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Abstract 

Background: Osteocytes are critical mechanosensory cells in bone, and mechanically 
stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs 
(miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes 
regulate osteogenic differentiation; previous studies have indicated that some differen-
tially expressed miRNAs in mechanically strained osteocytes likely influence osteoblas-
tic differentiation. Therefore, screening and selection of miRNAs that regulate osteo-
genic differentiation in exosomes of mechanically stimulated osteocytes are important.

Results: A mechanical tensile strain of 2500 με at 0.5 Hz 1 h per day for 3 days, 
elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) lev-
els and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted 
osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially 
expressed only in MLO-Y4 osteocytes which were stimulated with mechanical ten-
sile strain, were screened, and the miRNAs related to osteogenesis were identified. 
Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, 
and miR-3058-3p) were found only in mechanically strained osteocytes, and the four 
miRNAs, eight targeted mRNAs which were differentially expressed only in mechani-
cally strained osteoblasts, were also identified. In addition, the mechanically strained 
osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 
cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-
3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased 
in the exosomes, which was verified via reverse transcription quantitative polymerase 
chain reaction (RT-qPCR).

Conclusions: In osteocytes, a mechanical tensile strain of 2500 με at 0.5 Hz induced 
the fourteen differentially expressed miRNAs which probably were in exosomes 
of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-
derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two 
of the 14 miRNAs), promoted osteoblastic differentiation.

Keywords: Osteocyte, Mechanical strain, MicroRNA, Exosomes

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhu et al. BioMedical Engineering OnLine           (2024) 23:44  
https://doi.org/10.1186/s12938‑024‑01237‑9

BioMedical Engineering
OnLine

*Correspondence:   
hanbiao@glmc.edu.cn; 
guoyong74@163.com

1 Department of Biomedical 
Engineering, School of Intelligent 
Medicine and Biotechnology, 
Guilin Medical University, No. 1 
Zhiyuan Road, Lingui District, 
Guilin 541199, Guangxi, People’s 
Republic of China
2 Education Department 
of Guangxi Zhuang Autonomous 
Region, Key Laboratory 
of Biochemistry and Molecular 
Biology (Guilin Medical 
University), No. 1 Zhiyuan Road, 
Lingui District, Guilin 541199, 
Guangxi, People’s Republic 
of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-024-01237-9&domain=pdf


Page 2 of 16Zhu et al. BioMedical Engineering OnLine           (2024) 23:44 

Introduction
Mechanical loading plays an important role in regulating bone homeostasis and remod-
eling [1]. Moderate loading activates bone metabolism and promotes bone formation, 
whereas a lack of loading leads to bone resorption or disuse osteoporosis [2, 3].

Osteocytes are derived from osteoblasts, and constitute 95% of the living cells in adult 
bone tissue [4]. Osteocytes are critical mechanosensory cells in bone, they transform the 
mechanical stimulation signals into biochemical signals towards osteoblasts and oste-
oclasts, regulate both bone formation and resorption, and subsequently initiate bone 
remodeling [4–6]. After osteocytes were stimulated in vitro by mechanical loading, the 
conditioned medium of these cells promoted osteogenic differentiation [7–9], which 
indicated that some paracrine factors of the mechanically strained osteocytes, regulated 
osteogenic differentiation of osteoblasts or mesenchymal stem cells (MSCs).

Exosomes are formed from intracellular multivesicular bodies; they can encapsulate 
bioactive molecules (RNA, DNA, proteins, and so forth) and deliver the active com-
ponents to adjacent or remote cells to influence the recipient cells, function [10–12]. 
Therefore, exosomes are mediums of intercellular communication. In recent years, 
osteocyte-derived exosomes had been studied. MLO-Y4 osteocytes cultured in  vitro, 
could release exosomes which contain some specific miRNAs, these miRNAs were 
all expressed at higher level in MLO-Y4 osteocytes than in ST2 osteoblasts, and were 
reduced in plasma exosomes derived from osteocyte-less mice [13]. Mechanical stimu-
lation increased exosomes production of osteocytes, and the exosomes contained scle-
rostin, receptor activator of nuclear factor-κ B Ligand (RANKL) and osteoprotegerin 
(OPG), which can influence osteogenic differentiation [14], the osteocyte exosomes 
contained miRNA-218 which also regulate osteogenic differentiation [15]. Moreover, 
the mechanically stimulated osteocytes (MLO-Y4 cells) produced exosomes which pro-
moted osteogenesis differentiation of MSCs [16] and periodontal ligament stem cells 
[17].

MiRNAs are small non-coding RNA molecules which can inhibit mRNA transcrip-
tion or protein translation by binding to target mRNA [18]; they play a great role in 
various biological activities, such as cell proliferation or differentiation, development 
and apoptosis, by negative regulating gene expression [19]. MiRNAs are important 
constituents of exosomes and strongly determine the effect of the exosomes on target 
cells [20, 21]. Consequently, some of the miRNAs in osteocyte-derived exosomes likely 
influence osteogenic differentiation. Previous studies had found that many differentially 
expressed miRNA in osteocytes stimulated with a mechanical tensile strain of 2500 με 
at 0.5 Hz, and some of the miRNAs probably regulated osteoblastic differentiation, such 
as miR-29b-3p [22, 23]. However, whether these miRNAs are derived from exosomes 
of osteocyte has not been verified. To date, the miRNAs of mechanically strained oste-
ocyte-derived exosomes, which regulated osteoblastic differentiation, have not been 
screened and selected.

In this study, MLO-Y4 osteocytes and MC3T3-E1 osteoblasts were stimulated with a 
mechanical tensile strain of 2500 με at 0.5 Hz, respectively. After the biological responses 
of osteocytes to the mechanical strain and the strain-induced osteogenic differentiation 
of the osteoblasts were both validated, the expression profiles of miRNAs and mRNAs in 
the two kinds of cells were analyzed using RNA sequencing. The differentially expressed 
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miRNAs in osteocytes (not in osteoblasts), and the targeted osteogenesis-related genes 
of these differentially expressed miRNAs, were screened and predicted.

MiRNAs negatively regulate their target gene mRNAs[18], high miRNA expression 
results in low expression of its target mRNA, and low miRNA expression leads to high 
expression of target mRNA. Therefore, in this study, the mechanically strained osteo-
cyte exosome-derived miRNA were speculated through analysis of the differentially 
expressed miRNAs and mRNAs in the mechanically stimulated osteocytes and the stim-
ulated osteoblasts. For example, if a miRNA is differentially expressed only in stimulated 
osteocytes and the miRNA target mRNA is expressed only in stimulated osteoblasts, the 
miRNA is likely in osteocyte-derived exosomes. The influence of mechanically strained 
osteocyte-derived exosomes on osteoblastic differentiation of MC3T3-E1 osteoblasts 
was investigated. Then, these osteocyte exosome-derived miRNAs were verified using 
RT-qPCR.

Results
Mechanical tensile strain elevated IGF‑1 and PGE2 levels and increased nitric oxide 

synthase (NOS) activity of osteocytes

A mechanical tensile strain of 2500 με at 0.5  Hz for 1  h per day for 3  days increased 
the levels of IGF-1 protein and PGE2 (a hormone-like substance), and NOS activity in 
MLO-Y4 osteocytes (Fig. 1). The results indicated that the osteocytes responded to the 
mechanical tensile strain.

Mechanical tensile strain promoted osteogenic differentiation of osteoblasts

As shown in Fig.  2, the mechanical tensile strain increased the alkaline phosphatase 
(ALP) activity of MC3T3-E1 osteoblastic cells, increased the bone morphogenetic pro-
tein-2 (BMP-2) protein level in medium of osteoblasts, and up-regulated the protein 
level of collagen type I (Col-I) and mRNA level of Runx2 in osteoblasts (Additional 
file  1). ALP, BMP-2, Col-I and Runx2 are all the indicators of osteoblastic differentia-
tion [24, 25], so that the results showed that the mechanical tensile strain promoted the 
osteogenic differentiation of osteoblasts.

Fig. 1 Levels of IGF-1 protein and PGE2 in the culture supernatant of MLO-Y4 osteocytes, and NOS activity 
in MLO-Y4 osteocytes. The ELISA result indicated that the mechanical tensile strain increased the IGF-1 and 
PGE2 levels of MLO-Y4 osteocytes (A), and increased NOS activity of the osteocytes, the NOS activity was 
determined via a colorimetric method (B). n = 6, *P < 0.05, ** P < 0.01, between the indicated groups
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Screening of osteogenesis‑related miRNAs in osteocytes

In this study, 16 miRNAs (fold change > 2 or < 0.5, P < 0.001) that were differentially 
expressed only in MLO-Y4 osteocytes which were stimulated with mechanical ten-
sile strain (not in MC3T3-E1 osteoblastic cells) were screened out (shown in Table 1). 
Among the 16 miRNAs, 14 miRNAs had osteogenesis-related target genes which were 
predicted with TargetScan, miRanda and RNAhybrid on Majorbio Cloud Platform. 
Therefore, the 14 miRNAs probably were related to osteogenesis. The 14 miRNAs and 
their osteogenesis-related target genes are shown in Table 2.

Screening of differentially expressed miRNAs only in osteocytes and these miRNAs 

targeted mRNAs differentially expressed only in osteoblasts

Bioinformatics analysis on Majorbio Cloud Platform identified four differentially 
expressed miRNAs only in osteocytes (not in osteoblasts) (miR-1930-3p, miR-3110-5p, 
miR-3090-3p, and miR-3058-3p), and the four miRNAs, eight targeted mRNAs which 
were differentially expressed at the same time only in osteoblasts (not in osteocytes) 
were as follows: Apol7b, Knop1, Kctd20, Zbtb21, Mapk14, Sf1, Dgcr2, Crk (Table  3). 

Fig. 2 ALP activity, and the levels of BMP-2, Col-I and Runx2 in MC3T3-E1 osteoblasts. The mechanical 
tensile strain heightened ALP activity of MC3T3-E1 osteoblasts (A), up-regulated Runx2 mRNA expression in 
osteoblasts (as shown by RT‒qPCR) (B), increased BMP-2 protein level in medium of osteoblasts (as shown by 
ELISA) (C), and up-regulated protein levels of Collagen type I (as shown by Western blot) (D). n = 5, * P < 0.05, 
** P < 0.01, between indicated groups. ALP activity was assayed with a colorimetric method
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In addition, the miRNAs that were differentially expressed only in osteoblasts and the 
miRNAs, targeted mRNAs that were differentially expressed only in osteocytes were not 
found at the same time.

Table 1 16 miRNAs differentially expressed only in mechanically strained MLO-Y4 osteocytes (strain 
vs control)

miRNA_ID Up/down Log2(fold change) P value

mmu-miR-205-5p Up 5.10848 2.31E-20

mmu-let-7a-2-3p Down −1.718555 5.17E-05

mmu-miR-2137 Up 4.74591 0.002226

mmu-miR-1930-3p Down −3.868798 0.000244

mmu-miR-1969 Up 3.39799 1.79E-05

mmu-miR-1970b-5p Up 1.15713 1.44E-05

mmu-miR-301b-3p Down −4.139445 6.49E-06

mmu-miR-3058-3p Up 1.72283 0.000558

mmu-miR-3090-3p Down −2.968333 0.000661

mmu-miR-3110-5p Up 4.63899 0.000996

mmu-miR-32-5p Down −4.52351 1.46E-13

mmu-miR-374b-5p Down −3.91798 1.03E-84

mmu-miR-467d-3p Down −2.935912 4.10E-05

mmu-miR-669b-5p Down −2.324477 0.000162

mmu-miR-7664-3p Up 3.02602 0.000341

mmu-miR-7656-5p Up 2.93855 0.00061

Table 2 Prediction of the target genes of 14 miRNAs that were differentially expressed in 
mechanically strained osteocytes and associated with osteogenic differentiation

MiRNA Target gene Gene description Refs.

let-7a-2-3p Arfgef1 ADP-ribosylation factor guanine nucleotide-exchange factor 
1(brefeldin A-inhibited)

[26]

miR-1930-3p Negr1 Neuronal growth regulator 1 [27]

miR-1969 Kcnmb2 Potassium large conductance calcium-activated channel, 
subfamily M, beta member 2

[28]

Ranbp9 RAN binding protein 9 [29, 30]

miR-1970b-5p Emp1 Epithelial membrane protein 1 [31]

miR-3090-3p Adcy6 adenylate cyclase 6 [32]

miR-205-5p Mgrn1 Mahogunin, ring finger 1 [33]

Plcb1 Phospholipase C, beta 1 [34, 35]

miR-2137 Sgcz Sarcoglycan zeta [36]

Prrx1 Paired related homeobox 1 [37, 38]

miR-374b-5p En1 Engrailed 1 [39, 40]

Acvr2b Activin receptor IIB [41]

Pde7b Phosphodiesterase 7B [42]

miR-467d-3p Cxcl5 Chemokine (C-X-C motif ) ligand 5 [43, 44]

miR-669b-5p Nfatc1 Nuclear factor of activated T cells, calcineurin dependent 1 [45, 46]

miR-7664-3p Axin2 Axin2 [47]

miR-3110-5p Usp34 Ubiquitin specific peptidase 34 [48, 49]

miR-3058-3p Mapk14 Mitogen-activated protein kinase 14 [50]

miR-32-5p Map2k4 Mitogen-activated protein kinase kinase 4 [50]

Nox4 NADPH oxidase 4 [51, 52]
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Osteocyte‑derived exosomes were isolated, and absorbed by osteoblasts

Transmission electron microscopy (TEM) revealed that the osteocyte-derived extra-
cellular particles were round shaped vesicles with membrane microcapsules, and the 
diameter of these vesicles was approximately 100 nm (Fig. 3A). The nanoparticle track-
ing (NTA) analysis result confirmed that the extracellular particles were enriched in the 
range of 40–160 nm, and the average diameter was approximately 80 nm (Fig. 3B). The 
result also showed that the particles concentration was 3.6 ×  109 particles/mL. In addi-
tion, using a flow NanoAnalyzer, we found that the particles released by osteocytes were 
positive for the exosome-specific markers CD63 (19.6% positive rate) and CD9 (19.8% 
positive rate) (Fig. 3C), and confocal microscopy revealed that the green PKH67-labeled 
exosomes were internalized by osteoblasts cultured in vitro (Fig. 3D). These results were 
similar to those of previous studies[53, 54]; therefore, the osteocyte-derived exosomes 
were isolated successfully.

Osteoinductive potential of mechanically strained osteocyte‑derived exosomes

After treatment with mechanically strained osteocyte-derived exosomes, the protein 
level of Col-I in the osteoblasts cultured in  vitro was increased (Fig.  4A) (Additional 
file 1), the ALP activity of the MC3T3-E1 cells was heightened (Fig. 4B), and the OCN 
mRNA in the cells was also increased (Fig. 4C). This study indicated that the mechani-
cally strained osteocyte-derived exosomes had osteoinductive potential, and probably 
could promote osteoblastic differentiation of MC3T3-E1 cells in vitro.

Verification of exosome‑derived miRNAs

The results of RNA sequencing indicated that the four miRNAs (miR-1930-3p, miR-
3110-5p, miR-3090-3p, and miR-3058-3p) were differentially expressed only in 
mechanically strained osteocytes, and their eight targeted mRNAs were differentially 
expressed only in mechanically strained osteoblasts (Table  3). Both miR-3110-5p and 
miR-3058-3p were up-regulated, so these two miRNAs were assayed in osteocytes and 
osteocytes-derived exosomes with RT-qPCR. The results of RT-qPCR indicated that the 
mechanically strained osteocyte-derived exosomes contained more miR-3110-5p and 

Table 3 Differentially expressed miRNAs only in osteocytes and their targeted mRNAs which were 
differentially expressed only in osteoblasts at the same time

MiRNAs only differentially 
expressed in osteocytes

Target gene mRNA only 
differentially expressed in 
osteoblasts

Gene description

miR-1930-3p Apol7b Apolipoprotein L 7b

miR-3110-5p Knop1
Zbtb21
Crk

Lysine rich nucleolar protein 1
Zinc finger and BTB domain containing 21
v-crk avian sarcoma virus CT10 oncogene 
homolog

miR-3090-3p Kctd20 Potassium channel tetramerisation domain 
containing 20

miR-3058-3p Mapk14
Sf1
Dgcr2

Mitogen-activated protein kinase 14
Splicing factor 1
DiGeorge syndrome critical region gene 2
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miR-3058-3p than the unstrained osteocyte-derived exosomes (Fig. 5A). The result was 
consistent with the mechanical strain increasing the expressions of miR-3110-5p and 
miR-3058-3p in osteocytes (Fig. 5B).

Discussion
Osteocytes are the most abundant cells in bone tissue, they detect mechanical loading, 
and send signals to the effector cells (osteoblast, osteoclast, and others), which mediate 
the formation and resorption of bone, respectively [4–6]. Osteocytes play vital roles in 
coordinating mechanical loading-induced bone formation via the secretion of paracrine 
factors [6, 55]. Exosomes are an essential route of cell–cell communication and “parac-
rine factor”, and miRNAs are important regulatory molecules in exosomes because of 

Fig. 3 Characterization of osteocyte-derived exosomes. A TEM image showing the shape and size of 
osteocyte-derived exosomes. B Particle size distribution of the exosomes (as shown by NTA). C CD63 and CD9 
were detected (the results of nanoflow analysis). D As shown by a laser-scanning confocal microscope, the 
green PKH67-labeled exosomes were absorbed by osteoblasts
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their negative regulation of gene expression [56, 57]. Therefore, in this study, the osteo-
genesis-related miRNAs derived from mechanically strained osteocytes, were screened 
and verified, and the osteoinductive potential of mechanically strained osteocyte-
derived exosomes was confirmed.

In this study, after MLO-Y4 osteocytes and MC3T3-E1 osteoblasts were, respectively, 
stimulated with mechanical tensile strain (2500 με at 0.5 Hz, 1 h per day, for 3 days), the 
differentially expressed miRNAs in osteocytes (not in osteoblasts), which targeted oste-
ogenesis-related genes, were screened, and the miRNAs derived from the exosomes of 
mechanically strained osteocytes were speculated via RNA sequencing and bioinformat-
ics analysis. Then, the influence of mechanically strained osteocyte-derived exosomes on 
osteoblastic differentiation of MC3T3-E1 osteoblasts, was investigated, and these osteo-
cyte exosome-derived miRNAs were verified using RT-qPCR.

The results indicated that a mechanical tensile strain of 2500 με at 0.5  Hz, pro-
moted osteogenic differentiation of osteoblasts in  vitro, and the mechanical tensile 
strain resulted in up-regulation of IGF-1, PGE2 and NOS activity, which was consist-
ent with previous similar studies [58–61], and the IGF-1, PGE2 and NOS were involved 

Fig. 4 Col-I protein levels, ALP activity and OCN mRNA levels in osteoblasts treated with osteocyte-derived 
exosomes were assayed. After treatment with mechanically strained osteocyte-derived exosomes, the 
Western blot results indicated that the protein levels of Col-I in osteoblasts in vitro were increased (A), the 
ALP activity of the osteoblasts was elevated (B), and the RT-qPCR results showed that the OCN mRNA level in 
the cells was also increased (C). n = 5, * P < 0.05, ** P < 0.01, between the indicated groups
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in osteogenic differentiation [4, 6]. The results confirmed the biological response of the 
osteocytes and osteoblasts in vitro.

Fourteen osteogenesis-related miRNAs which were differentially expressed only in 
MLO-Y4 osteocytes stimulated with mechanical tensile strain, were screened, because 
the target genes of these miRNAs were related to osteogenesis. The 14 miRNAs were 
differentially expressed only in osteocytes and not in osteoblasts, so that these miRNAs 
probably regulated osteoblastic differentiation through the paracrine pathways, and the 
osteocyte-derived exosomes were the main medium.

Furthermore, in the experiment, four differentially expressed miRNAs only in osteo-
cytes (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were selected, and 
the four miRNAs eight targeted mRNAs which differentially expressed only in osteo-
blasts were as follows: Apol7b, Knop1, Kctd20, Zbtb21, Mapk14, Sf1, Dgcr2, Crk. These 
eight mRNAs, which are likely regulated by the four miRNAs of osteocytes, were dif-
ferentially expressed only in the mechanically strained osteoblasts, and the mechanical 
strain promoted osteoblastic differentiation. Therefore, the eight mRNAs probably are 
involved in mechanical stimulation induced osteogenesis and the four miRNAs of osteo-
cytes, are likely to influence osteoblastic differentiation through exosomes.

In response to mechanical stimulation, such as fluid flow stress, osteocytes released 
signaling molecules and paracrine factors, such as PGE2, NO, IGF-1, and OPG, to pro-
mote osteogenesis [4, 6, 22]. Exosomes play a key role in the paracrine pathway, they con-
tain numerous biological molecules including miRNAs, and directly participate in signal 
communication between cells [56, 57]. Some studies had shown that osteocyte-derived 
exosomes promoted the osteoblastic differentiation or bone formation, some miRNAs 
in the exosomes, such as miR-218 and miR-124-3p, were likely involved in osteogenesis 
[18, 61]. Interestingly, the exosomes derived from MLO-Y4 cells subjected to mechanical 
cyclic stretch of 8%, induced osteogenic differentiation of human periodontal ligament 

Fig. 5 MiR-3110-5p and miR-3058-3p in osteocyte-derived exosomes and osteocytes were assayed via qPCR, 
respectively. The results of qPCR indicated that both in osteocyte-derived exosomes (A) and in osteocytes 
cultured in vitro (B), miR-3110-5p and miR-3058-3p were both up-regulated in mechanically strained 
osteocyte-derived exosomes and in mechanically strained osteocytes. n = 5, * P < 0.05, ** P < 0.01, between 
the indicated groups
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mesenchymal stem cells, and the exosomal miR-181b-5p of the osteocytes, was involved 
in osteogenic differentiation [17]. Exosomes isolated from osteocytes which were acti-
vated with fluid shear stress, also enhanced the osteogenic differentiation of hMSCs [16].

The results of the study indicated that the exosomes of the mechanically strained 
osteocytes could induce osteogenic differentiation of osteoblasts, the up-regulated miR-
3110-5p and miR-3058-3p were confirmed to be present in the exosomes of mechanically 
stimulated osteocytes, and the two exosomal miRNAs probably influenced osteogenic 
differentiation. Fourteen osteogenesis-related miRNAs (including miR-3110-5p and 
miR-3058-3p) which were differentially expressed only in osteocytes subjected to the 
mechanical strain, that were likely present in the exosomes of osteocytes, and regulated 
osteogenic differentiation of osteoblasts via exosomes.

Through bioinformatic analysis of the differentially expressed miRNAs and mRNAs 
of osteocytes and osteoblasts which were both stimulated with mechanical strain, the 
exosomal osteogenesis-related miRNAs of osteocytes were selected. This study provided 
a novel means to predict exosomal osteogenesis-related miRNAs in osteocytes. Two 
miRNAs (miR-3110-5p and miR-3058-3p) in the exosomes of mechanically strained 
osteocytes were confirmed via RT-qPCR, and the results of the study indicated that the 
exosomes were internalized by osteoblasts, and the exosomes induced osteogenic dif-
ferentiation. Therefore, in this study, the exosomes of the mechanically stimulated osteo-
cytes, probably delivered these 14 osteogenesis-related miRNAs (at least miR-3110-5p 
and miR-3058-3p) to osteoblasts and regulated the osteogenic differentiation of the cells.

Conclusion
In osteocytes, a mechanical tensile strain of 2500 με at 0.5 Hz induced differential expres-
sion of the 14 miRNAs which were likely present in the exosomes of osteocytes and were 
involved in osteogenesis. The exosomes of osteocytes which were stimulated with the 
mechanical tensile strain, promoted the osteogenic differentiation of osteoblasts and 
delivered miR-3110-5p and miR-3058-3p (two of the 14 miRNAs) to osteoblasts.

Materials and methods
Cell culture and application of mechanical strain

Mouse MLO-Y4 osteocyte-like cells and MC3T3-E1 osteoblastic cells (Guangzhou JEN-
NIO Biological Technology, China) were cultured, respectively, in dishes with a-MEM 
medium (α-MEM, Invitrogen) supplemented with 10% FBS and 1% penicillin–strep-
tomycin (Invitrogen). Then, the MLO-Y4 cells and MC3T3-E1 cells were, respectively, 
seeded into polystyrene loading dishes of a stepping motor-derived four-point bend-
ing device which could produce homogenous, tensile strains to the substrate of the 
mechanical loading dishes [62–64]. When these cells were at confluence, the culture 
medium supplemented with 10% exosome-free FBS was renewed, the MLO-Y4 cells and 
MC3T3-E1 cells in the loading dishes (or cell carrier) [64] were stimulated separately 
with a mechanical tensile strain of 2500 με (at 0.5 Hz, 1 h per day, for 3 days), which was 
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generated by the four-point bending device. Previous studies indicated that the mechan-
ical tensile strain could promote osteoblast differentiation [65, 66].

Enzyme‑linked immunosorbent assay (ELISA)

After mechanical stimulation, the levels of PGE2 hormone and IGF-1 protein in the culture 
supernatant of MLO-Y4 cells were assayed separately using a PGE2 ELISA kit and an IGF-1 
ELISA kit (Elabscience Biotechnology Co., Ltd., Wuhan China) according to the manufac-
turers, instructions.

Assay of NOS activity

After mechanical stimulation, the MLO-Y4 cells were treated with 0.1% triton X-100 for 
30 min, then the NOS enzyme activity in the cells lysates was measured with a colorimet-
ric method using a NOS detection kit (Nanjing Jiancheng Bioengineering Institute, China) 
according to the protocol of the supplier.

Assay of ALP activity

The MC3T3-E1 cells were lysed by sonication at 25 kHz for 1 min on ice in radioimmuno-
precipitation (RIPA) lysis buffer (Beyotime Biotechnology, ShangHai, China). The protein 
concentration of the cell lysates was assayed using a bicinchoninic acid protein assay kit 
(Beyotime Biotechnogy). Then the ALP enzyme activity in the cell lysates was assayed using 
an alkaline phosphatase assay kit (Beyotime Biotechonogy), according to the supplier’s pro-
tocol (http:// www. beyot ime. com/ produ ct/ P0321S. htm).

Western blot

After mechanical tensile strain, the cells were lysed in RIPA buffer solution (Beyotime), 
and the protein in the cell lysates was quantified using the BCA method. The protein in 
the lysates was separated by electrophoresis in 12% polyacrylamide gel containing 0.15% 
sodium dodecyl sulfate, then transferred onto PVDF membranes (Millipore, USA). After 
blocking with 5% skim milk-TBST and incubation with primary antibodies overnight at 
4  °C, the membranes were incubated with horseradish peroxidase conjugated secondary 
antibody. The reactive bands were visualized using an enhanced chemiluminescent sub-
strate solution (Beyotime Biotechnology) and analyzed using the ImageJ software (http://
imagej.nih.gov/ij/).

Sequencing of mRNA and miRNA

After total RNA of the cells was isolated with TRIzol reagent (Invitrogen), the purity of the 
RNA was assessed using the ND-2000 Nanodrop (Thermo Fisher Scientific), and the integ-
rity of RNA was evaluated using the 2100 Bioanalyzer (Agilent Technologies, Inc.). Then, 
the RNA sequencing and subsequent bioinformatics analysis were performed and provide 
by Shanghai Majorbio Bio-Pharm Technology Co., Ltd. (https:// www. major bio. com/ major 
bio/ index). The differential expression analysis of mRNAs in cells was conducted using the 
DEGseq R package (http:// bioin fo. au. tsing hua. edu. cn/ softw are/ degseq), and the differential 
expression analysis of miRNA in the cells was performed using miRDeep2 (v2.0.0) software 
[67, 68].

http://www.beyotime.com/product/P0321S.htm
http://imagej.nih.gov/ij/
http://imagej.nih.gov/ij/
https://www.majorbio.com/majorbio/index
https://www.majorbio.com/majorbio/index
http://bioinfo.au.tsinghua.edu.cn/software/degseq
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Screening of osteocyte‑derived differentially expressed miRNAs and these miRNAs, target 

mRNAs differentially expressed in osteoblasts

After the differentially expressed miRNAs and mRNAs of the mechanically strained oste-
ocytes and MC3T3-E1 osteoblasts were obtained (fold change > 2 or < 0.5, P < 0.01), the 
differentially expressed osteocyte-derived miRNAs targeted the differentially expressed 
mRNAs of the MC3T3-E1 osteoblasts, which were predicted at the same time with Tar-
getScan, RNAhybrid and miRanda, were identified. These differentially expressed miR-
NAs only in osteocytes and these miRNAs, target mRNAs differentially expressed only 
in osteoblasts, were screened and identified. The differentially expressed osteoblast-
derived miRNAs targeted differentially expressed mRNAs of osteocytes, which were also 
predicted with the same method, were also screened. Then the differentially expressed 
miRNAs only in osteoblasts and these miRNAs, target mRNAs differentially expressed 
only in osteocytes, were also selected. All of these bioinformatics analyses and predic-
tions were performed online using the Majorbio Cloud Platform (www. major bio. com).

RT‑qPCR for mRNA and miRNA

After total RNA of the cells was extracted with TRIzol reagent, cDNA was synthesized 
using a Quant RT kit (Tiangen Biochemistry Co., Ltd, Beijing, China), according to the 
manufacturer’s protocol. The mRNA expression levels were determined using SYBR 
Green qPCR Premix (Tiangen Biochemistry) on an Applied Biosystems, Real-Time PCR 
system (7500, Thermo Fisher Scientific Inc), according to the manufacturer’s instruc-
tions. The reaction process included denaturation at 95  °C for 3  min, followed by 40 
cycles of 95˚C for 15 s, 60 °C for 30 s. The mRNA levels were normalized to those of the 
internal control β-actin.

The miRNA expression levels were assessed using the All-in-One™ miRNA RT-qPCR 
Detection Kit 2.0 (GeneCopoeia, Inc. Guangzhou, China) according to manufacturer,s 
protocol, the primers for RT-qPCR were synthesized by manufacturer according to the 
miRNA sequences listed in the Sanger miRBase, with U6 serving as the reference gene 
(internal control). The reactions were incubated in a 96-well optical plate at 95  °C for 
9 min, followed by 40 cycles of 15 s at 95 °C, 20 s at 60 °C and 20 s at 72 °C C, then 72 °C 
for 4 min.

Detection of osteoblastic differentiation

To determine osteoblastic differentiation of MC3T3-E1 cells, the ALP activity of the cells 
was assayed with the ALP kit mentioned above, the protein level of Collagen type I (Col-
I) was detected via Western blot, and the mRNA levels of osteocalcin (OCN) and Runx2 
were assayed via RT-qPCR, The methods of Western blot and RT-qPCR were described 
above, the primers of OCN were as follows, forward:

AGT CTG ACA AAG CCT TCA , reverse:AAG CAG GGT TAA GCT CAC A; the primers 
of Runx2 were as follows, forward: AGT AGC CAG GTT CAA CGA T, reverse: GGA GGA 
TTT GTG AAG ACT GTT. In addition, the Bone morphogenetic protein-2 (BMP-2) pro-
tein level in the culture supernatant of the cells was detected via ELISA also mentioned 
above.

http://www.majorbio.com
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Isolation and identification of exosomes from MLO‑Y4 osteocytes

The isolation and identification of the exosomes were performed as previously described 
[53, 54, 69]. After the osteocytes were cultured in exosome-free medium for 48  h on 
mechanical loading dishes, the culture medium was collected and subjected to 300 × g 
centrifugation for 10 min and 2000×g centrifugation for 15 min. After that, the super-
natant was obtained by filtration using a 0.45-μm filter to eliminate cell debris, and was 
ultracentrifuged twice at a speed of 100,000×g, at 4 °C for 70 min (after the first ultra-
centrifugation, each tube was washed with 5 ml PBS and then filtered through a 0.22-μm 
membrane filter). The final pellet (pure exosomes) was resuspended in 200 μl PBS and 
stored at −80 °C.

The diameter of the exosomes was measured by NTA using a ZetaView Particle Met-
rix (Particle Metrix, Meerbusch, Germany). The shape and size of the exosomes were 
observed by TEM (FEI Tecnai G2 Spirit BioTwin; FEI, Hillsboro, OR, USA). Exosome-
positive markers (CD9, CD63) were detected by Flow NanoAnalyzer (N30E, NanoFCM 
INC, Xiamen, China).

Exosomes uptake assay

The uptake assay was performed as previous described [69, 70], the exosomes were 
labeled with 10  μM PKH67 (a green fluorescent dye, Sigma Aldrich), and incubated 
in the dark at room temperature for 12 min, and the excess dye was removed using a 
100kD ultrafiltration device (Millipore, USA), then the exosomes resuspended in cul-
ture medium. Subsequently, the PKH67-labelled exosomes were added to MC3T3-E1 
cells and incubated for 24 h at 37◦C. After the cells were fixed with 4% formaldehyde, 
the nuclei of the cells were stained with 4’, 6-diamidino-2-phenylindole (DAPI, Sigma 
Aldrich), and the cells were visualized by fluorescence under a laser-scanning confocal 
microscope (LSM710 Carl Zeiss AG).

Statistical analysis

All the data were showed as the mean ± standard deviation. Normal distribution of data 
was tested using the Shapiro–Wilk test, and differences between groups were analyzed 
using one-way analysis of variance. Statistical analysis was performed using SPSS soft-
ware (version 19; SPSS, Inc.) and P < 0.05 was considered to indicate a statistically signifi-
cant difference.
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