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Abstract

Background: The function of esophagus is to move food by peristaltic motion which is the result
of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the
food bolus. The structure of the esophagus is layered. In this paper, the esophagus is treated as a
two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle
layer. We developed a model and experimental setup for determination of elastic moduli in the
two layers in circumferential direction and related the measured elastic modulus of the intact
esophagus to the elastic modulus computed from the elastic moduli of the two layers.

Methods: Inflation experiments were done at in vivo length and pressure-diameters relations were
recorded for the rat esophagus. Furthermore, the zero-stress state was taken into consideration.

Results: The radius and the strain increased as function of pressure in the intact as well as in the
individual layers of the esophagus. At pressures higher than 1.5 cmH,O the muscle layer had a
larger radius and strain than the mucosa-submucosa layer. The strain for the intact esophagus and
for the muscle layer was negative at low pressures indicating the presence of residual strains in the
tissue. The stress-strain curve for the submucosa-mucosa layer was shifted to the left of the curves
for the muscle layer and for the intact esophagus at strains higher than 0.3. The tangent modulus
was highest in the submucosa-mucosa layer, indicating that the submucosa-mucosa has the highest
stiffness. A good agreement was found between the measured elastic modulus of the intact
esophagus and the elastic modulus computed from the elastic moduli of the two separated layers.

Introduction testinal tract has circumferential and longitudinal muscle
The majority of previous mechanical studies on visceral  layers, submucosa and mucosa layers.

organs, including the blood vessels, have considered them

as homogenous tubes; i.e., a single layer structure. Most ~ The esophagus represents a very interesting biomechani-
visceral organs are, however, multilayered, e.g. the arteries  cal model since it is the only organ that can be separated
consist of intima, media and adventitia and the gastroin-  into two layers without damage to either layer. Hence, the
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muscle layers can be separated from the mucosa-submu-
cosa layer by dissection, leaving two intact tubes. Separa-
tion experiments of the esophagus in guinea pigs and
rabbits showed that the submucosa-mucosa layer had
larger residual strains and opening angles than the muscle
layer [1-3]. Considering the multi-layered composite
structure and the difference in zero-stress state between
the layers, the stress distribution in the wall is expected to
be non-homogeneous. Hence, the material constants
likely differ between the layers. Such a finding impacts our
understanding of biological tissue remodelling and the
function of mechanosensitive receptors located in various
layers of the wall [4-6]. Therefore, data on the strain and
stress distribution in the layers will facilitate the under-
standing of the relationship between the stress, remodel-
ling of the tissue and sensory responses. To pursue this
line of study, however, it is necessary to know how the
stress and strain in the esophagus can be computed for
each layer, and how the composite can be put together to
give the overall observed mechanical properties.

In this study we recognize that the esophagus consists of
mucosa-submucosa and muscle layers. We analyze these
layers as elastic shells. Each layer has its own zero-stress
state, and its own elastic constants. We will determine the
material properties of each layer separately. Specifically,
the material properties in the individual layers will be
computed from the pressure-diameter relation and zero-
stress state with the method of analysis presented below.
We will then propose a simple model to combine the two
layers to predict the overall behavior of the esophagus
under certain hypotheses. The limitations and implica-
tions of the model will be discussed.

Materials and methods

Eight male Wistar rats, weighing 380-420 grams, were
used in the study. Approval of the protocol was obtained
from the Danish Animal Experiment Committee. The ani-
mals were anesthetized with sodium pentobarbital (50
mg kgl ip). Papaverine (15 mg) was injected into the tail
vein to relax the visceral muscles and to euthanize the rat.
The cervical segment of the esophagus was dissected free
from its adjacent tissue. Next, the thoracic and abdominal
cavities were opened. After pouring cold Krebs solution
into the thoracic cavity, the esophagus was quickly dis-
sected free from adjacent tissues and its in situ length was
measured. A 2-cm-long segment from the middle part,
intended for the distension test, was marked. The length
of this segment and that of the entire esophagus was
measured. The entire esophagus was then cut at the prox-
imal and distal ends including the very first part of the
stomach, and immediately placed in calcium-free Krebs
solution containing 6% dextran and 0.25% ethylene gly-
col-bis (B-aminoethyl ether)-N,N,N,N-tetraacetic acid
(EGTA). The solution was aerated with a gas mixture of
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95% 0O,-5% CO, at pH of 7.4. After careful removal of all
extra-esophageal tissue, the length was measured in vitro.

Pressure-diameter experiments

The middle part of the intact esophagus was mounted in
an organ bath containing the Ca+*2-free Krebs solution.
The segment was stretched to the in vivo length and fixed.
The distal end was closed whereas the proximal end was
cannulated and connected to a fluid container. After pre-
conditioning the tissue with pressures up to 8 cmH,0O, a
ramp test was performed where the pressure was changed
continuously at a rate of 2 cmH,O per minute up to a
pressure of 8 cmH,0. A video camera (Sony CCD camera)
monitored the changes in diameter and length during the
distension and images were grabbed by a PC.

After the test of the intact esophagus, the muscle and sub-
mucosa-mucosa layers were gently separated into two
tubes. The tubes were studied separately using the same
procedure outlined above. The only difference was that
the maximum pressure was set to 6 cmH,0O.

The zero-stress state of the esophagus

The zero-stress state of the esophagus was obtained in
accordance with the method used for blood vessels [7].
Briefly, six rings of 1 mm length were cut from the intact
esophagus and from the separated layers and were then
cut in the radial direction to obtain the zero-stress state.
The choice of the ring length was based on pilot studies.
The radial cut caused the rings to open up into sectors. The
shape of each ring segment at the zero-stress state was
photographed 60 minutes after the radial cut to allow the
creep to subside.

Data analysis

The morphometric measurements were made using Sig-
maScan Pro image analysis software (Jandel Scientific,
Germany). The data were obtained from the images of the
tubes in the distended state, rings in the no-load state and
sectors in the zero-stress state. In the distended state for
both the intact esophagus and the separated tubes, images
were analyzed for each 0.5 cmH,O increment. The outer
diameter was measured at each pressure level and aver-
aged over three locations. At the no-load and zero-stress
states, the inner and outer circumferential lengths were
measured along with the thickness and area of the wall
and layers (for calculation of inner, outer or mid-layer cir-
cumference). The opening angle was defined as the angle
subtended between two radii drawn from the midpoint of
the inner wall to the tips of the inner wall of the open
sector.

The stresses and strains of the esophagus and its sublayers
in the pressurized state were determined under the
assumption that the geometric configuration of the lumen
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is cylindrical, the wall of the esophagus is incompressible,
and the material in each layer is homogenous. Based on
the above measurements and assumptions, parameters of
the esophagus such as the luminal radius (r;,), the wall
thickness (Hp), the mid-wall circumference (C,, ) at a
given pressure were computed as 1, = [(1%, , - A,/ 74,)]1/2,
H,=r1,,- 1 and C = 27(1; , + H/2). The outer radius
(r,.p) of the intestine was computed according to the outer
diameter (D,). The circumferential Green's strains and
Kirchhoff's stress were computed according to the
equations:

2 2
_ Cm—p = Cin—z

Green'’s strain: 5
Cm—z

M

where Cm-z is the mid-wall circumference at the zero-
stress state.

. API'l'_p
Kirchhoff's stress: = > 2
H,A
Che
A=""7
Cm—z

where

The tangent modulus can be estimated from the slope of
the stress-strain relation as

_as

E=
Ag

()

The tangent modulus given by Eq. (3) corresponds to
Young's modulus in the linear stress-strain regime.

Integration of Two-Layers: An Analytical Model

We assume that the circumferential stress-strain relation-
ships for the inflation experiment obey Hooke's law for
each layer

O™ = E ggsme gosm) ogf™ = E gfMegfm  (4)

where o, E and e indicate the Cauchy stress, Tangent mod-
ulus and Green strain, respectively. 6, sm and m indicate
the circumferential direction and the submucosal and
muscle layers, respectively.

In general, the circumferential stress is a function of cir-
cumferential and longitudinal strain. In the present anal-
ysis, we assume that the cross-modulus is small such that
the longitudinal term is negligible in comparison with the
circumferential term and hence eq. (4). We further
assume that the esophagus is a circular cylinder. The basic
equations of equilibrium and deformation are given in
Flugge [8]. Let x denote the longitudinal axis, & the cir-
cumferential axis and z the radial coordinate. N ,denotes
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the tensile membrane stress resultant in & direction. The
displacement in the x, 6, and z directions of a point on the
neutral axis surface are denoted by u, v, and w, respec-
tively. The displacements of any point, A, is denoted by
Uy, vV, W, as follows: 1) u, = displacement along the gen-
erator, positive in the direction of increasing x; 2) v, = dis-
placement along a circle of radius a + z, positive in the
direction of increasing € and 3) w, = radial displacement,
positive outward.

According to the Bernoulli-Kirchhoff hypothesis (all
points lying on one normal to the neutral surface before
deformation remain on the normal after deformation),
we have

Ug =U—2 w vy=| 2 - 2 w wy =w (5)
AT af | a aloo | AT

where a indicate the neutral axis.

The circumferential strain which is assumed to be small is
given by

R E e E b e AP B

The circumferential membrane stress resultant N ,is given
by

Ny = jr’: oMz + j; o™ dz @)

By substitution of Egs. (4), (5), and (6) into Eq. (7) and
noting that in the inflation experiments u, v, and w do not
change with ¢ and w does not change with x, we obtain

L w s -m w Tm psm w
Byl — lde=["Ef'| — |de+|"E dz 8
S P S el SN Pl SR
Eq. (8) can be integrated to yield
1 sm m
Eyln| 25 = gyran| Ly g £ (9a)
a +rgy, a1, a™ +r,

where I stands for intact esophagus; al, as™ and a™ are the
neutral axes for the submucosa (1.35) and muscle (1.15).
Equation (9) can be solved in terms of E!as

sm m

a + 7 a  +r.
E"in| & Fm | gmn s

sm m m

a +T5m a +r

al +7,
In i
a +rgy,

Hence, we can compare measured E! from Eq. (3) with E!
computed from Esm and Em as given by Eq. (9b).

El = (9b)
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Statistical Analysis

The data were assumed to be representative of a normal
distribution. The results are expressed as means + SE. Stu-
dent's t test and analysis of variance were used to detect
possible differences between curves obtained from the
intact esophagus and the two sublayers. The results were
regarded as significant if P < 0.05.

Results

The esophagi shortened by approximately 30% after exci-
sion. However, the segments were stretched to the in vivo
length before the mechanical tests. The length was fixed
during the distension protocol.

The outer radius, wall thickness, and circumferential
Green's strain as function of pressure is shown in figure 1.
The radius and the Green's strain increased as function of
pressure in the intact as well as the separated esophagus.
At pressures higher than 1.5 cmH,O the muscle layer had
a higher radius and strain than the mucosa-submucosa
layer. The strain for the intact esophagus and for the mus-
cle layer was negative at low pressures indicating the pres-
ence of residual strains in the tissue. The thickness of the
intact wall and the separated layers decreased as function
of pressure. The mucosa-submucosa was the thinnest
layer.

Cross-sectional views of the esophagus and its two layers
were obtained at the no-load state and zero-stress state.
Upon reducing the no-load state to the zero-stress state by
cutting the ring radially, the opened ring expanded itself
into a sector with an opening angle of about 140° for the
intact esophagus (figure 2, top). Separation of the
mucosa-submucosa layer from the muscle layer resulted
in the release of compressive forces in the mucosa-submu-
cosal layer and tensile forces in the muscle layer. After sep-
aration the opening angle of the muscle and the mucosa-
submucosa approached 45 and 90°, respectively. Statisti-
cally significant differences in opening angles were found
between the intact segment and the mucosa-submucosa
(p < 0.05), between the intact segment and the muscle
layer (p < 0.05), and between the two separated layers (p
< 0.05). In comparison to the specimens in the state of
zero bending moment, the buckling of the mucosa
became less apparent but still present after separation.

The stress-strain data are depicted in figure 2 (middle) in
the sense of Kirchhoff stress and Green strain. A non-lin-
ear (exponential) curve was used to fit the data. The stress-
strain curve for the submucosa-mucosa layer was located
to the left of the curves for the muscle layer and for the
intact esophagus at strains higher than 0.3, indicating that
the submucosa-mucosa has the highest stiffness. Figure 2¢
shows the relationship between the tangent modulus and
stress for the various layers. It can be seen that there is a
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linear relationship between the tangent modulus and the
stress as a result of the exponential nature of the stress-
strain relationship. Furthermore, the modulus is signifi-
cantly higher in the submucosa layer than in the muscle
layer and the intact esophagus as predicted from figure 2
(middle).

Figure 3 shows a composition of the predicted (Eq. 11)
and measured Young's modulus for the intact esophagus.
It can be seen that the agreement is good in the low stress-
strain regime (pressure < 4 cmH,0O) where the assump-
tion of linear stress-strain relationship is most justified.

Discussion

Scope of Study and Major Findings

The peristaltic transport of swallowed material by the
esophagus to the stomach is a neuromuscular function
affected by a number of neuromuscular factors [9-14]. The
nervous system and the contractile muscle behavior of the
esophagus have been studied extensively [10,15] but the
mechanics of the esophagus tissues is lagging far behind.
The stress-strain-velocity history of the tissues of the
esophagus is unknown. Since the esophagus is a tube, tra-
ditionally in mechanical analysis the wall material is
treated as homogeneous without further analysis into lay-
ers. The effect of the two layers on the overall mechanics
of the esophagus is examined in this article.

The unique structure of the esophagus as a composite of
submucosa and muscle layers allows the separation of the
two layers and an experimental determination of the con-
stitutive properties of each layer. This is difficult to carry
out in the blood vessels or in other organs. The coronary
arteries can be separated at the external elastic laminae but
only by tearing the adventitial layer [16]. The results show
that the material properties differ between the esophageal
intact wall, the muscle layer, and the submucosa layer.
The submucosa layer is the stiffest.

A Two-Layer Model

A major difference between the structures of the esopha-
gus and blood vessels is the ease with which the wall can
be separated into layers. This fact allowed us to obtain the
stress-strain relation and the zero-stress state of the
esophageal tissue layers, as reported above. In contrast, in
spite of the extensive effort on theoretical and experimen-
tal bilayer models of arteries by Berry et al [17], Demiray
and Vito [18], Maltzahn et al [19,20], and Rachev [21], the
mechanical properties and the zero-stress states of the bi-
layers of arteries are still largely unknown. For the esopha-
gus, a practical question is: Can we regard the wall of the
esophagus as a homogeneous tissue. Or must we treat it as
composed of a mucosa-submucosa layer and a muscle
layer? Or must we model it with even more detailed struc-
tures? Or can we model it as simply two concentric, non-
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Figure 3

The elastic modulus as function of pressure for the intact esophagus. The curve with the error bar is the experimental date
whereas the other curve is the theoretical curve. The theoretical fit is within one SD for the low pressure regime.

interacting layers. The answer depends on the purpose of
our investigation: What features of the organ does the
investigator wish to know. In this article, we examined
both the bi-layer model and the monolayer model,
present a comparison and propose a simple model to
explain the interaction of the two layers.

The opening angle of the inner submucosa layer is larger
than that of the outer muscle layer which agrees with our
previous report [1,3] and layered artery [22,23]. However
the opening angles were largest in the intact layer and
smallest in the muscle layer which differs somewhat from
those obtained in guinea-pig [1] and in rabbit [3]. The dif-
ference may be species related but also due to experimen-
tal technique. In the previous studies esophageal rings
were first cut radially and then separated circumferentially
[1,3]. In the present study we first separated the inner sub-
mucosal tube from the outer muscle tube and then cut the
ring radially in each layer. We believe that this procedure
minimizes any damage inferred by the cutting. We plan to
investigate the differences in experimental protocol to rule
what causes the differences in opening angle between the
previous studies and this study.

The stress-strain curve for the submucosa-mucosa layer
was shifted to the left of the curves for the muscle layer

and for the intact esophagus at strains higher than 0.3,
indicating that the submucosa-mucosa has the highest
stiffness (figure 2). This corresponds to the finding of a
lower Green strain at pressure above 1.5 cmH2O (figure
1). The difference found below strain 0.3 and pressure 1.5
is due to that the submucosa-mucosa is compressed in the
intact esophagus. Hence, when we study this layer after
separation, it has a higher strain at low loads when com-
pared to the other specimens. Furthermore, the submu-
cosa-mucosa layer is rich in collagen. Thus, a contributing
factor to the observed difference between layers may be
that collagen during stretch first uncrimps with little
resistance, then at higher loads has a high stiffness [7]. We
observed that the stress-strain relationship of the intact
esophagus and its two layers is exponential. The tangent
modulus, which is the slope of the stress-strain relation-
ship, varies exponentially with the strain (according to the
stress-strain figure) and linearly with the stress. Hence, it
is simpler to examine the modulus as function of stress.
For a nonlinear stress-strain relationship it is meaningless
to specify the modulus unless a stress or strain level is pre-
scribed. Fung proposed that the slope of the tangent mod-
ulus-stress relationship, ¢, can be used as a measure of
stiffness [24]. The data in this study clearly shows that the
mucosa-submucosa layer is the stiffest which is in accord-
ance with previous experience and the fact that submu-

Page 7 of 9

(page number not for citation purposes)



BioMedical Engineering OnLine 2004, 3:40

cosa contains large amounts of collagen. Therefore, the
esophageal wall should be modelled as at least a two-lay-
ered composite system, as has also been proposed for
arteries [18-20,22,23,25,26].

Limitations of Study

A limitation of the study is that only uni-axial data were
obtained in this study. Intuitively the circumferential
direction seems to be the most important for cylindrical
organs. Since longitudinal changes may also be important
for esophageal function, future studies should implement
bi- or tri-axial data. Another limitation is that the analyti-
cal model is restricted to the linear stress-strain regime.
Furthermore, the esophagus and its layers are assumed to
be cylindrical tubes, and that the esophageal tissue is
incompressible. The last assumption is possibly true in
the pressure range studied and it is also known from yet
unpublished studies that the esophagus attains circular
geometry both at the inner and outer surfaces even at low
pressures. The linearity assumption needs to be general-
ized. We also assumed that each layer was homogeneous,
though it is well known that the muscle layer is composed
of longitudinal and circumferential muscle bundles.
Hence, the muscle layer can be modeled into further
sublayers.

Conclusions and significance of research

We have developed an analytical tool that can be used to
analyze the mechanics of bilayered organs. The model was
used to study the esophagus. The model may be useful for
studying the mechanical properties of other organs that
can be separated into layers. There are two immediate
implications of the results in this study for the under-
standing of esophageal function and for clinical practice.
It is well known that pain may arise from the esophagus
and that the receptors involved in the mechanotransduc-
tion are located at different positions in the wall. Detailed
information about the stress and strain distributions in
the layers is therefore important for the interpretation of
receptor-mediated responses. Furthermore, the stress
reduction during loading (caused by the residual stresses
in the layers) may serve as a mechanism to reduce damage
to the esophagus during excessive loadings caused by
swallowing of large objects or by acute esophageal
obstruction.

For the esophagus the model may be applied to the study
of remodeling of the individual layers in response to dis-
ease. For example, in systemic sclerosis the muscle layers
in esophagus are slowly replaced by fibrotic tissue, creat-
ing a passive conduit (fall pipe). It is already known that
the esophageal stiffness increase in patients with systemic
sclerosis [27,28] but we know very little about the
mechanical remodeling in each layer.
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