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Abstract 

Background: The accurate detection of eyelid tumors is essential for effective treat-
ment, but it can be challenging due to small and unevenly distributed lesions sur-
rounded by irrelevant noise. Moreover, early symptoms of eyelid tumors are atypical, 
and some categories of eyelid tumors exhibit similar color and texture features, making 
it difficult to distinguish between benign and malignant eyelid tumors, particularly 
for ophthalmologists with limited clinical experience.

Methods: We propose a hybrid model, HM_ADET, for automatic detection of eye-
lid tumors, including YOLOv7_CNFG to locate eyelid tumors and vision transformer 
(ViT) to classify benign and malignant eyelid tumors. First, the ConvNeXt module 
with an inverted bottleneck layer in the backbone of YOLOv7_CNFG is employed 
to prevent information loss of small eyelid tumors. Then, the flexible rectified linear 
unit (FReLU) is applied to capture multi-scale features such as texture, edge, and shape, 
thereby improving the localization accuracy of eyelid tumors. In addition, consid-
ering the geometric center and area difference between the predicted box (PB) 
and the ground truth box (GT), the GIoU_loss was utilized to handle cases of eyelid 
tumors with varying shapes and irregular boundaries. Finally, the multi-head atten-
tion (MHA) module is applied in ViT to extract discriminative features of eyelid tumors 
for benign and malignant classification.

Results: Experimental results demonstrate that the HM_ADET model achieves 
excellent performance in the detection of eyelid tumors. In specific, YOLOv7_CNFG 
outperforms YOLOv7, with AP increasing from 0.763 to 0.893 on the internal test set 
and from 0.647 to 0.765 on the external test set. ViT achieves AUCs of 0.945 (95% CI 
0.894-0.981) and 0.915 (95% CI 0.860-0.955) for the classification of benign and malig-
nant tumors on the internal and external test sets, respectively.

Conclusions: Our study provides a promising strategy for the automatic diagnosis 
of eyelid tumors, which could potentially improve patient outcomes and reduce 
healthcare costs.
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Background
Eyelid tumors are the most commonly encountered neoplasm in routine ophthalmology 
clinics, which can be categorized into benign and malignant based on their pathogenesis 
[1]. Due to their proximity to vital organs such as the eyeballs and brain, eyelid tumors 
pose a great threat to the normal functions of these organs. Malignant tumors, in par-
ticular, are prone to invasion and metastasis, resulting in blindness, disability, and even 
death [2, 3]. The estimated survival rate of malignant eyelid tumors can reach a rate of 
99% over 5 years if they could be located and treated in the earliest stage [4]. However, 
the large-scale screening of eyelid tumors is limited by the sparse and uneven distribu-
tion of experienced ophthalmologists [5, 6]. As a result, many suspicious patients may 
not be accurately diagnosed in a timely manner. To bridge the gap in manual diagnosis 
defects in ophthalmology, it is imperative to develop an automated diagnosis system for 
eyelid tumors.

With the accumulation of medical images and the development of artificial intelli-
gence, deep learning (DL) algorithms have achieved unprecedented performance in the 
automatic diagnosis and lesion localization of various ophthalmic diseases, including 
eyelid tumors [7, 8], keratitis [9], cataract [10, 11], glaucoma [12, 13], and diabetic retin-
opathy (DR) [14, 15]. Among them, automatic diagnosis of eyelid tumors has received 
widespread attention from scholars and medical professionals due to their life-threaten-
ing potential and increasing frequency of incidence. Andayni et al. applied a backpropa-
gation neural network for the automatic identification of retinoblastoma using fundus 
images, with an accuracy of 90% [16]. Oyebade et  al. employed convolutional neural 
networks (CNNs) and deep belief networks (DBNs) to diagnose iris nevus automati-
cally, achieving exceptional accuracies of 93.35% and 93.67%, respectively [17]. Jaya et al. 
applied an extreme learning machine (ELM) for the automatic diagnosis of retinoblas-
toma with an accuracy of 92% [18]. Adamopoulos et al. utilized multi-layer error back-
propagation and CNNs to classify eyelid basal cell carcinomas and healthy individuals 
based on 143 full-face or half-face images derived from a single clinical center, achiev-
ing an accuracy of 80% [7]. Li et al. developed an artificial intelligence algorithm for the 
diagnosis of benign and malignant eyelid tumors with an accuracy of 82.2% [8]. Hui et al. 
used ResNet101 to identify benign and malignant eyelid tumors based on 36 clinical 
images, with an accuracy of 88.9% [19].

Although the aforementioned studies have demonstrated the potential of artificial intel-
ligence and machine learning algorithms to automatic diagnosis of eyelid tumors, their per-
formance is still far inferior to that of experienced ophthalmologists, making it difficult to 
be applied to real-world clinical practice. This is mainly due to the fact that eyelid tumors, 
as a type of tumor, have their own unique features on photographic images compared to 
other eye diseases. Eyelid tumors have the characteristics of small lesions and uneven dis-
tribution in the early stage of onset, and the lesions are surrounded by a large amount of 
irrelevant noise. If the original images are adopted directly, redundant noise will inevitably 
be extracted and transmitted to the downstream classifier, ultimately affecting the accuracy 
of the final decision. Therefore, it is essential to explore an automatic method to locate eye-
lid tumors prior to diagnosis. Furthermore, early-stage eyelid tumors are usually atypical, 
with numerous similar color and texture features observed across different categories, and 
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some variations exhibited within the same category. These factors pose a high challenge for 
achieving accurate diagnosis of eyelid tumors.

In this study, a hybrid model HM_ADET for automatic detection of eyelid tumors was 
proposed, including an automatic localization algorithm YOLOv7_CNFG to locate eyelid 
tumors and vision transformer (ViT) to classify benign and malignant eyelid tumors. In 
specific, the ConvNeXt module with an inverted bottleneck layer was employed to avoid 
information loss of small eyelid tumors during the downsampling process. The flexible rec-
tified linear unit (FReLU) activation function, specifically designed for visual tasks, maps 
the output of the neural network into a nonlinear space. This nonlinear mapping can cap-
ture the multi-scale features, such as texture, edge, and shape, making it more effective in 
classifying small eyelid tumors. The generalized intersection over union loss (GIoU_loss) 
can effectively measure the geometric difference between the predicted box (PB) and the 
ground truth box (GT), guiding the network to optimize the location, size, and shape of 
objects, and improve the localization accuracy of eyelid tumors. Second, to address the 
challenge of identifying atypical features in early-stage eyelid tumors, we explored the effi-
cacy of six different convolutional neural networks, including AlexNet [20], VGG19 [21], 
Inception-v3 [22], ResNet101 [23], DenseNet121 [24], and ViT [25], applied to cropped 
tumor regions, to determine the most suitable classifier for eyelid tumor diagnosis. A multi-
head attention (MHA) module was incorporated in the ViT to extract tumor features from 
multiple perspectives, and then merge them to obtain a more comprehensive feature rep-
resentation. This technique enabled the ViT to focus on subtle differences among similar 
images, which is beneficial for accurately classifying benign and malignant eyelid tumors. 
Finally, detailed qualitative and quantitative experiments were conducted to determine the 
optimal diagnosis model for eyelid tumors, and the YOLOv7_CNFG combined with ViT 
algorithm achieved the best performance on the internal and external test sets, with accu-
racy rates of 92.1% (95% CI 88.2–95.9) and 92.8% (95% CI 89.8–95.9), respectively.

To sum up, the main contributions of this work can be list below.

1) A hybrid model HM_ADET is proposed for automatic detection of eyelid tumors, 
which includes YOLOv7_CNFG to locate eyelid tumors and ViT to classify benign 
and malignant eyelid tumors.

2) The ConvNeXt, FReLU, and GIoU_loss techniques are integrated into YOLOv7 
model to enhance the localization accuracy of eyelid tumors, especially small targets.

3) The effectiveness of six different convolutional neural networks is investigated to 
address the challenge of identifying atypical features of eyelid tumors, and the most 
suitable classifier for eyelid tumor diagnosis is determined.

4) Extensive experiments are conducted on the internal and external eyelid tumor data-
sets, validating that the HM_ADET achieves excellent performance in the automatic 
detection of benign and malignant eyelid tumors.

Results
Datasets

Acquisition of materials

In this study, a total of 1151 photographic images with 1248 eyelid tumors were col-
lected from Ningbo Eye Hospital (NEH) using ordinary digital cameras between 
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January 2010 and March 2021. The NEH dataset was utilized to develop and validate 
the performance of the localization and classification methods of eyelid tumors. To 
further confirm the effectiveness and generalization ability of the deep learning algo-
rithms, we also collected and annotated an additional dataset of 266 photographic 
images from two other ophthalmology hospitals. This external dataset comprised 
215 photographic images collected from Jiangdong Eye Hospital (JEH) and 51 photo-
graphic images collected from Zunyi First People’s Hospital (ZFPH).

Two junior ophthalmologists with 2-year clinical experience were recruited to 
annotate the cropped images. Prior to the annotation of eyelid tumor boundaries by 
junior ophthalmologists, they received standardized training under the guidance of 
experienced ophthalmologists. In specific, two junior ophthalmologists initially anno-
tated the boundaries of the eyelid tumors, followed by a review and verification of 
the annotations by an experienced ophthalmologist. Corrections were only made for 
a few eyelid tumor samples with unclear boundaries. The main implementation by 
junior ophthalmologists, along with the guidance and inspection by experienced oph-
thalmologists, ensured both data quality and annotation efficiency. The label of each 
cropped image was determined based on an unequivocal histopathological diagnosis. 
The images of the development and the external test sets were taken at different loca-
tions, including outpatient clinics, hospital wards, and operating rooms, resulting in 
uneven backgrounds and lighting conditions, demonstrating the diversity of our data-
set. The dataset was randomly divided into three subsets with a ratio of 0.7:0.15:0.15 
for training, validation, and testing, respectively.

The dataset used for automatic localization of eyelid tumor includes a training set 
of 805 images, a validation set of 173 images, a test set of 173 images, and an external 
test set of 266 images. As each image potentially contains one or more lesion regions, 
the dataset cropped by YOLOv7_CNFG for the automatic classification of benign and 
malignant eyelid tumors includes an internal dataset of 1248 image patches and an 
external dataset of 279 image patches. The detailed distribution of benign and malig-
nant eyelid tumors is presented in Table 1. Four types of benign eyelid tumors (BET) 
are included in the dataset, namely pimented naevus (PN), seborrheic keratosis (SK), 
squamous cell papilloma (SCP), and other benign tumor (OBT). Malignant eyelid 
tumors (MET) are also classified into four types, including sebaceous carcinoma (SC), 
basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and other malignant 
tumor (OMT).

Table 1 Distribution of benign and malignant eyelid tumors

Internal dataset from NEH, external dataset from JEH and ZFPH

Type Internal dataset External 
dataset

Train Val Test Total Test

BET 672 132 139 943 222

MET 200 55 50 305 57

Total 872 187 189 1248 279
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Data pre‑processing

Medical images are often susceptible to noise and imaging quality. To increase the diver-
sity of the dataset, different techniques of data augmentation, such as random rotation, 
horizontal and vertical flipping, and brightness adjustments are applied to the training 
dataset. In addition, mosaic data augmentation is employed to further enhance the mod-
el’s generalization ability and prevent overfitting problem [26]. Figure 1 shows the imple-
mentation process of the mosaic data augmentation process. First, a batch of images is 
randomly selected from the eyelid tumor dataset. Then, from this batch, four images are 
chosen at random and subjected to horizontal flipping, scaling, and color space transfor-
mation. These four transformed images are then concatenated together to form a new 
image. After repeating this operation for batch sizes times, the generated images are fed 
into the target localization network for training. The mosaic data augmentation tech-
nique significantly improves the robustness of the model by combining semantic infor-
mation from four images [27].

Evaluation metrics and statistical analysis

The primary metrics used to evaluate the performance of eyelid tumors localization are 
precision, recall, average precision (AP), and precision–recall (PR) curves. These metrics 
are calculated using Eqs. (1–3).

where TP (True Positive) represents the number of correctly located eyelid tumor 
regions. FP (False Positive) indicates the number of incorrectly located eyelid tumor 

(1)Precision=
TP

TP + FP

(2)Recall=
TP

TP + FN

(3)AP =

∫ 1

0

P(R)dR

Fig. 1 The implementation process of mosaic data augmentation
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regions, and FN (False Negative) indicates the number of missed eyelid tumor regions. 
Precision is the ratio of correctly located eyelid tumor regions to the total number of 
located eyelid tumor regions, while recall is the ratio of correctly located eyelid tumor 
regions to the total number of eyelid tumor regions in the dataset.

Evaluation metrics used for the automatic classification of eyelid tumors include sensi-
tivity, specificity, accuracy, F1-score (F1), receiver operating characteristic (ROC) curve, 
area under the ROC curve (AUC), and confusion matrix. The ROC is a particularly 
important evaluation metric that illustrates the relationship between sensitivity (true 
positive rate) and 1-specificity (false positive rate). F1 is calculated using the formula (4).

where TP, FP, and FN denote the number of true positives, false positives, and false 
negatives in the classification results, respectively. All models were evaluated using the 
one-versus-rest strategy. Statistical analyses were performed with Python 3.7.8 and the 
Scikit-learn package. The Wilson Score Approach was used to calculate the 95% confi-
dence intervals (CI) for accuracy, specificity, and sensitivity, while Empirical Bootstrap 
with 2000 iterations was utilized to calculate the 95% CI for AUC.

Experimental setup

Extensive experiments were conducted on an Ubuntu18.04 64-bit operating system 
using four NVIDIA TITAN RTX GPUs with CUDA 10.2, CUDNN 7.6.5, Pytorch 1.7.0, 
and Python 3.7.8. For eyelid tumors localization, the number of iterations (epoch) was 
set to 300. In the classification experiment, the size of mini-batch was set to 32 on each 
GPU to expedite the convergence of model parameters, and the initial learning rate and 
the maximum epoch were set to 1e-03 and 30, respectively. The learning rate was succes-
sively reduced to one-tenth of the original value in steps of 10 epoch. The model achiev-
ing the highest validation accuracy was chosen for use on the internal test set.

Experimental results

Performance comparison of different localization algorithms for eyelid tumors

To evaluate the effectiveness of the proposed YOLOv7_CNFG model in locating eyelid 
tumor, we selected YOLOv7, YOLOv7 + ConvNeXt, and YOLOv7 + ConvNeXt + FReLU 
as comparative models. The precision, recall, and AP of these four localization mod-
els are statistically presented in Table 2. The YOLOv7_CNFG model outperformed the 
other three models with an AP of 0.893 and a recall of 0.906 on the internal test set, 
as well as an AP of 0.765 and a recall of 0.800 on the external test set. Meanwhile, the 
YOLOv7 + ConvNeXt achieved the highest precision of 0.918 and 0.847 on the internal 
and external test sets, respectively. Notably, compared to the YOLOv7 model, the AP of 
the YOLOv7_CNFG model had improved by 0.13 and 0.118 on the internal and external 
test sets, respectively.

To further demonstrate the performance of YOLOv7_CNFG, we conducted an 
extensive comparison between YOLOv7_CNFG and various YOLOx models with dif-
ferent network structures, including model size, trainable parameters, running time 
of testing, giga floating-point operations per second (GFLOPs), and AP. As shown 

(4)F1 =
2 ∗ TP

2TP + FP + FN
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in Table  3, although YOLOv7_CNFG fell behind YOLOx-s in terms of model size, 
parameters, and GFLOPs, it outperformed YOLOx-s by achieving faster testing time 
and higher AP in eyelid tumor detection. Notably, the AP of the YOLOv7_CNFG 
reached an impressive 0.893, which can be attributed to three key factors. First, the 
employed re-parameterization technique serves as a post-training enhancement 
method, which extends the training process and yields enhanced inference out-
comes. Second, the FReLU activation function adeptly captures multi-scale features 
of eyelid tumors. Last, the GIoU_Loss proves effective in accurately locating eyelid 
tumors with diverse shapes and irregular boundaries. Moreover, the testing time of 
the YOLOv7_CNFG (only 0.191 s) exceeded that of YOLOx, primarily due to the uti-
lization of a composite model scaling technique within YOLOv7_CNFG. This strategy 
enhanced its adaptability to various computing devices, thus meeting higher speed 
requirements.

Figure  2 illustrates the PR curves of the four models. In Fig.  2a, the precision of 
YOLOv7_CNFG showed a slight decrease when the recall was greater than 0.5, while the 
precision of other methods began to decrease rapidly when the recall was greater than 
0.8. In Fig. 2b, the YOLOv7_CNFG model consistently maintained the highest precision 
when the recall was larger than 0.3. The YOLOv7_CNFG was closest to the upper right 
corner, indicating its satisfactory performance in locating eyelid tumors.

Figure 3 presents the loss and AP curves over 300 epochs. In Fig. 3a, the loss of train-
ing dataset gradually decreased with increasing epochs, indicating the progressive opti-
mization of the model. After 200 epochs, the loss approached a minimal value. The loss 
of validation dataset initially exhibited fluctuates, eventually stabilizing after 100 epochs, 
demonstrating the model’s reasonable performance. In Fig. 3b, initially, the model sys-
tematically familiarized itself with the underlying data characteristics, optimizing 
parameters for a rapid ascent in AP. As the number of epochs increased, AP stabilized 

Table 2 Performance comparison of different localization models for eyelid tumors

The bold font represents the optimal performance in a column

Model Internal test set External test set

Precision Recall AP Precision Recall AP

YOLOv7 0.907 0.772 0.763 0.777 0.745 0.647

YOLOv7 + ConvNeXt 0.918 0.795 0.796 0.847 0.724 0.692

YOLOv7 + ConvNeXt + FReLU 0.878 0.850 0.836 0.825 0.782 0.745

YOLOv7_CNFG 0.898 0.906 0.893 0.844 0.800 0.765

Table 3 Comparative analysis of efficiency and AP between YOLOv7_CNFG and YOLOx models

Testing time indicates the average time that the method needs in testing one photographic image. MB Mbyte

Model Size (MB) Parameters (M) Testing time (s) GFLOPs AP

YOLOv7_CNFG 71.3 36.5 0.191 103.20 0.893
YOLOx-s 68.5 18.4 0.255 28.70 0.780

YOLOx-m 193.0 25.3 0.338 73.73 0.786

YOLOx-l 413.0 54.2 0.534 155.67 0.809

YOLOx-x 756.0 99.0 0.931 282.03 0.812
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consistently within the favorable range of 0.9–1. The trends observed in these curves 
further verified the effectiveness and convergence of the proposed model.

To visually evaluate the performance of YOLOv7_CNFG in locating eyelid tumors, 
Fig. 4 displays the localization results of several representative cases. The ground truth 
boxes are depicted in green, while the purple boxes illustrate the localization results of 
YOLOv7_CNFG. The experimental results clearly indicated that the automatic localiza-
tion boxes generated by the YOLOv7_CNFG model were remarkably consistent with the 
expert-annotated boxes, highlighting its impressive ability to locate eyelid tumors.

Performance comparison of the automatic diagnosis of benign and malignant eyelid tumors

In this study, six deep learning algorithms were investigated to determine the optimal 
classifier for identifying benign and malignant eyelid tumors. Figure  5 displays the 
ROC curves and AUCs of these six algorithms in the classification of eyelid tumors. 
The ROC curve provides a comprehensive performance comparison of different mod-
els. The ROC curve of ViT was closer to the upper left, indicating its superior rec-
ognition performance. The optimal algorithm, ViT, achieved AUCs of 0.945 (95% CI 
0.894–0.981) and 0.915 (95% CI 0.860–0.955) on the internal test set and external 
test set, respectively. Among the six algorithms, ResNet101 and Alexnet exhibited 

Fig. 2 PR curves of YOLOv7_CNFG and the compared models for eyelid tumors localization. a PR curves on 
the internal test set. b PR curves on the external test set. PR precision–recall

Fig. 3 Loss and AP curves of the YOLOv7_CNFG model with epochs. AP average precision, Epoch the 
number of iterations
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suboptimal performance on the internal and external test sets, with AUCs of 0.936 
(95% CI 0.881–0.978) and 0.886 (95% CI 0.834–0.928), respectively. Compared with 
the suboptimal algorithms, the optimal algorithm of ViT improved the AUC by 0.009 
and 0.029, respectively.

To analyze the specific number of correct and incorrect identifications of benign and 
malignant eyelid tumors, we presented the confusion matrices of the six deep learning 
algorithms on both the internal and external test sets. Experiment results were depicted 
in Fig. 6 and Additional file 1: Figure S1. ViT achieved the optimal recognition perfor-
mance for both benign and malignant eyelid tumors on the internal and external test 
sets. It is noteworthy that ViT only misclassified three benign eyelid tumors while accu-
rately identifying more malignant eyelid tumors. In contrast, on the internal test set, 
ResNet101 obtained better recognition performance only for benign eyelid tumors, and 
Inception-v3 showed better recognition performance only for malignant.

Fig. 4 Representative localization results for benign and malignant eyelid tumors using YOLOv7_CNFG. The 
green box refers to the ground truth of eyelid tumors. The purple box refers to the localization result using 
YOLOv7_CNFG. The purple numerical values indicate confidence scores (range 0–1) which reflect the degree 
of confidence that the prediction box covers an eyelid tumor. PN pimented naevus, SK seborrheic keratosis, 
SCP squamous cell papilloma, OBT other benign tumor, SC sebaceous carcinoma, BCC basal cell carcinoma, 
SCC squamous cell carcinoma, OMT other malignant tumor

Fig. 5 ROC curves of six deep learning algorithms in discerning malignant eyelid tumors. a ROC curves on 
the internal test set. b ROC curves on the external test set. ROC receiver operating characteristic, AUC  area 
under the ROC curve, CI confidence interval
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To comprehensively quantify the diagnostic performance of different deep learning 
algorithms for eyelid tumors, we calculated a variety of evaluation metrics, including 
sensitivity, specificity, accuracy, precision, and F1. Additional file  1: Table  S1 provides 
a detailed comparison of experiment results. On the internal test set, the ViT algorithm 
achieved the highest accuracy and F1 of 92.1% (95% CI 88.2–95.9) and 83.5% (95% CI 
78.3–88.8), respectively. In contrast, the Inception-v3 algorithm demonstrated the high-
est sensitivity of 82.0% (95% CI 75.6–88.4), while ResNet101 achieved the highest speci-
ficity of 98.6% (95% CI 95.3–100) and the best precision of 94.6% (95% CI 87.3–100). On 
the external test set, the ViT algorithm outperformed all other models in all quantita-
tive metrics, achieving a sensitivity of 70.2% (95% CI 64.2–76.2), a specificity of 98.6% 
(95% CI 95.7–100), an accuracy of 92.8% (95% CI 89.8–95.9), a precision of 93.0% (95% 
CI 85.4–100), and an F1 of 80.0% (95% CI 75.3–84.7). The suboptimal ResNet101 algo-
rithm achieved accuracies of 91.0% (95% CI 86.9–95.1) and 86.0% (95% CI 82.0–90.1) 
on the internal and external test sets, respectively. Compared with ResNet101, the ViT 
algorithm improved accuracies by 1.1% and 6.8% on the internal and external test sets, 
respectively.

The t-distributed stochastic neighbor embedding (t-SNE) [28] technique was also 
applied to investigate whether the extracted high-level features are discriminative. The 
two-dimensional mapping of the high-level features enabled us to evaluate their abil-
ity to distinguish between benign and malignant eyelid tumors [29]. The t-SNE analy-
sis revealed that the ViT achieved the best separability compared to other methods for 
embedding features in benign and malignant eyelid tumors (Fig. 7 and Additional file 1: 
Figure S2). However, it should be noted that the limited number of collected malignant 
eyelid tumor samples may have somewhat affected the separability of certain malignant 
cases.

Malignant and benign eyelid tumors were labeled as 1 and 0, respectively. Figure 8 
further displays the distribution of malignancy scores when identifying eyelid tumors 

Fig. 6 Confusion matrices of six deep learning algorithms on the internal test set
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using the optimal algorithm ViT. The ViT achieved high probability in correctly clas-
sifying malignant eyelid tumors, while its probability of misclassifying benign eyelid 
tumors as malignant was low. These results demonstrated that ViT achieved a high 
recognition rate in distinguishing between benign and malignant eyelid tumors. How-
ever, the misclassification rate of basal cell carcinomas (BCCs) was slightly higher, 
possibly due to their small lesion size, unclear boundaries, and morphological simi-
larity to seborrheic keratosis.

Fig. 7 Visualization of the separability for the high-level features extracted by the six deep learning 
algorithms on the internal test dataset using t-SNE. The black-dotted rectangular box marks some of the 
indistinguishable samples. t-SNE t-distributed stochastic neighbor embedding

Fig. 8 Malignancy scores (range 0–1) predicted by ViT algorithm for major categories of both malignant and 
benign eyelid tumors. The upper and lower boundaries of the box indicate the upper and lower quartiles of 
all scores, respectively. The intersection of the lines inside the box represents the median score
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Heatmap interpretability analysis of eyelid tumors

To investigate the interpretability of the ViT in classifying benign and malignant eye-
lid tumors, we utilized the gradient-weighted class activation mapping (Grad-CAM) 
[30] technique to generate heatmaps that visualized the regions contributing most to 
the model’s decisions. Typical original images, cropped images, and heatmaps of eyelid 
tumors are displayed in Fig.  9 and Additional file  1: Figure S3, respectively. From the 
experimental results, we can draw two meaningful conclusions. First, heatmaps accu-
rately highlighted the lesion regions of both benign and malignant eyelid tumors, cover-
ing a variety of sizes, locations, and shapes. Second, the redder regions on the heatmaps 
represented more significant features identified using the ViT method. Therefore, the 
heatmaps results revealed that the critical lesions regions for identifying eyelid tumors, 
regardless of malignant or benign categories, could be accurately captured by the ViT.

Discussion
In this study, a hybrid model HM_ADET was proposed for automatic diagnosis of eyelid 
tumors; in specific, YOLOv7_CNFG was used to automatically locate eyelid tumors and 
ViT was used for classification of benign and malignant. An efficient ConvNeXt module 
was explored in the YOLOv7_CNFG network to extract informative features of small 
lesions. Detailed comparative experiments represented that the YOLOv7_CNFG algo-
rithm can effectively locate the regions of eyelid tumors in images. Moreover, the ViT 
classification network outperformed other conventional CNNs on both internal and 

Fig. 9 Representative examples of original images, cropped images, and corresponding heatmaps of 
malignant eyelid tumors
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external test datasets, which provided strong evidence of its superior performance and 
generalization ability. In addition, the Grad-CAM technique provided an interpretable 
pathway for the classification of benign and malignant eyelid tumors.

The YOLOv7_CNFG outperformed the conventional YOLOv7, mainly due to several 
factors. First, the dataset of eyelid tumor was preprocessed using mosaic data augmen-
tation, and an adaptive anchor frame screening method was used to determine the size 
of anchor box. Second, the ConvNeXt network is employed to extract lesion features 
of small eyelid tumors, and its unique inverted bottleneck layer prevented information 
loss of small eyelid tumors during downsampling. Third, the FReLU activation func-
tion, designed specifically for visual tasks, captures a detailed features of eyelid tumor 
images such as texture, edges, and shapes, improving the accuracy of object localiza-
tion. In addition, due to the complex shape and irregular boundaries of eyelid tumors, 
the GIoU_Loss is used to calculate the boundary loss of the object box. The localization 
boxes of YOLOv7_CNFG model almost perfectly matched the true boxes labeled by the 
ophthalmologist. Compared with YOLOv7, YOLOv7_CNFG achieved improvements of 
0.13 and 0.118 in AP on the internal and external test sets, respectively.

Compared with previous studies, our proposed method for automatically diagnosing 
eyelid tumors showed satisfactory results. First, the eyelid tumor was relatively small and 
surrounded by noise. The YOLOv7_CNFG localization method was employed to locate 
the eyelid tumor prior to diagnosis, preventing the noise being transmitted to the classi-
fier to affect the diagnosis performance. Second, early-stage benign and malignant eyelid 
tumors often present similar lesion characteristics. ViT algorithm was adopt to self-
attention mechanism and MLP to achieve benign and malignant classification. Experi-
mental results indicated that the ViT algorithm achieved better performance, with 
AUCs of 0.945 (95% CI 0.894–0.981) and 0.915 (95% CI 0.860–0.955) on the internal and 
external test sets for identifying malignant eyelid tumors, respectively. When compared 
to the suboptimal algorithm ResNet101, ViT improved the sensitivity and accuracy by 
6.0% and 1.1% on the internal test set and by 12.3% and 6.8% on the external test set.

The impact of automatic localization results on the classification model was further 
analyzed. For the internal test dataset, there were a total of 189 eyelid tumor regions, 
out of which 169 were successfully located, indicating that automatic localization model 
performed well. Tumors that were not located unavoidably had an impact on the per-
formance of the entire diagnostic system. This impact potentially reduced the accuracy 
of the entire diagnostic system by approximately 10%. However, the high-precision 
localization model itself held significant clinical value. It substantially facilitated oph-
thalmologists in rapidly identifying the suspicious locations of eyelid tumors from cap-
tured images, regardless of whether they were benign or malignant. On the other hand, 
the classification model, by distinguishing between benign and malignant tumors, also 
provided diagnostic guidance for ophthalmologists and patients. This aligned with the 
evidence-based diagnostic approach for eyelid tumors in clinical practice.

To demonstrate the interpretability of ViT, the Grad-CAM technique was applied 
to generate heatmaps to visualize the regions of interest in the localization of eyelid 
tumors. The lesion regions were identified as critical areas in the images, providing fur-
ther evidence of the model’s efficacy. In specific, eight heatmaps of typical benign and 
malignant eyelid tumors were presented, accurately highlighting the lesion regions. The 
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closer to the center of the lesion, the more intense the red color appears, indicating that 
the model is paying more attention to this part of the region. This interpretable explora-
tion significantly facilitates the practical clinical application of ViT.

Due to its reliable performance, our method can be utilized in large-scale screening 
and disease confirmation stage after the consultation, facilitating the early identification 
of malignant eyelid tumors. In regions with poor medical infrastructure, early screen-
ing is critical to ensure patients receive timely treatment. Distinguishing between malig-
nant and benign eyelid tumors is challenging for junior ophthalmologists because of the 
small size, uneven location distribution, and the structural similarity of these tumors. 
Our automatic diagnostic method can aid ophthalmologists in the efficient diagnosis of 
patients with eyelid tumors. Therefore, it not only improves the diagnostic efficiency of 
ophthalmologists, but also reduces medical costs by avoiding unnecessary examination 
of apparently benign eyelid tumors.

Our study has several limitations. First, the number of collected images of eyelid 
tumors is relatively small, which makes it challenging to study finer classification. In 
particular, the limited number of malignant eyelid tumors makes it difficult to distin-
guish between its subtypes. Second, although our method provides a practical strategy 
for the automatic diagnosis of benign and malignant eyelid tumors, its sensitivity is 
slightly lower due to the similar phenotypes between these two types of eyelid tumors. 
Furthermore, while our algorithm is well-suited for screening purpose, it is not suitable 
for providing a specific subtype diagnosis based solely on images. Combining electronic 
medical records and other optical images, multimodal fusion algorithms will be explored 
to provide valuable supplements for the comprehensive assessment of eyelid tumors.

Conclusions
In this study, we propose a hybrid model HM_ADET for automatically diagnosis of eye-
lid tumors. This model includes YOLOv7_CNFG for automatic localization of small eye-
lid tumors and ViT classification algorithm. YOLOv7_CNFG integrates ConvNeXt pure 
convolutional network, FReLU visual activation function, and GIoU_loss function. The 
YOLOv7_CNFG has a high localization performance on both internal and external test 
sets, making it a promising tool for clinical diagnosis of eyelid tumors. The experimental 
results and comparative analysis verify that the ViT classification algorithm outperforms 
other CNNs in identifying benign and malignant eyelid tumors. Interpretability experi-
ments and external test set validation indicate that YOLOv7_CNFG object localization 
algorithm and ViT classification algorithm have excellent rationality and generalization 
ability in clinical applications. Overall, our study provides a valuable reference for the 
automatic diagnosis of not only eyelid tumors but also other eye diseases.

Methods
Overview architecture of the automatic detection of eyelid tumors

As depicted in Fig. 10, the HM_ADET architecture of the automatic detection of eye-
lid tumors consists of two stages: automatic localization of lesion regions of eyelid 
tumors (Fig. 10a) and automatic classification of benign and malignant eyelid tumors 
(Fig. 10b). In Fig. 10a, the automatic localization algorithm YOLOv7_CNFG consists 
of four modules: input, backbone, neck, and head. The mosaic data augmentation 
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technique is utilized in the input module to enhance dataset diversity. The backbone 
module is a crucial functional component responsible for performing convolution, 
normalization, and pooling operations on input images. ConvNeXt, a pure con-
volutional network [31], is employed in the backbone module to extract distinctive 
features from input images, achieving better accuracy than swim transformer with 
similar computational overhead [32, 33]. The neck module can accurately locate eye-
lid tumor lesions by integrating multi-scale features. The output module is used to 
output the located category and the localization boundary. We extracted two shal-
low features from the ConvNeXt module and fused them to obtain the output feature 
maps, P1 and P2, with sizes of 40 × 40 and 80 × 80, respectively, suitable for locating 
medium and small eyelid tumors. In Fig.  10b, the ViT model is employed for auto-
matic classification of benign and malignant eyelid tumors. ViT converts the located 
image data into the input form required by transformer using the patch embedding 
module. After stacking a series of transformer encoder blocks, a multilayer percep-
tron (MLP) directly classifies benign and malignant eyelid tumors. In the following 
sections, the functions and novelty of each module, the adopted activation function, 
and the loss function are introduced in detail.

ConvNeXt network

With the advancement of deep learning algorithms, the swin transformer has gained 
attention as a promising alternative to CNNs for object localization applications due 
to its superior performance in various benchmarks. The ConvNeXt network was pro-
posed by building upon the swin transformer and leveraging its layer structure, down-
sampling, activation function, inverse bottleneck, and deep convolution to further 
enhance the localization accuracy [33]. ConvNeXt possesses powerful feature extrac-
tion capabilities while maintaining low hardware requirements. Due to the small 
lesion regions of eyelid tumors, the downsampling operation in the YOLOv7 easily 

Fig. 10 The HM_ADET framework of automatic detection of eyelid tumors. ViT vision transformer, YOLOv7_
CNFG YOLOv7 + ConvNeXt + FReLU + GIoU_loss, BET benign eyelid tumors, MET malignant eyelid tumors
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lose the features of small eyelid tumors. Therefore, this study adopts the ConvNeXt 
to address the problem of insufficient features extraction of small eyelid tumors. The 
network structure of ConvNeXt and its block is shown in Fig. 11.

The ConvNext network comprises a stem and four stages, with each stage containing 
a different number of blocks in a ratio of 3:3:9:3. To adjust the number of channels, Con-
vNeXt network performs downsampling operation using a convolutional layer with a 
kernel size equal to its stride. After global average pooling and layer normalization (LN) 
operation, a linear layer produces the downsampling result. Batch normalization is com-
monly used for LN operation to stabilize models and reduce gradient oscillation. Given 
the significant correlation between the input of a layer and the output of the previous 
layer, LN can address the issue of covariate shift by specifying the mean (µ) and vari-
ance (σ) of the input summation for each layer [34]. In specific, the statistical mean and 
variance of LN for all hidden units within a given layer can be calculated using formulas 
(5–6).

where H refers to the number of hidden units within a given layer, l represents the lth 
hidden layer, and al denotes the summed input vector to the neurons in this layer. ali is 
the summed input to the i th hidden unit in the l th layer.

In each stage of the ConvNeXt network, a series of ConvNeXt blocks are used to 
extract features. Each block contains a branch that performs depth-wise separable 
convolution with a size of 7 × 7, balancing accuracy and computational overhead. The 

(5)µl =
1

H

H
∑

i=1

aliσ
l

(6)σ l =

√

√

√

√

1

H

H
∑
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Fig. 11 The network structure of the ConvNeXt and its block. The “ × 3, × 3, × 9, and × 3” indicate that stages 
1, 2, 3, and 4 have 3, 3, 9, and 3 blocks, respectively
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convolution between channels involves the correlation between channels, while the 
convolution between spaces focuses on the spatial location correlation. This separable 
convolution makes the convolution kernel more focused on learning specific feature 
information, reducing information confusion and loss. Then, a 1 × 1 convolution layer 
is applied to increase the number of channels by four times, followed by downsam-
pling through another 1 × 1 convolution layer to restore the original number of chan-
nels, minimizing the loss of high-dimensional information. Finally, the scale layer 
scales the data of each channel, and the drop path layer implements random dropout 
of neurons to prevent the model from converging to a local optimal solution caused 
by noisy data. Through the operations of dimension-up convolution and dimension-
reduction convolution, the inverse bottleneck layer structure can improve the model’s 
expressiveness and feature extraction ability while minimizing information loss, and 
retain the key information in the input feature map, thus improving the accuracy and 
robustness of the model.

FReLU activation function

Various convolutional techniques, such as dilated and deformable convolutions, have 
been proposed to capture the spatial relationships of features and adaptively incorporate 
local contextual information in images [35]. However, such techniques often increase 
network complexity. To overcome this challenge, we replace these convolutions with 
the FReLU function, a funnel-shaped activation function specifically designed for visual 
tasks. The FReLU utilizes the same operation as the max(·) nonlinear function to capture 
spatial relationships. It also unfolds the conditional part to a two-dimensional condition 
that depends on the spatial context for each pixel. The specific expression of FReLU is 
shown in Eq. (7).

where xc,i,j represents the input pixel of the nonlinear activation function f (·) at the two-
dimensional space position (i, j) in the C channel. T (xc,i,j) is a two-dimensional condition 
that leverages a parametric pooling window to create spatial dependencies, as described 
by Eq. (8).

where xwc,i,j denotes a kh × kw parametric pooling window centered at xc,i,j , pwc  denotes 
the coefficient shared in the same channel on this window. (·) denotes dot product.

Using the funnel condition, the network is able to generate spatial conditions for the 
nonlinear activation of each pixel. The network can perform nonlinear transformations 
and generate spatial dependencies in the convolutional layers simultaneously. In addi-
tion, the per-pixel condition enables the network with the ability to model each pixel 
individually, and the function max(·) provides a choice whether to consider spatial con-
text for each pixel. The nonlinearity of FReLU can better capture and express complex 
and abstract features in images. In object localization tasks, locating small objects often 
requires the use of multi-scale features to improve accuracy, and the nonlinear prop-
erties can help neural networks utilize feature information at different scales [36, 37]. 

(7)f (xc,i,j) = max(xc,i,j ,T (xc,i,j))

(8)T (xc,i,j) = xwc,i,j · p
w
c
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Therefore, the implementation of this technique effectively improves the localization 
accuracy of small eyelid tumors.

GIoU_loss function

The YOLOv7 network utilizes the complete intersection over union (CIoU) metric to calcu-
late the loss of boundary box regression [38]. However, due to the diverse shapes and bound-
aries of eyelid tumors, locating small eyelid tumors can be especially difficult. Moreover, 
the CIoU_loss does not fully consider the issue of PB and GT not intersecting. To address 

Fig. 12 The schematic diagram of GIoU. The green box A refers to the area of GT. The purple box B refers 
to the area of PB. The orange box C refers to the minimum bounding rectangle that contains A and B. GIoU 
generalized intersection over union, GT ground truth box, PB predicted box

Table 4 Algorithmic formula of GIoU_loss

(x1, y1) and (x2, y2) represent the coordinates of the top-left corner and bottom-right corner of the bounding box, 
respectively
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these issues, the generalized intersection over union (GIoU) is introduced as a novel loss for 
object localization [39]. The GIoU_loss function considers the geometric center differences 
between the PB and GT, which can better handle complex shapes and irregular boundaries, 
thereby improving the accuracy of eyelid tumor localization. When PB and GT do not over-
lap, the GIoU_loss function can consider the overlap of the PB and GT based on the area of 
their bounding rectangles. This approach ensures that the model can be trained normally 
and learn useful information even when the PB and GT do not intersect.

Figure 12 illustrates the concept of GIoU. GIoU is defined as any two boxes (A, B) in 
the set S of all boxes. First, it is necessary to find the minimum bounding rectangle C 
that enclose both A and B, and calculate the absolute value of the ratio of C to the union 
of A and B, that is 

∣

∣C\(A ∪ B)
∣

∣ , to obtain the differing part between the two. Then, cal-
culate the ratio of 

∣

∣C\(A ∪ B)
∣

∣ to the absolute value of C. Finally, subtract the calculated 
ratio from the intersection over union (IOU) values of A and B to obtain the GIoU. The 
size of C\(A ∪ B) is closely related to the distance between A and B. Therefore, GIoU 
expresses the distance between PB and GT [40], which is more conducive to features 
learning during training process and enables PB to be closer to GT.

The formula for calculating GIoU_Loss is presented in Table  4, which measures the 
intersection ratio of PB and GT. The application of GIoU can address the problem of loss 
function lacking gradient when PB and GT do not intersect [41]. In the context of eyelid 
tumor localization, GIoU_loss can effectively reduce the rate of missed and false locali-
zations of small eyelid tumors.
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CIoU  Complete intersection over union
GIoU  Generalized intersection over union
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