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Abstract 

Background: Decubitus ulcers are prevalent among the aging population due 
to a gradual decline in their overall health, such as nutrition, mental health, and mobil-
ity, resulting in injury to the skin and tissue. The most common technique to prevent 
these ulcers is through frequent repositioning to redistribute body pressures. There-
fore, the main goal of this study is to facilitate the timely repositioning of patients 
through the use of a pressure mat to identify in-bed postures in various sleep envi-
ronments. Pressure data were collected from 10 healthy participants lying down on a 
pressure mat in 19 various in-bed postures, correlating to the supine, prone, right-side, 
and left-side classes. In addition, pressure data were collected from participants sit-
ting at the edge of the bed as well as an empty bed. Each participant was asked to lie 
in these 19 postures in three distinct testing environments: a hospital bed, a home 
bed, and a home bed with a foam mattress topper. To categorize each posture into its 
respective class, the pre-trained 2D ResNet-18 CNN and the pre-trained Inflated 3D 
CNN algorithms were trained and validated using image and video pressure mapped 
data, respectively.

Results: The ResNet-18 and Inflated 3D CNN algorithms were validated using leave-
one-subject-out (LOSO) and leave-one-environment-out (LOEO) cross-validation 
techniques. LOSO provided an average accuracy of 92.07% ± 5.72% and 82.22% ± 
8.50%, for the ResNet-18 and Inflated 3D CNN algorithms, respectively. Contrastingly, 
LOEO provided a reduced average accuracy of 85.37% ± 14.38% and 77.79% ± 9.76%, 
for the ResNet-18 and Inflated 3D CNN algorithms, respectively.

Conclusion: These pilot results indicate that the proposed algorithms can accurately 
distinguish between in-bed postures, on unseen participant data as well as unseen 
mattress environment data. The proposed algorithms can establish the basis of a decu-
bitus ulcer prevention platform that can be applied to various sleeping environments. 
To the best of our knowledge, the impact of mattress stiffness has not been considered 
in previous studies regarding in-bed posture monitoring.
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Introduction
Increasing age has become a predictor of decubitus ulcer formation due to the grad-
ual decline of nutritional health, decreased mobility, and changes to the characteristics 
of the skin, such as decreased elasticity [1]. These ulcers can begin to develop within 
minutes due to prolonged applied body-weight forces, commonly occurring when one 
remains stationary in a seated or lying position [2]. This prolonged applied force, particu-
larly to the bony regions of the body, can create cellular membrane breakage, ultimately 
resulting in cell death. This can initiate a cyclical process of cell death, inflammation, and 
ischemia, resulting in injury to the tissue [2]. It is also important to note that superficial 
skin injuries, typically caused by shear force and moisture, can indicate that damage to 
the tissue has already begun [2]. As of 2022, approximately 60,000 people die worldwide 
each year due to complications of decubitus ulcers [3]. It was also reported that those 
with such ulcers are 4.5 times more at risk of death than those who have similar health 
conditions with no decubitus ulcers [3]. In Canada, approximately 26% of patients across 
all healthcare settings suffer from decubitus ulcers; with as low as 15.1% of patients in 
community care facilities and as a high as 29.9% of patients in non-acute care settings 
[4]. Furthermore, 15% of elderly patients will develop decubitus ulcers within the first 
week of stay in the hospital, and within the first 4 weeks of stay in a long-term care facil-
ity [1].

The most common method to manage decubitus ulcers is through prevention, where 
the patient is required to reposition their body every two hours [2]. Unfortunately, in 
most cases this responsibility falls on caregivers and hospital staff, which can be a labo-
rious task [5]. In addition, there is evidence to suggest that in clinical settings, many 
caregivers do not adhere to this repositioning program, suggesting that this prevention 
technique is not implemented properly [6]. Therefore, to alleviate some of the stress on 
the healthcare system and its workers as well as to ensure patients are receiving proper 
care, an in-bed posture and pressure monitoring systems need to be developed.

Currently, devices such as video infrared cameras or wearable technologies have been 
used to monitor in-bed postures and the corresponding duration of each posture. Nev-
ertheless, these devices do have certain limitations. Video infrared cameras can be sus-
ceptible to environmental changes, such as the movement of a blanket, and have privacy 
concerns [5]. Wearable technologies, such as rings and wristbands, can obstruct sleep, 
reducing sleep quality, and are sensitive to motion artifacts [7]. Therefore, there is a need 
for an unobtrusive, privacy-preserving, and contactless system to monitor patients’ bod-
ies during sleep and prompt caregivers to reposition them if necessary. The use of smart 
mats has become an area of investigation to monitor people in and outside of the hospi-
tal to reduce the work of caregivers, eliminate privacy concerns, and increase the accu-
racy of in-bed posture detection.

There are a variety of studies that have investigated in-bed posture detection using 
smart mats composed of either pressure or force sensors. Most of these studies either 
examine their subjects in a simulated environment, where the investigator instructs 
the subject to lie in different positions, or in a clinical environment, where the sub-
jects can lie in any positions and is typically completed overnight. Stern et  al. used 
an open access dataset with data collected in a simulated study with 13 participants 
lying in three in-bed posture classes (supine, right, and left). In this study, a mat with 
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2048 pressure sensors was placed on the bed and a 2D Convolutional Neural Net-
work (CNN) was applied to classify each position. This study obtained an accuracy of 
99.97% ± 0.03% and 99.62% ± 0.37% for fivefold and leave-one-subject-out (LOSO) 
cross-validation, respectively [8]. Similarly, Ostadabbas et al. conducted a simulated 
study with nine subjects lying in the same three in-bed posture classes. This study 
collected data from a mat containing 1,728 resistive sensors which was used to train 
a k-nearest neighbor algorithm. They achieved an accuracy of 98.4% using a holdout 
cross-validation technique [9]. Pouyan et al. conducted a similar simulated study with 
13 participants, consisting of the same three in-bed posture categories. This study 
collected data from a pressure mat with 1,048 sensors to train a deep learning net-
work to classify the postures, resulting in an accuracy of 82.70% while using a tenfold 
cross-validation technique [10]. These three studies mentioned above either grouped 
the supine and prone positions into a single class or neglected to collect data in the 
prone position, which creates an unrealistic analysis, as the prone posture is one of 
the four main sleeping categories. This approach undoubtedly leads to high accura-
cies as distinguishing between these two postures is challenging, due to similar posi-
tioning. Comparatively, Tang et al. conducted a simulated study with one participant 
lying in four in-bed posture categories (supine, prone, right, and left). This study 
used a force sensitive resistor mat with 171 sensors to collect in-bed posture data and 
trained the Inception-v3 CNN, achieving an accuracy of 87.0% using a holdout cross-
validation technique [11]. Similarly, Matar et al. conducted a simulated study on 12 
healthy participants lying in the same four in-bed posture classes on a piezo-resistive 
pressure mat containing 1,728 sensors. Using a feed-forward artificial neural network, 
this study achieved an accuracy of 97.9% using a holdout cross-validation technique 
with a nested LOSO cross-validation on the training set [12]. Although the major-
ity of studies that include the prone position obtain lower accuracies than those that 
exclude this position, it is important to consider the prone position as that is a com-
mon sleeping posture. In addition, it is important to note that all these studies, except 
for the one conducted by Stern et al., did not validate their algorithms with leave-one-
subject-out cross-validation, which is an essential technique to consider, as the goal 
of these algorithms will be to recognize unseen patient data. Furthermore, all these 
studies solely assessed their classification algorithms on a single type of mattress. To 
ensure that these algorithms can be applicable to a variety of sleeping environments, 
it is important to assess the performance of the algorithms on different mattress types 
with various associated stiffness.

In this study, we collect pressure data of in-bed postures from 10 healthy partici-
pants in three sleeping environments. We use pre-trained 2D and 3D CNN algorithms, 
referred to as the ResNet-18 and the Inflated 3D (I3D) classifiers, to classify the collected 
pressure distribution frames and videos into six distinct in-bed positions, including four 
main body postures (supine, prone, left, and right), an empty bed, and a seated position 
at the edge of the bed. We also evaluate how these algorithms perform on mattresses 
with various stiffness to ensure the performance of the pressure mat and algorithms are 
relatively consistent. We evaluate our algorithms using leave-one-subject-out (LOSO) 
and leave-one-environment-out (LOEO) cross-validation techniques, after addressing 
the class imbalance to compensate for fewer data points in the minority class.
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Results
The classification macro metrics, such as accuracy, sensitivity, specificity, and F1-score, 
shown in Equations  1 - 3, were calculated for each model to demonstrate the perfor-
mance of the I3D and ResNet-18 algorithms.

where T P , T N , F P , and F N denote true positives, true negatives, false positives, and 
false negatives, respectively. Table   1 displays the performance of both the I3D and 
ResNet-18 CNNs with LOSO and LOEO cross-validations. As indicated in this table, the 
2D CNN model consistently demonstrated the highest accuracies, achieving 92.07% ± 
5.72% for LOSO and 85.37% ± 13.48% for LOEO. Likewise, all other performance met-
rics displayed in Table  1 provide similar trends. Therefore, it can be concluded that the 
ResNet-18 is a better model for classifying in-bed postures compared to the I3D model. 
This could be because the pressure distribution videos do not provide additional infor-
mation, as the body remains stationary for the entire 16 s, making the temporal features 
of the 3D model less helpful for the classification. Furthermore, compared to the 2D 
approach that uses all frames individually, using the 3D approach involves combining 
frames into video files, leading to a reduction in size of the training data.

The left side of Fig.   1 displays the results for LOSO cross-validation and the right 
side shows the results for LOEO cross-validation. This figure shows that the empty bed 
class never got misclassified with either the I3D or the ResNet-18 models in both LOSO 
and LOEO cross-validations. Similarly, the seated class rarely became misclassified. For 
all models in LOSO and LOEO cross-validations, the prone (pink color in Fig.  1e–h) 
and supine (orange color in Fig.  1e–h) classes always got misclassified with each other, 
which was expected as these two postures have similar pressure distributions across the 
body. The right (yellow color in Fig.  1e) and left (blue color in Fig.  1e) classes primar-
ily became misclassified with each other when using the I3D CNN model regarding the 
LOSO cross-validation, however when applying the ResNet-18 model, these two classes 
primarily became misclassified with the prone class. This misclassification of the right 

(1)Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
Sensitivity =

Tp

Tp + Fn

(2)Specificity =
Tn

Tn + Fp
Percision =

Tp

Tp + Fp

(3)F1− Score = 2 ∗
Percision ∗ Sensitivity

Percision+ Sensitivity
,

Table 1 Performance metrics for the I3D and ResNet-18 CNN models

I3D model ResNet-18 model

LOSO model LOEO model LOSO model LOEO model

Accuracy (%) 82.22 ± 8.50 77.78 ± 9.76 92.07 ± 5.72 85.37 ± 14.38

F1-Score (%) 84.63 ± 6.75 80.75 ± 8.82 93.26 ± 4.14 87.40 ± 10.54

Sensitivity (%) 84.28 ± 6.79 79.56 ± 11.29 93.33 ± 4.81 87.69 ± 11.47

Specificity (%) 96.30 ± 1.57 95.36 ± 2.46 98.36 ± 1.15 97.01 ± 2.87
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and left classes with the prone class can be seen throughout both the I3D and ResNet-18 
models within LOEO cross-validation, shown in Fig.  1g, h.

Finally, it was observed that both the I3D and ResNet-18 models follow similar trends 
for the F1-scores for each participant, shown in Figure   1i, j. For example, subject 3 
achieved the highest F1-score of 94.05% and 99.92% for the I3D and ResNet-18 mod-
els, respectively. Contrastingly, subject 10 received the lowest F1-score of 68.69% and 
83.80% for the I3D and ResNet-18 models, respectively. This trend was also similar con-
sidering different types of mattresses in the LOEO cross-validation shown in  Fig. 1k, l. 
The home bed environment achieved the highest scores in both the I3D and ResNet-18 
models, with 90.14% and 95.37%, respectively. Contrastingly, the home bed with a foam 
mattress topper achieved the lowest F1-score in both I3D and ResNet-18 models, with 
F1-scores of 68.10% and 76.35%, respectively.

Discussion
Overall, the ResNet-18 algorithm performed better for both the LOSO and LOEO 
cross-validation techniques. This could be due to a couple of reasons: First, since the 
ResNet-18 algorithm classified individual frames, this created a larger training dataset, 
allowing the model to have a greater amount of information to learn from. Contrast-
ingly, the I3D algorithm was trained on a single video, containing a sequence of frames, 
creating a smaller training dataset, and thus less information to learn from. Second, 
when testing the ResNet-18 model, only certain frames were misclassified, not an entire 
sequence of frames. Whereas, when testing the I3D model, an entire sequence of frames 
from a single video would become misclassified.

In general, the LOSO cross-validation technique achieved higher values than the 
LOEO technique in both the I3D and ResNet-18 models. The LOSO cross-validation 

Fig. 1 Performance visualizations for the LOSO and LOEO cross-validations of the I3D and ResNet-18 models. 
I3D model LOSO—a Confusion matrix, e misclassification rates plot, and i F1-scores pertaining to each 
subject. ResNet-18 model LOSO—b Confusion matrix, f misclassification rates plot, and j F1-scores pertaining 
to each subject. I3D model LOEO—(c) Confusion matrix, g misclassification rates plot, and k F1-scores 
pertaining to each subject. ResNet-18 model LOEO—d Confusion matrix, h misclassification rates plot, and l 
F1-scores pertaining to each subject
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technique was trained on data from 9 subjects in all three study environments (home 
bed, home bed with foam mattress topper, and hospital bed) with leaving out 1 sub-
ject for testing. This was repeated 10 times. Comparatively, the LOEO cross-validation 
technique was trained with all subject data associated with two out of three mattress 
environments, leaving out the third mattress environment as the test set. Therefore, 
the algorithms consisted of more training data when utilizing the LOSO cross-valida-
tion technique compared to the LOEO cross-validation technique. Also, as shown in 
Fig.  2, the pressure distribution data vary in noise as the mattress stiffness level varies. 
The findings suggest that the home bed environment with a standard mattress (medium 
stiffness—S2) offers the best stiffness, as the pressure mat effectively captures the body 
with all limbs. On the other hand, the hospital bed’s stiffness (S1) posed some challenges 
regarding the pressure mat, particularly in capturing lighter body parts such as limbs, 
as observed in the prone position in Fig.  2. In contrast, the home bed equipped with a 
foam mattress topper (the least stiffness—S3) successfully captured the entire body, but 
introduced noise due to the either the softness of the foam topper or the placement of 
the pressure mat, which was in between the mattress and foam topper.

During the LOEO cross-validation technique, the instances where the models were 
trained on the hospital and home bed environments and tested on the home bed with 
the foam mattress topper, received the lowest performance metrics, bringing the overall 
performance of the I3D and ResNet-18 models down. This occurrence is likely due to the 
high levels of noise that was introduced in the test dataset, which the models did not see 
beforehand.

To further evaluate the performance of the ResNet-18 model, a Gradient weighted 
Class Activation Map (Grad-CAM) was used to highlight the important regions of the 
images for model prediction. Grad-CAM enhances our understanding of the regions 
that the models prioritize and focus on while classifying the images. Figure  3 displays 
examples of the Grad-CAM images for correctly and incorrectly classified images using 
the ResNet-18 algorithm. The more intense red colors represent the areas of the image 
that the model was more focused on and considered significant for the prediction. In 

Fig. 2 Frames of the four different sleeping postures and the seated position associated with the study 
environment (hospital bed, home bed, and home bed with the foam mattress topper)
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the first example, in Fig.  3a, the subject was in the supine class, lying in the bent knee 
and the straight subclasses for the correctly and misclassified predictions, respectively. 
For the prone class, shown in Fig.  3b, the subject was lying in the straight and the arms 
crossed subclasses for the correctly and misclassified predictions, respectively. For 
the left and right classes, shown in Fig.  3c, d, the subject was lying in the log subclass 
and the bent knees behind subclass for both the correct and misclassified predictions, 
respectively. It was observed that the model primarily focuses on the torso area when 
classifying the body position correctly for the supine, left, and right classes. However, 
for the prone class, it was observed that the model focuses primarily on the limbs of the 
subject instead. Contrastingly, when the supine, left, and right classes were misclassified 
with the prone class, the model was looking at the limbs of the participants, whereas, 
when the prone class was misclassified as supine, the model was focusing on the torso of 
the subject instead.

Fig. 3 ResNet-18 Model—Grad-CAM frames for the correctly and incorrectly predicted images associated 
with the a supine,  b prone, c left, and d right classes

Table 2 A comparison between previous literature and our proposed models (bolded values) with 
regard to the classification of a minimum of four in-bed postures, containing at least supine, prone, 
right, and left

1FFAN: Feed-Forward Artificial Neural Network, 2ACC: Accuracy, 3kNN: k-Nearest Neighbor, 4SRC: Sparse Representation 
Classification, 5ER: Error Rate, 6DNN: Deep Neural Network

Year & Refs. # Subs # Postures Algorithm Cross-Validation Method Performance

2019 [12] 12 4 FFAN1 LOSO ACC 2 : 97.9%

2020 [13] 7 4 kNN3 LOSO ACC: 79.02%

2021 [11] 1 6 Inception-v3 Holdout ACC: 90.5%

2022 [14] 6 4 SRC4 6-Fold & LOSO ER5 : 0.09

Proposed Models 10 6 I3D DNN 6 LOSO ACC: 82.22%

LOEO ACC: 77.78%
ResNet-18 LOSO ACC: 92.07%

LOEO ACC: 85.37%
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Table  2 compares previous studies that have used smart mats to collect in-bed posture 
data and classify these data into at least four classes using various algorithms and cross-
validation techniques. All the papers presented in Table  2 included the four main sleep-
ing postures of supine, prone, left, and right side. However, the data within each paper 
were collected from different subjects, positions, and smart mats. These variables repre-
sent significant components that could potentially influence the performance of in-bed 
posture classification algorithms. Therefore, it is essential to consider these factors when 
comparing the outcomes of these studies. The majority of the papers did use a subject 
specific cross-validation method, aside from [11] which included only a single subject. 
However, none of these papers investigated the impact of different mattresses with vari-
ous stiffness levels. Thus, to our knowledge this study is the first that evaluates the clas-
sification model not only by considering unseen subject data (LOSO) but also unseen 
mattress environment data (LOEO). It can be seen from our results that the introduction 
of unseen environments will decrease the performance of the algorithm.

Although our algorithms achieved high scores for distinguishing among different body 
positions, it is important to recognize some limitations. First, the data collected in this 
experiment were collected on healthy participants. Therefore, in the future we will rep-
licate the population group that is most likely to use a pressure mat for pressure injury 
monitoring. In addition, although there was an attempt to create variation in our dataset 
with various sleeping postures relating to each class, it should be recognized that the 
data were collected during the daytime for 1–2 min with the participants lying in spe-
cific instructed positions. In the future, it would be more beneficial to collect data in an 
overnight study, where the participants can lie in their normal sleeping postures, to train 
a model on more realistic positions. In the future we will also consider analyzing the 
different mattress environments separately to determine how the various stiffness may 
affect the training and testing of the model, which will also create more targeted classi-
fiers depending on mattress stiffness. Another limitation of our study arises from the dif-
ferent placements of the pressure mat in various sleeping environments. In the cases of 
the “hospital bed” and “home bed” mattresses, we positioned the pressure mat directly 
on top of the mattress, with participants lying on the mat directly. However, for the 
“foam mattress topper” environment, we placed the pressure mat between the mattress 
and the foam topper, not directly beneath the participant. This approach aimed to mimic 
the mat’s realistic use, as we wanted to avoid altering the pressure-alleviating character-
istics of the foam topper. While this placement ensures practical relevance, it introduces 
a variable in the study’s setup that may affect the comparability of results across different 
sleeping environments. In the future, we will consider evaluating the placement of the 
pressure mat on top of the foam topper to better evaluate the effects of the low stiffness.

Conclusion
An Inflated 3D model and the ResNet-18 2D pre-trained CNN were used to differenti-
ate between the supine, prone, right, left side, empty bed, and seated classes. The LOSO 
and LOEO cross-validation methods were used to evaluate the models’ performances. 
In summary, the 2D classifier outperformed the 3D model, resulting in accuracies of 
92.07% ± 5.72% and 85.37% ± 14.38% for LOSO and LOEO cross-validation techniques, 
respectively. This indicates that the spatial–temporal features of the video data did not 
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offer any additional information for the 3D CNN model, considering the stationary posi-
tion of the body. These results show that the 2D CNN algorithm will be able to clas-
sify the in-bed postures of unseen patients quite well on unseen mattress environments, 
the best performing model trained on the hospital bed and foam mattress topper and 
tested on the home bed environment. However, it is important to note that the perfor-
mance of the model decreased as significant noise from the pressure distribution frames 
were introduced. Therefore, further pre-processing techniques may be required to help 
remove the noise introduced into the pressure distribution image due to softness and 
pressure mat placement. Eventually, these models can be used as a preventative measure 
for decubitus ulcers, to either notify caregivers when it is time to change the position of 
the patients or can be used to monitor overnight sleeping to determine how much a per-
son is moving in their sleep, thus evaluating the sleep quality of the person.

Methods
Dataset

The dataset used in this paper was collected using the SensingTex pressure mat com-
posed of 1056 sensors with a sampling rate of 1Hz [15]. The SensingTex pressure mat 
was placed on three types of mattresses, shown in Fig.  4. Figure  4a displays a hospital 
bed that is relatively stiff (S1) compared to the other environments. Figure  4b shows a 
mattress that is typically found in homes (medium stiffness - S2). Last, Fig.  4c displays a 
foam mattress topper placed on top of the home bed, which creates a relatively soft envi-
ronment (S3) compared to the other two mattresses. The SensingTex pressure mat was 
placed on top of the hospital and home bed, in Fig.  4a and b, and placed in between the 
mattress and foam mattress topper in Fig.  4c.

Pressure data were collected from 10 healthy participants in all three of these environ-
ments. Each participant’s age, height, and weight were recorded, with ages ranging from 
19- to 25-year old, heights from 161 cm to 183 cm, and weights from 55 kg to 95 kg. 
Participants were asked to lie down in 17 different postures for 1 min, shown in Fig.  5. 
These positions include 5 postures in the supine (straight, arms crossed, left knee bent, 
right knee bent, and both knees bent), 4 in the prone (straight, arms crossed, left knee 

Fig. 4 The three different environments evaluated: a hospital bed, b home bed, c home bed with foam 
mattress topper
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bent, and right knee bent), 4 lying on the right side (log, bent knees behind, bent knees 
forward, and fetus), and 4 lying on the left side (log, bent knees behind, bent knees for-
ward, and fetus). In addition, participants were asked to sit at the edge of each mattress 
when they entered and exited the bed and pressure data were also collected on empty 
beds. The data were collected under REB approval at the University Health Network in 
Toronto. Informed consents were signed by all participants prior to the data collection 
and they agreed to the anonymous publication of their data for future research.

Data preprocessing

The pressure data were initially collected as numerical pressure values, where each row 
of data corresponded to a frame of pressure. The data were transformed into 22× 48 
matrices to create pressure distribution images, which were subsequently combined into 
a single video file. Each video includes 16 frames (16 s videos) with a size of 112×112 pix-
els for computational purposes.

Inflated 3D model

The Inflated 3D (I3D) model is a pre-trained two-stream CNN video classifier created by 
Carreira and Zisserman [16]. This classifier has been trained on the Kinetics-400 data-
set, which includes 400 human action (e.g. drawing, drinking, laughing, punching, etc.). 
Each class consists of 400–10 s videos, totaling to 240,000 training videos [16]. This clas-
sifier consists of the Inflated Inception-v1 3D CNN classifier which is trained twice: once 
on RGB data, and once on optical flow data, which was obtained from the TV-L1 (Total 
Variation - L1 norm) algorithm. The final prediction of the model is then averaged dur-
ing validation [16]. The architecture of the Inflated Inception-v1 algorithm can be seen 
in Figure  6, which was adapted from [16].

Using transfer learning, we trained the I3D CNN algorithm on video data collected 
in this study, corresponding to each posture, resulting in a total of 630 videos: 60 videos 
in the empty bed class, 60 videos in the seated class, 150 videos in the supine class, 120 
videos in the prone class, 120 videos in the right side class, and 120 videos in the left side 

Fig. 5 The 17 different in bed postures correlating to supine, prone, left side, and right side sleeping 
positions
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class. Our trained I3D CNN was evaluated using two cross-validation techniques: leave-
one-subject-out (LOSO) and leave-one-environment-out (LOEO). The LOSO cross-val-
idation technique consists of training the algorithm using almost all subject data except 
for one subject, and then validating the trained algorithm on the unseen left-out subject 
data. For example, in this study, we trained the algorithm on data from nine subjects 
and then validated this algorithm on the tenth unseen subject data. We repeated this ten 
times to understand how the algorithm will perform on various unseen subject data. The 
LOEO cross-validation technique consists of training the algorithm on almost all mat-
tress environments, except for one, and then validating this trained model on the unseen 
mattress environment. For example, in this study we trained the algorithm on the data 
from the hospital bed and the home bed environments and then validated this algorithm 
on the unseen data from the home bed with the foam mattress topper environment. We 
repeated this approach three times, training on two of the environments and then leav-
ing the third environment out for validation purposes. These two techniques allowed 
us to understand the performance of the algorithm on unseen subject data and unseen 
mattress environment data.

ResNet-18 model

A pre-trained 2D CNN model was used to compare the results with the I3D model. The 
ResNet-18 model is 18 layers deep and has previously been trained on the ImageNet 
database, which is composed of over a million of images pertaining on 1000 object cat-
egories [17]. The architecture of this algorithm can be seen in Fig.  7, which was adapted 
from [17]. Transfer learning was used to apply the architecture of the ResNet-18 model 
to the in-bed posture data collected in this study. We trained this 2D CNN on image 
data corresponding to the frames associated with each video used within the I3D model. 
This resulted in a total of 10,080 images: 960 images in the empty bed class, 960 images 
in the seated class, 2400 images in the supine class, 1920 images in the prone class, 1920 
images in the right-side class, and 1920 images in the left-side class. Our trained 2D 

Fig. 6 The Inflated Inception-V1 CNN architecture, adapted from [16]

Fig. 7 The ResNet-18 CNN architecture, adapted from [17]
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CNN was evaluated similarly to the I3D algorithm, using both LOSO and LOEO cross-
validation techniques.

Hyperparameter tuning and imbalanced dataset

The I3D and 2D CNN models were trained and validated using four main hyperparameters: 
batch size, number of iterations, number of epochs, and learning rate. These hyperparame-
ters were tuned using a grid search technique with a fivefold cross-validation for both algo-
rithms. This tuning process consisted of evaluating the performance of both models using 
a combination of various hyperparameters to determine the best combination. For both 
models, the search range for the number of iterations was between 100–500, 10–100 for 
epoch size, and 0.1−0.001 for learning rate. For the I3D model, the batch size search range 
was between 16–512. For the ResNet-18 model, the batch size search range was between 
16 and 1204. The best hyperparameter combination for the I3D CNN consisted of a batch 
size of 39 with 300 iterations, epoch size of 28, and learning rate of 0.01. For the ResNet-18 
CNN, the best determined hyperparameters were a batch size of 570, with 150 iterations, 
epoch size of 10, and a learning rate of 0.01.

In this study, the dataset collected was imbalanced, meaning that some classes had more 
data (images or videos) than others. The supine category had the most data collected, and 
the empty bed and seated categories had the least amount of data. To overcome this chal-
lenge, a ‘class weights’ technique was used. This method assigns a weight to each class so 
that the class with more samples will have a lower weight than the minority class, meaning 
that both CNN models can learn equally from all classes and will not be biased to the class 
with more samples. The weights for each class were determined using Equation  4.
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