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Abstract

Background: The third and fourth heart sound (S3 and S4) are two abnormal heart
sound components which are proved to be indicators of heart failure during
diastolic period. The combination of using diastolic heart sounds with the standard
ECG as a measurement of ventricular dysfunction may improve the noninvasive
diagnosis and early detection of myocardial ischemia.

Methods: In this paper, an adaptive method based on time-frequency analysis is
proposed to detect the presence of S3 and S4. Heart sound signals during diastolic
periods were analyzed with Hilbert-Huang Transform (HHT). A discrete plot of
maximal instantaneous frequency and its amplitude was generated and clustered. S3
and S4 were recognized by the clustered points, and performance of the method
was further enhanced by period definition and iteration tracking.

Results: Using the proposed method, S3 and S4 could be detected adaptively in a
same method. 90.3% of heart sound cycles with S3 were detected using our
method, 9.6% were missed, and 9.6% were false positive. 94% of S4 were detected
using our method, 5.5% were missed, and 16% were false positive.

Conclusions: The proposed method is adaptive for detecting low-amplitude and
low-frequency S3 and S4 simultaneously compared with previous detection methods,
which would be practical in primary care.

Keywords: Third heart sound, Fourth heart sound, Hilbert-Huang Transform, time-fre-
quency analysis, Phonocardiogram

1. Introduction
Auscultation has long been important for the diagnosis of heart diseases. Heart sounds

heard by a stethoscope can be seen as mechanical instructions that indicate the opera-

tion of the cardiac system. The third and fourth heart sounds, which are two abnormal

components of heart sounds during diastolic periods, have been found to have rela-

tionships with myocardial dysfunction [1-5]. The third and fourth heart sounds have

been discovered over a century [6]. The third heart sound (S3) occurs in the rapid fill-

ing period of early diastole. It is often present in systolic dysfunction [7]. Abnormal S3

is considered to be caused by altered physical properties of ventricle or increased in

the rate and volume of blood flow in the rapid filling phase during ventricle diastole

[5]. Sometimes it occurs in children. However, the auscultation of S3 in adults, espe-

cially elders older than 40 years old, is abnormal and is connected with heart failure.

The fourth heart sound (S4) occurs in late diastolic periods right before the first heart
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sound. The presence of S4 is due to the forceful contraction of the atria in an effort to

overcome an abnormally stiff or hypertrophic ventricle [8]. It can be detected in

patients with diseases of diminished left ventricular compliance, such as acute myocar-

dial infarction or ischemia [9].

The importance of S3 and S4 has been notified early in 1970s [5]. In 1997, M. Ishi-

kawa et al. discovered that the appearing of S4 during long-term follow-up of acute

myocardial infarction may be a strong indicator of poor prognosis [1]. Later in 2006,

G. Marcus et al. have indicated that S3 has high specificity and can be a marker of left

ventricular dysfunction [3]. In 2009, E. Lee et al. has proved that patients without clini-

cal ST criteria for ischemia developed new or increased-intensity S3 and S4 during

percutaneous coronary intervention induced ischemia [2]. Therefore, the combination

of using diastolic heart sounds with the standard ECG as a measurement of ventricular

dysfunction may improve the noninvasive diagnosis of myocardial ischemia.

Several studies have verified the characteristics of S3 and have applied time-fre-

quency methods to detect S3 [10,11]. However, there have been no efficient methods

specific for S4 detection due to its lower amplitude and uncertain frequency. Time-fre-

quency methods have already been used for heart sounds analysis [12], but mainly in

the analysis of the first and second heart sounds [13,14]. These advanced signal proces-

sing methods, such as Short Time Fourier Transform, Wigner-Ville Distribution, and

Wavelet transform, have some limitations [15,16]. The major disadvantage of the Short

Time Fourier Transform is the resolution trade-off between time and frequency

domain. The Wigner-Ville Distribution provides better resolution in both time and fre-

quency domain, but its bilinear characteristic produces cross-term interferences. In

recent years, the wavelet transform has become a widely used and versatile time-fre-

quency method. The wavelet transform has variable time and frequency resolution,

and it is able to carry out local analysis. These advantages made wavelet transform

received considerable research attention. In 2005, Hult et al. have developed a wavelet-

based method for recognition of S3 [17]. However, the wavelet transform is not an

adaptive method. Once the mother wavelet function is generated, it cannot be modi-

fied again to adapt to non-stationary signals. As non-stationary signals with large vari-

eties of amplitude and frequency, heart sounds with S3 and S4 are more suitable to be

analyzed by the Hilbert-Huang transform (HHT). HHT has been used to analyze heart

sound signals in previous studies [18,19], while most of these methods are proposed to

classify normal heart sound components such as S1 and S2. The analysis of abnormal

heart sound components are still in research. Hilbert-Huang transform is a time-fre-

quency method proposed by Norden Huang in 1998 [20]. It is a powerful method in

the analysis of non-stationary and nonlinear signals. The empirical mode decomposi-

tion of HHT can decompose heart sound signals adaptively to numbers of intrinsic

mode functions, and Hilbert transform of these functions generates instantaneous fre-

quency of signals. Hilbert-Huang transform provides fine resolution of three-dimen-

sional time-frequency distribution of energy.

In this paper, we proposed a further extraction of the information of instantaneous

frequency carried out by Hilbert-Huang transform. The extracted frequency-magnitude

distributions have been clustered and further analyzed. Components of S3 and S4 in

abnormal heart sound could be recognized and compared with normal heart sound.

Performance of the method was estimated quantitatively.
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2. Materials and Methods
An adaptive-based algorithm was developed for the detection of S3 and S4 which are

non-stationary signals with low amplitude and frequency. The schematic diagram of

this recognition method was demonstrated in Figure 1. The proposed method could be

divided into three steps: (1) Preprocessing, (2) Hilbert-Huang Transform and (3) Clus-

tering and recognition. Details of these three steps were described in the following

subsections.

2.1 Preprocessing

Heart sound signals recorded by electronic stethoscopes are often encompassed with

high frequency noise, hence preprocessing is essential. As illustrated in Figure 1, the

Figure 1 Diagram of the recognition method.
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signals were filtered to eliminate the noise, and followed by normalization and segmen-

tation. These steps were illustrated in the following:

Filtering and Smoothing: Since heart sound signals are mainly less than 600 Hz, a

Butterworth low-pass filter designed by digital finite impulse response (FIR) was

applied. Hilbert transform was then used to produce the envelope of the signals. The

envelope was denoted as xenvelope[n], where

xenvelope [n] =
∣∣x [n] + j × hilbert {x [n]}∣∣ , (1)

and x[n] was the raw data of heart sound signals.

Normalization: The amplitude of different heart sound signals were all normalized

and limited to the scale of [-1 1]. The equation of normalization is in the following:

xnorm [n] =
xenvelope [n]

max
∣∣xenvelope [n]∣∣ . (2)

An example of normalization and enveloping of an abnormal heart sound record

(Figure 2(a)) was shown in Figure 2(b).

Segmentation: The heart sound signals should be segmented into cycles before pro-

cessing. Four terms were recognized during this step: the first heart sound (S1), the

second heart sound (S2), systolic period, and diastolic period. To detect these terms

Figure 2 The envelope (b) and Shannon Energy (c) of a heart sound record (a). The threshold was
shown with a dashed line in (c).
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with noise interference rejection, Shannon energy (SE) of signals was used and calcu-

lated as follows [21-25]:

SE [n] = −x2norm [n] × log x2norm [n] . (3)

As shown in (3), the feature of Shannon energy was to suppress the low amplitude

components of signal [22]. The main components, S1 and S2, would therefore be

picked up. Compared with other algorithms, such as absolute value or Shannon

entropy, Shannon energy would be better for segmenting of noisy heart sound signals

[22].

The Shannon energy of the heart sound record with S3 was shown in Figure 2(c).

The threshold value was initially set to 70% of maximal value. If the threshold is cho-

sen upper than 70%, some S2 with lower peak would be excluded and missed. But for

threshold lower than 70%, noise, murmur, or additional heart sound would easily be

picked up and affect the results of S1 and S2 recognition. Nevertheless, higher thresh-

old is rather better because it would be easier to re-pick the missing S2 than dealing

with noises. S1 and S2 were recognized by three steps in the following [24]:

a. If two peaks higher than the threshold were detected within 50 ms, the one with

lower energy was eliminated.

b. For every interval between peaks, an interval with shorter length than the previous

interval was denoted as a systolic period, while the other one was a diastolic period.

The uncertain intervals were annotated.

c. For those uncertain intervals, a secondary threshold was set to find S1 or S2 which

probably not have been recognized.

These steps were applied to ensure that S1 and S2 could be picked out correctly.

Systolic and diastolic periods were then recognized. S3 and S4 with larger amplitudes

could also be detected during segmentation.

2.2 Hilbert-Huang transform

Instantaneous frequency and its magnitude of preprocessed heart sound signals were

extracted by Hilbert-Huang transform (HHT). HHT was used to adaptively decompose

the non-stationary and nonlinear signals and extract the instantaneous frequency. As

illustrated in Figure 1, HHT consisted of two steps: Empirical mode decomposition

(EMD) and Hilbert transform. EMD was used to adaptively decompose the signal into

a series of intrinsic mode functions (IMFs). Hilbert transform was then carried out to

acquire instantaneous frequency and amplitude and constitute the time-frequency-

energy distribution, Hilbert-Huang spectrum, of the signal.

2.2.1 Empirical mode decomposition (EMD)

The heart sound signal was first decomposed to IMFs. To acquire the IMFs, local

minima and maxima of the signal were found out. The envelopes of the local minima

and maxima were formed by cubic spline fitting, respectively. Let m1(t) denoted as the

average of these two envelopes, and the original signal was subtracted by m1(t) as fol-

lows:

x (t) − m1 (t) = h1 (t) . (4)
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Took h1(t) as a new signal and repeated the process described above until the result-

ing h1(t) met the criterion of the IMF [20]. The resulted signal was the first IMF

defined as c1(t), and the residual signal was r1(t), where

r1 (t) = x (t) − c1 (t) . (5)

The r1(t) was then considered as a new original signal and the iterative process was

again executed to extract the IMFs until the kth residual signal rk(t) became a singular

function, which meant that no more IMF could be further extracted. The x(t) was

therefore expressed by

x (t) =
k∑
i=1

ci (t) + rk (t), (6)

and c1(t) to ck(t) were k IMFs of the signal.

EMD method would make the signal more symmetrical by eliminating the riding

waves and decomposes the signal adaptively.

2.2.2 Hilbert transform

The second step of HHT, Hilbert transform, extracted the instantaneous frequency and

amplitude of each IMF. Each component ci(t) of IMFs was Hilbert transformed,

denoted by yi(t), so:

yi (t) =
1
π

∫ ∞

−∞

ci (τ )

t − τ
dτ . (7)

The combination of xi(t) and yi(t) was an analytic signal zi(t), where

zi (t) = xi (t) + jyi (t) = ai (t) e
jθi(t), (8)

and xi(t) and yi(t) were respectively the real part and imaginary part of zi(t). The

amplitude and phase of zi(t) were defined by the following expressions:

ai (t) =
√
x2i (t) + y2i (t), (9)

θi (t) = tan−1
(
yi (t)
xi (t)

)
. (10)

Since the definition of the instantaneous frequency was

dωi (t) =
dθi (t)
dt

, (11)

the original signal could be expressed by

x (t) =
n∑
i=1

ai (t) ej
∫

ωi(t)dt . (12)

The instantaneous frequency and amplitude could therefore be acquired for further

extraction, or simply formed a time-frequency plot, denoted as the Hilbert-Huang

spectrum.
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2.3 Clustering and Recognition

In this subsection, the relationship between instantaneous frequency and its amplitude

were plotted and clustered. By correlating the clustered points with the original sound

signal, the positions of S3 and S4 were labeled. For those possibly missing components,

an iterative method was applied to enhance the accuracy.

The components with the maximal amplitude of each instantaneous frequency were

selected in (12). That is to say, as simplification we considered only the maximal con-

tribution of frequency at a time. The extracted instantaneous frequency and its ampli-

tude were shown in Figure 3 and 4. A normal heart sound signal was shown in Figure

3(a). There were two major components within a normal beat, the first heart sound

(S1) and the second one (S2). In comparison to Figure 3(a), there were additional com-

ponents, S3 and S4, during diastolic periods (S2-S1 interval) in Figure 4(a). The ampli-

tudes of S3 and S4 were smaller than S1 and S2 with great varieties.

The maximal instantaneous frequency and its amplitude were therefore used to dis-

tinguish S3 and S4 from the baseline noise in the interval from S2 to S1. Figure 3(b)

and 3(c) illustrated the magnitude of the maximal instantaneous frequency and the

amplitude of the frequency, and so did Figure 4(b) and 4(c). Our data were sampled

with a sampling frequency of 8000 Hz. Figure 3(c) indicated that the maximal instanta-

neous frequency of a normal heart sound was mainly lower than 100 Hz. The S1 and

S2 were around 50 Hz. Components of the baseline signal were with low frequency,

while there were a few numbers of points carried with larger frequency which might

be caused by the baseline noise. However, Figure 4(c) indicated that there were

Figure 3 A normal heart sound record (a). The magnitude (b) of the maximal instantaneous frequency
(c) was indicated as well.
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components with larger instantaneous amplitude or frequency during diastolic periods

in an abnormal record with S3 and S4.

Since there were great variations both in the amplitude and in the instantaneous fre-

quency of S3 and S4, these two parameters should to be considered simultaneously

when we were trying to verify whether there are S3 or S4 in a record. Therefore, we

plotted the maximal instantaneous frequency and its magnitude of the S2-S1 interval

of the above two heart sounds in Figure 5. The number of points depends on the reso-

lution of Hilbert spectrum. Figure 5(a) showed the relationship between the maximal

instantaneous frequency and its magnitude in a normal heart sound, whereas Figure 5

Figure 4 An abnormal heart sound with the presence of the third and fourth heart sound (a). The
magnitude (b) of the maximal instantaneous frequency (c) was indicated.

Figure 5 Frequency-Magnitude plot of the diastolic interval - (a) Normal heart sound. (b)Abnormal
heart sound with S3 and S4 after cluster analysis.
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(b) indicated an abnormal one with S3 and S4 during the S2-S1 interval. It is obvious

that the frequency-magnitude distribution of Figure 5(b) was more diverse.

K-mean algorithm was then used as cluster analysis of frequency-magnitude distribu-

tion. Also shown in Figure 5(b) with different symbol, the distributed data could be

divided into three groups: Normal points with low amplitude and frequency, uncertain

points, and abnormal points with high frequency or amplitudes. The group with the

fewest number of points was denoted as the last one. These points in the abnormal

group could then be projected to the original Hilbert spectrum and the time when

abnormal points occurred would be verified. If the abnormal signals occur periodically

right before S1, they could be denoted as S4. In contrast, S3 occurs periodically after

S2.

An iterative recognition method was then applied for detecting those components

that are possibly missing. Since S3 and S4 are various both in amplitude and fre-

quency, an adaptive detection method might occasionally misjudge noise signals as

heart sound components or vice versa. The iterative recognition method examined

whether the detected points were periodically occurring. For those positions where S3

or S4 should have been detected, the method determined if there is a missing point.

Consequently, S3 and S4 of heart sound signals could be recognized separately with

enhanced accuracy.

3. Results
Heart sound records from Cardiac Auscultatory Recording Database (CARD) of Johns

Hopkins University [26] were used to verify the recognition accuracy of the proposed

method. The CARD database contains up to 800 records, and about 15 records include

S3 or S4. Thirteen recording samples were included and the patients’ information was

provided in Table 1. There were also other databases with one or two samples with S3

or S4. However, for the consideration of their distinct sources of recording and the

validation of signals, we only used samples from CARD database as the concern of

Table 1 Information of patients including their ID, age, gender, recording position, the
presence of S3 and S4

Patient ID age gender position S3 S4

56 18 M LLSB1 no yes

139 13 M LLSB yes no

189 11 F APEX
LMSB2

occasional yes

202 22 F LLSB yes no

405 15 M APEX yes no

485 6 F APEX yes no

498 6 F APEX yes no

509 9 M APEX no yes

516 17 M LMSB yes no

830 15 M LMSB yes no

907 20 M APEX yes no

1169 14 M APEX yes no

1204 22 M LLSB yes no
1 LLSB = Left Lower Sternal Border
2 LMSB = Left Middle Sternal Border
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reliability. These samples with S3 or S4 were recorded in the position where extra

heart sounds were best heard.

An example from one of the patients with S3 and S4 after utilizing the iterative

recognition method was shown in Figure 6. For these recording samples, the total

cycles for recognition and the results of detection were demonstrated in Table 2.

Using the proposed method with iterative recognition, 90.3% of heart beat cycles with

S3 were identified, 9.6% were missed and 9.6% were false positive. For S4, 94.4% were

detected, 5.5% were missed and 16% were false positive (FP).

The overall performance of the algorithm was evaluated by sensitivity and precision.

The detected and missed component were denoted as true positive (TP) and false

negative (FN). The sensitivity and precision of the method was therefore calculated as

follows:

sensitivity =
TP

TP + FN
(13)

Figure 6 Abnormal heart sound signal with S3 and S4 labeled.

Table 2 Number of cycles where S3 and S4 are recognized, missed or false recognized

Patient ID S3 S4 Total Cycles

recognized missed False recognized missed false

139 5 0 0 5

202 2 1 0 3

405 6 0 1 6

485 6 0 0 6

498 5 1 0 6

516 5 2 1 7

830 5 0 0 5

907 5 0 2 5

1169 7 0 0 7

1204 6 0 2 6

189 4 2 0 5 1 0 6

56 7 0 1 7

509 5 0 0 5
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precision =
TP

TP + FP
. (14)

The sensitivity of the detection method was 90.4% and 94.5% for S3 and S4, and the

precision of S3 and S4 were 90.4% and 85.5%, respectively.

4. Discussion
The aim of this research was to automatically recognize S3 and S4 in an abnormal

heart sound. This method further extracted information such as the maximal instanta-

neous frequency and amplitude from a time-frequency spectrum of Hilbert-Huang

transform. The signals were adaptively decomposed and transformed. The extraction

could provide information of a heart sound signal by retaining only the main frequency

component. Then the cluster analysis compared the signal in the same record. Using

the proposed method, the sensitivity for S3 and S4 were 90.4% and 94.5%, and the pre-

cision were 90.4% and 85.5%, respectively. The sensitivity of S4 detection was better

than S3. With the adaptive method based on time-frequency analysis, the algorithm

eliminated the influence of noise and body movement. The effect of great variance of

S3 and S4 could also be eliminated. Automated recognition of S3 and S4 within the

same method would therefore be feasible.

However, the existence of extra sounds during diastolic period, such as diastolic

murmur or noise produced by the electronic stethoscope, would still contribute to mis-

judgments. Since the method includes the whole period of diastole, the interference of

these extra sounds could not be eliminated. Nevertheless, using the whole period of

diastole is essential since the occurring time of S3 and S4 is different from patient to

patient. The interference of noise could be minimized by the proposed relative cluster-

ing analysis method when the noise and murmur are no larger than S3 and S4.

The low amplitude sometimes makes S3 and S4 indistinguishable from background

noise, which would be one of the limitations of using them as diagnostic parameters.

This characteristic increase the difficulties for clinicians to hear and judge the presence

of S3 and S4, thus reduce the reliability of diagnosing by these two components. Some

recent studies have also evaluated the relationship between the level of physician

experience and accurate auscultation of heart sound [3]. These investigations mostly

claimed that clearly heard S3 and S4 could be seen as markers with high specificity

associated with left ventricular dysfunction and improve the detection rate for the

patients who are nondiagnostic by standard ECG [1,2].

Although some studies still demonstrated that the pathological influence of S3 and

S4 was under estimation [27,28], heart sounds has already been encompassed in acous-

tic cardiography which combines ECG and sound information to diagnose myocardial

ischemia [2,4,13]. The method we proposed is especially aimed for early detection and

auto-alarm for some heart diseases, such as left ventricle dysfunction, congenital heart

failure, or myocardial ischemia. For these kinds of applications, non-invasive fast and

flexible algorithms would be facile to be implemented in an ambulance or remote

home health care system. Several time-frequency methods have also been developed

for diastolic heart sound analysis in recent years [24]. In comparison with previous

detection methods, our method is adaptive for non-stationary heart sound signal.

Therefore it could detect low-amplitude and low-frequency S3 and S4 simultaneously

and would be practical in primary care.
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5. Conclusion
The proposed method based on Hilbert-Huang transform is adaptive for detecting low-

amplitude and low-frequency S3 and S4, which are seen as the early symptoms of

myocardial dysfunction. Further extraction of the instantaneous frequency was carried

out by Hilbert-Huang transform. The extracted frequency-magnitude distributions was

clustered and analyzed. Components of S3 and S4 in abnormal heart sound could

therefore be recognized. Performance of the method was estimated using the CARD

database. In comparison with previous detection methods, S3 and S4 could be detected

simultaneously using the proposed method and the performance was quantitatively

evaluated.
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