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Abstract

Background: This project was designed as an epidemiological aid-selecting tool for a small
country health center with the general objective of screening out possible coronary patients.
Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes
in these vessels appear as good predictors of future coronary behavior. Impedance
plethysmography detects volume variations after simple occlusive maneuvers that may show
indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and
this, in turn, requires proper determination of the beginning and end of each beat. Thus, the
objective here is to describe an algorithm to identify and separate out beats from a
plethysmographic record. A secondary objective was to compare the output given by human
operators against the algorithm.

Methods: The identification algorithm detected the beat's onset and end on the basis of the
maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac
frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800
patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected
without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG
were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power
Density Function and, thereafter, the signal was derived twice, followed by binarization of the first
derivative and rectification of the second derivative. The product of the two latter results led to a
weighing signal from which the cycles' onsets and ends were established. Weighed and frequency
filters are needed along with the pre-establishment of their respective tolerances. Out of the 40
records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two
operators. Sensitivity and accuracy were calculated by means of the true/false and positive/negative
criteria. Synchronization ability was measured through the coefficient of variation and the median
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value of correlation for each patient. These parameters were assessed by means of Friedman's

ANOVA and Kendall Concordance test.

Results: Sensitivity was 97% and 91% for the two operators, respectively, while accuracy was cero
for both of them. The synchronism variability analysis was significant (p < 0.01) for the two
statistics, showing that the algorithm produced the best result.

Conclusion: The proposed algorithm showed good performance as expressed by its high
sensitivity. The correlation analysis demonstrated that, from the synchronism point of view, the
algorithm performed the best detection. Patients with marked arrhythmic processes are not good
candidates for this kind of analysis. At most, they would be singled out by the algorithm and,

thereafter, to be checked by an operator.

Background

Outpatients coming daily for consultation to a general
public hospital are often preventively checked for signs
suggestive of infectious, cardiovascular and/or any other
endemic disease. The positive detected fraction is derived
for further confirmatory study, which may lead to even-
tual treatment. Within such concept, this project was spe-
cifically designed as an epidemiological aid-selecting tool
for a small country health center serving a large rural area
(see Acknowledgments). Essential requirements were low
cost and simplicity. The general objective was to screen
out possible coronary patients.

Peripheral artery function can be non-invasively evaluated
by impedance plethysmography, either in lower or upper
limbs [1]. Changes in these vessels appear as good predic-
tors of future coronary behavior [2,3]. Basically, imped-
ance plethysmography detects volume variations due to
the pulsating blood flow that, after simple mechanical
occlusive maneuvers, may show indicative modifications
in arterial/venous responses [4,5].

Pulse plethysmographic analysis, based on variations of
its amplitude or waveform [6], requires the averaging of
several beats.

There are specific algorithms for the detection of the dicro-
tic notch [7]; some papers make a beat-to-beat analysis of
the arterial pressure [8-11]. Commercial equipment (like
Complior ®SP, Artech Medical, http://www.artech-medi
cal.com y SphygmoCor ® Vx, Atcor Medical, http://
www.atcormedical.com) carry out the above mentioned
type of plethysmographic signal analysis. Schroeder et al
[12], by means of MATLAB, developed a cardiovascular
package (named HEART), which permits beat identifica-
tion using two sequential processes (one of coarse approx-
imation and a second one of fine adjustment).
Unfortunately, none of these procedures offer detailed
descriptions.

Besides, several algorithms have been developed to detect
electrocardiographic beats, by and large based on the rec-
ognition of the QRS complex [13]. However, our design
has been thought to operate independently of the ECG
signal; for these reasons they are not applicable in this
case.

Thus, the objective here is to describe an algorithm to
identify and separate out beats from a plethysmographic
record during an occlusive maneuver. As a secondary
objective, we intended to compare the output given by
human operators (trained and not trained) against the
algorithm. The method herein proposed is potentially
applicable to other cardiac signals.

Methods

Outline

An occluding cuff produces a limb short ischemia. Basal
and post-occlusion plethysmographic arterial pulse
records are compared searching for either amplitude and/
or waveform modifications or both. Since the possible
change in a single beat record does not supply enough
information, valid results call for averaging of a series of
pulses and this, in turn, requires proper determination of
the beginning and end of each beat. In other words, good
beats must be identified and singled out discarding abnor-
mal pulses.

Each applied maneuver consists of a supradiastolic and
subsystolic occlusion; thus, it permits inflow of blood
while stops outflow, which leads to limb volume increase.
A typical record is showed in Figure 1. The pulse identifi-
cation algorithm detected the beat's onset and end on the
basis of the maximum rising phase, the choice of possible
ventricular systolic starting points considering cardiac fre-
quency, and the adjustment of some tolerance values to
optimize the behavior.

Patient population
From the daily inflow of hospital outpatients, we
obtained 800 records out of which 40 supradiastolic-sub-
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Figure |

Typical dc plethysmographic record of an occlusive maneu-
ver. Insets show expanded pulses during each stage; differ-
ences are evident. An arbitrary zero time is also showed
from which the pre-inflation time was measured (PRE);
thereafter, the intra-occlusion (INTRA) period followed
(bounded by the beginning and end of inflation), until post-
occlusion was reached (POST).

systolic occlusive ones were randomly selected without
any preliminary diagnosis. All patients accepted and
signed the informed consent. The attending physician,
including the measurements leading to the quantitative
data mentioned above, carried out routine clinical interro-
gation. Blood pressure was obtained with the oscillomet-
ric method using the contra-lateral arm to that where the
test was to be performed. Patients rested for at least 5 min
in the supine position prior to the test.

Impedance Plethysmography and Recording System

Radial pulse was picked up with two metallic electrodes
(ECG standard type) placed over the forearm artery line, 2
cm below the ante-cubital fold, and 5 to 10 cm apart. The
forearm was always at the left atrial level. Besides, a simul-
taneous standard ECG was obtained. Impedance was
obtained with a custom-made laboratory apparatus [14].

Digital acquisition (sampling frequency sf = 200 Hz, at 16
bits) was carried out using a commercial system (BIOPAC
System Inc, AcqKnowledge II for MP100WSW). Each
occlusive maneuver record included basal plethysmo-
graphic pulses (PRE), a period of 2 to 3 minutes of occlu-
sive cuff inflation (INTRA), and a post-occlusive (POST)
after release; the overall duration was always in the order
of 5-6 min (Figure 1).
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Figure 2
Flow Diagram of the Algorithm.

Algorithm

Figure 2 summarizes the sequential steps the recorded sig-
nal S went through. The first step is the detection of the
average cardiac frequency fc, which is expected to be
within the 0.5 Hz - 2.5 Hz range, and is divided in two
stages: First, the signal goes through a band-pass FIR
(Finite Impulsive Response) filter, with cut-off frequen-
cies of 0.8 Hz and 2.8 Hz, and attenuation at least of -
50dB at 0.25 Hz and 3.25 Hz. Thereafter, the Power Spec-
tral Density function (PSD, an averaging variant of the
Fast Fourier Transform), is applied to find fc. The first
minute of data acquisition corresponds to the basal or
pre-occlusion stage (Fig. 1). This period is divided into
overlapping sections; each is linearly detrended, then win-
dowed with a Hanning function (4,096 samples) and,
thereafter, zero-padded to a length of 8,192 samples. The
magnitude squared of the Fast Fourier Transform of each
section is averaged to form P,,, the Spectral Density Func-
tion. Each section overlaps with the previous 2000 sam-
ples. The maximum value for the first harmonic
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Figure 3

Different stages while processing a typical signal. S is the orig-
inal signal; S', is the binarized first derivative; ", is the recti-
fied second derivative; W/ is the weighing signal showing all
spikes detected by marks; W, is the same weighing signal,
with only those spikes preserved by the weighed filter. W; is
the same weighing signal with only those spikes preserved by
the frequency filter. The bottom trace represents again S,
with all onsets and ends well identified. Tolerance values
were Tol, = 0.4 and Tol, = 0.2.

component corresponds to the cardiac frequency fc (see
Signal Processing Toolbox for Use with MATLAB, The
MathWorks, Inc, Natick, MA).

The original signal is derived twice applying the well-
known iterative series of subtractions [15], that is,

S'(n) =S(n + 1) -S(n)
S"(n)=S'(n+1)-S'(n) [1]

where S'(n) and S"(n) stand, respectively, for the first and
second derivative and n represents the sample number.
Figure 3, upper trace, shows 6 beats of a typical plethys-
mographic record. Thereafter, both signals are processed
binarizing the first derivative and rectifying the second
derivative. Binarization means to replace 1's for positive
values and 0's for negative ones. The process of rectifica-
tion leaves only the positive excursions. Clearly, the prod-
uct of the binarized and rectified signals is a trace showing
large peaks and some significantly lower ones in between,
which is called the weighing signal W,. When the latter
product is compared with the original S signal, one can
easily see that the large peaks are obviously coincident
with true good beats while the small spikes correspond to
other changes (not pulses) in that signal. A spike detection

http://www.biomedical-engineering-online.com/content/4/1/48

routine based on the first derivative sign change identifies
all maxima, including both the large and the small spikes;
thus, filtering is required to remove the small spikes and
preserve the large ones.

Weighed Filter

The sequence of maximum spikes after multiplication
(Figs. 2 and 3) can be used as a filtering criterion to sepa-
rate out the true beats. Whenever the interval between two
pulses is much smaller than the cardiac period (for exam-
ple, less than one half), it can be assumed that the two
spikes are too close together and cannot represent a begin-
ning (and ending) of a whole cycle. Consequently, one
must be removed.

Since, by and large, the beginning of a cycle corresponds
to a steep rise time, the second derivative has more weight,
and the multiplication result clearly indicates to retain
that particular spike (Fig. 3, trace W,).

Mathematically, this is treated as
t(si+1) - t(si) <T011 x Tc [2]

where ¢(S;,,) and t(S;) are, respectively, the time of appear-
ance of spikes i+1 and i in signal W, Tol, is a preset toler-
ance value and T, = 1/fc stands for the cardiac period
expressed in seconds. Each pair of adjacent spikes is ana-
lyzed and, if the comparison result is true, the smallest is
removed and the new pair of contiguous spikes is now
chosen. If the result is false, i is incremented. The process
repeats until no true result is obtained. Adjusting the tol-
erance value Tol;, the number of removed spikes can be
increased or decreased.

Frequency Filter

Once all small spikes have been removed, the remaining
spikes must be analyzed to check if they correspond to the
beginning and end of a cycle. Figure 3 (fifth trace W,)
shows the peaks remaining after the weighed filter. Spike
4 is a misdetection that must be removed. A second filter
matches pairs of peaks (not necessarily consecutive)
checking whether they correspond to a beat limits or not;
the distance between them should be fixed between T, +
Tol,, where the latter is a second tolerance value, generally
chosen close to 20%.

Starting from the first detected spike 1 at time t (Fig. 3,
fifth trace), and assuming it corresponds to the beginning
of a cycle, a second spike should be located within the
interval t + T, + 20%. If this second spike exists, the time
corresponding to both spikes is stored as the limits of a
cardiac cycle. In fact, this second spike exists in Figure 3,
marked as 2. The process is repeated starting now from 2
and so on. Now, let us consider that the first spike
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detected was 4. When searching its partner spike ahead,
the algorithm will not find it because 5 and 6 are, respec-
tively, too close and too far from 4. In this case, 4 is dis-
carded and the process continues to the next one.

Cardiac period has been assumed constant up to now,
however, it is known to be modulated by the respiratory
heart rate response. To have a better estimation of T,, each
time two spikes are found to be (T, + Tol,) seconds apart,
their difference is used to update a new value of T, to be
applied in the following calculations.

Statistics

For each of the 40 patients, a 30 s trace was chosen at ran-
dom, which was analyzed by two operators. One of them
(operator 1) was trained and familiar with the procedure
and another (operator 2) without any previous training.
Both operators received the same instructions regarding
the analysis to be performed. Each operator marked man-
ually the beginning and end of each beat as the 30 s sam-
ple was presented on the monitor. The selection criterion
was to identify that point previous to the rapid rising of
the ejective period, not necessarily coincident with the
previous minimum. In this way, there were two marks
that clearly bounded each positive cycle. When the beat
limits were not clearly defined or the signal was lost due
to circuit saturation, the portion between the last observed
beat and the following beginning was classified as nega-
tive (i.e., rejected). Thereafter, the algorithm was applied
and coincidences with the operators' results were
searched.

Since an exact coincidence is almost nil, we adopted a
threshold level to specify the maximum difference to be
accepted between the limits marked by the operators and
the algorithm. A program was developed to determine the
beginning and ending points closest to those selected by
the operator (Fig. 4). When the addition of the differences
(At, + At,) was lower than 10% of the cardiac period, the
beat was considered as true positive (tp). If the difference
was larger, the beat was classified as false negative (fn).
However, when the operator could not bound the beat
there is an undetermined signal length, which must not be
processed. If coincidently the algorithm did not classify
any beat within that same length, the selection is marked
as true negative (tn). Instead, if the algorithm picked up at
least one beat, the selection is considered as false positive

().

Sensitivity of the procedure was defined as the percentage
of beats correctly selected by the algorithm with respect to
the total number of beats marked as true by the operator,
that is,

s[%] =t /(tp + fn) x 100  [3]

http://www.biomedical-engineering-online.com/content/4/1/48
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Figure 4
A single beat indicating the maximum error admitted for the
statistical analysis.

Accuracy, instead, was defined as the total number of sec-
tions correctly rejected by the algorithm with respect to
the total number of sections discarded by the operator,

al%]=tn/(tn +fp) x 100 [4]

Bounding of the beats is also important for the correct
synchronization of the averaging procedure. Thus, those
beats correctly classified by all three methods (operators 1
and 2 and the algorithm) were selected to compare the
synchronization ability. For that matter, the time between
the beginning and the first maximum coincident with
ventricular ejection was measured for each beat. This time
was, of course, different for the operators and the algo-
rithm, each with a specific coefficient of variation. The lat-
ter was taken as the statistical estimator.

Moreover, for each patient a correlation analysis was car-
ried out between all possible combinations of the tp beats.
For each pair of beats a correlation factor was obtained,
thus producing a non-normal distribution when all com-
binations are considered, which is usually characterized
by the median value. In the end, we obtained three of
these values for each patient according to the classification
methods (two operators and algorithm).

The coefficient of variation (also with a non-Gaussian dis-
tribution) and the median should be analyzed by non-
parametric techniques. In our case, we used Friedman's
ANOVA and Kendall Concordance.

Results

Figure 5 shows three examples of signals and their bound-
ing obtained by the algorithm. Its last section D belongs
to an arrhythmic patient.
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Several signals and the results of the algorithmic process. Vertical lines mark the beginning (dotted) and end (dashed) of each
cycle. (A) Patient with Parkinson disease; (B) Deflation of the cuff; (C) Inflation of the cuff. The two latter in the same patient.
Section D shows the ECG and the plethysmographic signal from a patient with cardiac arrhythmia.

Table I: Results of the statistical analysis for both operators.

Operator | Operator 2
POSITIVE NEGATIVE POSITIVE NEGATIVE
Algorithm POSITIVE 1403 (tp) 5 (fp) POSITIVE 1321 (tp) 7 (fp)
NEGATIVE 44 (fn) 0 (tn) NEGATIVE 124 (fn) 0 (tn)

The sensitivity was 97% and 91% for operators 1 and 2,
respectively. Patients with low sensitivity were
retrospectively analyzed. Only one patient produced a low
sensitivity according to the criteria of both operators; after
careful analysis, we found large heart rate variability
mainly due to ectopic beats (Fig. 5D, Table 1).

Accuracy for both operators was 0 because traces marked
as negative were somehow classified by the algorithm,
thus, producing fp beats.

The synchronism variability analysis gave off significant
values p (p < 0.01) for the two statistics. However, Kendall
coefficients were 0.62 and 0.17, respectively, for the
median correlation and the coefficient of variation. Such
results suggest that synchronism is not the same for the
three separation criteria. Figure 6 shows the typical over-
lapping of several beats along with their averaged result.
This represents a good way of visualizing what could be
the pattern of, say, a normal beat, which could serve as a
comparison reference. The same beats were separated
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Superimposed separated beats (thin colored lines) and one averaged beat (thick black line), from a particular patient, as they
were singled out by (A) Operator |, (B) operator 2 and (C) the algorithm. Section (D) shows the histogram of correlation val-

ues for all beats.

according to the criteria of the two operators and the algo-
rithm. The right lower graph shows a histogram with the
correlation coefficients of all beats. Very few produced low
values while most of them are grouped rather close to 1;
as expected, the algorithm produced the maximum of the
three.

The detection routine for the average cardiac frequency
was a critical factor in the analysis of the algorithm; any
failure in it can produce an error that would propagate to
any subsequent processing. Thus, this parameter was
checked by visual inspection of the 40 signals and their
frequency spectra.

Discussion

This algorithm allows the averaging of non-invasively
obtained arterial pulses for the evaluation of the vascular
response to peripheral occlusive maneuvers employing
only the plethysmographic signal. The ECG served as

monitor of cardiac activity and was used to help the oper-
ators in their task. Since the algorithm was designed think-
ing of a possible commercial equipment based only on
the plethysmographic signal, the ECG, cannot be included
in the analysis.

The algorithm sensitivity depends on the operator and it
was always higher than 90%. However, accuracy was
always cero. None of the sections marked as negative by
any operator was correctly rejected by the algorithm.
Analysis of the fp beats showed that the portions dis-
carded by the operators are, by and large, sections with
large drifts mainly due to cuff inflation or by movement
artifacts. An important problem lies on the fact that the
algorithm, many times, picks up beats that are placed in
the course of a drift. An operator would never select such
a beat, as exemplified in Figure 7. The possible utility of
such fp beats perhaps ought to be studied because they
might still contain clinical information.
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Figure 7

Typical case of a beat falsely classified as positive by the algo-
rithm. A are the points selected by the operator and ¥ are
those detected by the algorithm.

The algorithm is based on the analysis of the maximum
systolic slope discarding pulses not consistently separated
out from their respective previous beats or when the deriv-
ative value is too low. Usually, beat separation in blood
pressure records is obtained by the minimum value
previous to the dicrotic notch. Noise, however, may per-
turb this kind of determination. When pulses selected by
this criterion are overlapped for their averaging, the systo-
lic maximum does not temporally coincide in all beats
and a small shift, unpredictable and unknown, shows up.
Low amplitude noise, when present, tends to interfere
with the temporal location of the valve opening point.
The maximum second derivative criterion does not really
represent valve opening but rather represents maximum
rise during systole. In most of the patients, in our
experience, the latter reference showed better periodicity
and seems to be a better time reference when averaging is
required. The second event seems to be less sensitive to
interferences because signal growth during systole is larger
than noise changes. This observation was supported by
the variability analysis. Kendall coefficient indicates that
correlation is a reliable statistic and its variability is simi-
lar in the three methods.

The algorithm, due to its philosophy of design, does not
have to identify all beats, so conferring to it a practical
characteristic, i.e.,, rather frequently, due to patient's
movements, the system's electronics may saturate. In such
case, the algorithm disregards the piece resuming the
search after signal recovery. However, the two filtering cri-
teria are based on the cardiac frequency and, when the
latter is too variable (for example, due to arrhythmias) the
sensitivity falls drastically (figure 5D).

http://www.biomedical-engineering-online.com/content/4/1/48

The average cardiac frequency is not affected during the
occlusive maneuvers [16,17], and for patients without
rhythm alterations, a mean cardiac frequency assump-
tions appears as reasonable.

Tolerances, in turn, are useful to modify the algorithm's
performance according with the prevalent conditions
(noise, drift, saturation). However, sensitivity higher than
90% is enough when the recording time is long (say, 5-6
min or more). The tolerance values suggested here pro-
duced in our opinion the best results.

Interested investigators are encouraged to request the
algorithm in order to test it using signals obtained from
other sources. These authors would be happy to make it
available.

Conclusion

The proposed algorithm showed good performance as
expressed by its high sensitivity. The correlation analysis
demonstrated that, from the synchronism point of view,
the algorithm performed the best detection. Patients with
marked arrhythmic processes are not good candidates for
this kind of analysis. At most, these patients would be sin-
gled out by the algorithm to be checked by an operator.
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