in the design of the study, carried out the benchtop studies, performed the statistical analysis and drafted the manuscript. MWD conceived the study, participated in its design and coordination, assisted in the statistical analysis and revised the manuscript. JFF assisted in data analysis and interpretation, and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This project was funded by a research grant from the Royal Brisbane and Women’s Hospital Foundation.

References