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Abstract 

Background: Human activity Recognition (HAR) using smartphone sensors suf-
fers from two major problems: sensor orientation and placement. Sensor orientation 
and sensor placement problems refer to the variation in sensor signal for a particular 
activity due to sensors’ altering orientation and placement. Extracting orientation 
and position invariant features from raw sensor signals is a simple solution for tack-
ling these problems. Using few heuristic features rather than numerous time-domain 
and frequency-domain features offers more simplicity in this approach. The heuristic 
features are features which have very minimal effects of sensor orientation and place-
ment. In this study, we evaluated the effectiveness of four simple heuristic features 
in solving the sensor orientation and placement problems using a 1D-CNN–LSTM 
model for a data set consisting of over 12 million samples.

Methods: We accumulated data from 42 participants for six common daily activities: 
Lying, Sitting, Walking, and Running at 3-Metabolic Equivalent of Tasks (METs), 5-METs 
and 7-METs from a single accelerometer sensor of a smartphone. We conducted 
our study for three smartphone positions: Pocket, Backpack and Hand. We extracted 
simple heuristic features from the accelerometer data and used them to train and test 
a 1D-CNN–LSTM model to evaluate their effectiveness in solving sensor orientation 
and placement problems.

Results: We performed intra-position and inter-position evaluations. In intra-position 
evaluation, we trained and tested the model using data from the same smartphone 
position, whereas, in inter-position evaluation, the training and test data was from dif-
ferent smartphone positions. For intra-position evaluation, we acquired 70–73% accu-
racy; for inter-position cases, the accuracies ranged between 59 and 69%. Moreover, we 
performed participant-specific and activity-specific analyses.

Conclusions: We found that the simple heuristic features are considerably effec-
tive in solving orientation problems. With further development, such as fusing 
the heuristic features with other methods that eliminate placement issues, we can 
also achieve a better result than the outcome we achieved using the heuristic features 
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for the sensor placement problem. In addition, we found the heuristic features to be 
more effective in recognizing high-intensity activities.

Keywords: 1D-CNN–LSTM, Metabolic Equivalent of Tasks, Accelerometer sensor, 
Human activity recognition, Sensor orientation, Sensor placement

Background
Human activity recognition (HAR) is the process of enabling computers to recognize 
human activities by analyzing patterns in different data types, including sensor data, 
images, and videos. Research on HAR is important as it is the principal method for 
accomplishing applications, such as identifying risk factors regarding depression [1], dia-
betes [2], health condition surveillance [3, 4], eldercare [5], sports performance analysis 
[6], and abnormal activity identification [7]. Since HAR is the primary foundation for the 
successful implementation of many applications, researchers are trying to overcome the 
challenges which cause inaccuracy in HAR. Sensor data is one of the most reliable and 
popular data types used in HAR. Sensor data includes data from accelerometers, gyro-
scopes, and magnetometers [8–10]. Studies have used these sensors in divergent ways 
to accumulate data for HAR. Some researchers attached the sensors separately to dif-
ferent body parts [11–13], and some used sensors embedded in smartphones [14–18] or 
smartwatches [19–21]. Among these different types of sensory devices and placements, 
smartphones are efficient, feasible and beneficial to HAR research, because they address 
a number of advantages, including applicability to a large population. Almost every 
smartphone contains an accelerometer and a gyroscope sensor. Data from both of these 
sensors are capable of distinguishing different human activities, which means they are 
feasible for HAR applications. Smartphones are also an inseparable part of daily human 
life. As a result, researchers emphasized improving the HAR using smartphone sensors 
by adapting various techniques to diminish the difficulties posed by smartphones in 
HAR.

Advancing the HAR process using smartphone sensors requires the researchers to 
overcome some significant challenges related to sensor orientation, sensor placement, 
and algorithm choice. The sensor orientation problem is one of the most concerning 
problems faced when using smartphones in HAR, as a smartphone can be kept in dif-
ferent orientations, as depicted in Fig. 1. A user can keep the smartphone in any orienta-
tion and perform different activities. When two different users perform the same activity 
while keeping the smartphone in different orientations, the sensor data becomes differ-
ent, making it hard for HAR methods to identify the sensor data as the same activity. 
Many studies have proposed different methods to deal with the sensor orientation prob-
lem of the smartphone in HAR. Researchers also had to propose various approaches to 
diminish the sensor placement problems [22, 23]. The sensor placement problem hap-
pens as smartphone users tend to keep their smartphones in different body locations, 
including backpacks, hands, or pockets. The smartphone sensors, particularly the accel-
erometer and gyroscope sensors, generate non-identical patterns for similar activity if 
the smartphone is kept in non-identical locations. For dealing with the sensor orienta-
tion and placement problem, researchers generally try to extract features with no orien-
tation or placement effect that could generate substantially different sensor patterns for 
different activities. For example, [24] used extracted features in their proposed activity 
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recognition process, where they included data from four different body locations (coat 
pocket, hand, trouser pocket and bag) and for five human activities (going upstairs, 
going downstairs, walking, standing and running). They started by extracting horizon-
tal and vertical acceleration data from a raw accelerometer to diminish the influence of 
device orientation. Later, they extracted eight features from the raw gyroscope signal 
and separated horizontal and vertical accelerations to develop a position identification 
system. Finally, they performed feature selection, and using this position recognition 
system, they conducted some data adjustments to the selected features, which were later 
used in their activity recognition process. They achieved an accuracy of 91.27% using 
a Support Vector Machine (SVM) with a 4-fold cross-validation technique. Chen and 
Shen [25] extracted 89 time and frequency domain features from smartphones’ accel-
erometers and gyroscope sensors to make the activity recognition process orientation 
invariant and position independent. They then performed feature selection and feature 
normalization on the extracted features. Using these features, they evaluated the perfor-
mance of three classifiers, K-Nearest Neighbours (KNN), Random Forest (RF), and SVM 
in recognition of five human activities (descending stairs, ascending stairs, walking, jog-
ging and jumping) for five non-identical smartphone locations (right upper arm, right 
hand, right jacket pocket, right trousers pocket and waist). They considered different 

Fig. 1 Possible orientations for a smartphone in a particular placement
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validation procedures named one-to-one, all-to-one and rest-to-one and compared the 
performance of the classifiers for different validation procedures. Yurtman and Barshan 
[26] extracted 9 heuristic features from the data of different sensors available in five pub-
lic data sets, which they claimed to be free of the influence of sensor orientation. They 
evaluated the performance of these 9 features in HAR using four machine learning algo-
rithms and found them compelling enough to diminish the orientational effects. Along 
with these studies, many other studies extracted features to solve the sensor orientation 
and location dependency problem [27–30]. However, along with feature extraction pro-
cess, coordinate transformation is a promising method to address the sensor orientation 
and location dependency problem.

In the coordinate transformation approach, first, a global reference coordinate system 
is discovered, and then all the signals are projected to that reference system. Guo et al. 
[31] used a coordination transformation approach on the gyroscope signal from a smart-
phone fused with a motif discovery algorithm to find activity patterns and then devel-
oped a Vector Space Model for classification purposes. They used their approach on a 
data set containing smartphone signals from four different body positions (left upper 
arm, the shirt pocket, the trousers front pocket, and the behind trouser pocket) and 
four different orientations and performed cross-orientation and cross-placement valida-
tion. Chen et  al. [32] also performed coordination transformation by calculating qua-
ternion to transform the linear acceleration signal from the device-coordinate system 
to the earth-coordinate system. Following, they extracted the first two principal com-
ponents from the transformed acceleration signal to eliminate the direction effect for 
different activities. In addition, they extracted time and frequency domain features to 
make their approach more reliable and accurate. To validate their method, they collected 
data from a smartphone placed in three different positions (pants’ pocket, shirt’s pocket 
and backpack) and three different orientations. They performed a leave-one-orientation-
out cross-validation technique using an Online SVM algorithm and compared results 
for different orientations, placements and participants. Ustev et al. [33] also performed 
coordinate transformation and feature extraction using an accelerometer, gyroscope, 
and magnetic sensor to eliminate the orientational effect of the smartphone sensor. 
They evaluated their method for two smartphone orientations (vertical and horizon-
tal) placed in trouser pockets. They achieved 97% accuracy in recognizing five human 
activities using a KNN classifier. A summary of the studies discussed above is presented 
in Table 1. In brief, several studies and methods have been used to address the sensor 
orientation and placement problem. However, the classification algorithm also plays an 
important role in HAR classification accuracy, in particular deep learning algorithms are 
potentially promising given a sufficiently large data set.

Studies have evaluated the performance of divergent machine learning algorithms 
in HAR and provided comparisons to decide the most suitable classifiers to use. Early 
classification studies used simple machine learning classifiers, such as SVM [27, 34–36], 
RF [37–39], KNN [40, 41], and decision trees [42, 43]. These were employed because 
of their low complexity and resource-efficient nature. However, the advancement of 
computational resources enabled the usage of deep learning algorithms, such as artifi-
cial neural networks (ANN), convolutional neural networks (CNN), recurrent neural 
networks (RNN), long–short-term memory (LSTM), and gaited recurrent units (GRU). 
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These deep learning algorithms offer additional advantages in HAR, especially CNN and 
LSTM because of CNN’s automated feature extraction capability and LSTM’s ability to 
persist older information from time series data. Yang et  al. [44] used CNN’s ability of 
automatic feature learning and found it to outperform four conventional machine learn-
ing algorithms in recognizing 18 human activities and 12 hand gestures. They also con-
cluded that CNN was suitable for online HAR. Zeng et al. [45] also exploited the feature 
extraction ability of CNN for HAR on three public data sets (Opportunity, Skoda and 
Actitracker) and acquired an accuracy of 88.19%, 76.83%, and 96.88% on Skoda, Oppor-
tunity, and Antitracker, respectively, using the CNN-based model. Xu and Qiu [46] 
evaluated the feature extraction capability of CNN in recognizing six daily human activi-
ties (sitting, standing, walking, jogging, upstairs, and downstairs) using accelerometer 
signals. They achieved an accuracy of 94.2%, which outperformed traditional machine 
learning algorithms, such as Decision Trees (J48) and SVM. There are also other stud-
ies that used CNN as their final classification model, along with their early data pre-
processing layer, to enhance the recognition rate of human activities [47–49]. Along with 
CNN, another deep neural network variation called RNN is being widely used in HAR 
[50–52]. RNN has few variations of itself, and among them, LSTM is useful in HAR, 
especially when studies combine the information-persistence ability of LSTM with the 
feature extraction capability of CNN. Xia et al. [53] utilized the combination of CNN and 
LSTM, also called CNN–LSTM, to evaluate its performance in HAR on two data sets 
(iSPL and UCI HAR). They acquired 99.06% and 92.13% accuracy on iSPL and UCI HAR 
data sets, respectively. Mekruksavanich and Jitpattanakul [54] also employed the CNN–
LSTM model for HAR using data from smartwatch sensors from 44 subjects perform-
ing 18 activities. They achieved an accuracy of 96.20% using CNN–LSTM, which was 
better than the performance of CNN and LSTM when the models were used separately. 

Table 1 Summary of the previous studies which used feature extraction and coordinate 
transformation methods

Method Sensor types Sensor positions Classifier References

Feature extraction Accelerometer and 
gyroscope

Coat pocket, hand, 
trouser pocket and bag

SVM [24]

Feature extraction Accelerometer and 
gyroscope

Right upper arm, right 
hand, right jacket 
pocket, right trousers 
pocket and waist

KNN, RF, SVM [25]

Feature extraction Accelerometer, gyro-
scope and magnetom-
eter

Multiple positions from 
5 data sets

Bayesian decision 
making (BDM), KNN, 
SVM, Artificial Neural 
Network (ANN)

[26]

Coordination transfor-
mation

Accelerometer and 
gyroscope

Left upper arm, the 
shirt pocket, the 
trousers front pocket, 
and the behind trouser 
pocket

Motif-based classifica-
tion system

[31]

Coordination trans-
formation and feature 
extraction

Accelerometer Pants’ pocket, shirt’s 
pocket and backpack

Online SVM [32]

Coordination trans-
formation and feature 
extraction

Accelerometer, gyro-
scope and magnetic 
field

Trouser pockets KNN [33]
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Mekruksavanich and Jitpattanakul [55] proposed a 4-layered CNN–LSTM model and 
evaluated its performance using the UCI HAR data set. They found that the CNN–
LSTM hybrid model can outperform Vanilla LSTM network, 2-Stacked LSTM network, 
3-Stacked LSTM network achieving an accuracy of 99.39% using a 10-fold cross-vali-
dation technique. Many other researchers have used CNN–LSTM in HAR to utilize its 
capabilities of feature extraction and preserving temporal dependencies [56–59]. There 
has been considerable research for HAR which proposed divergent techniques to solve 
the major challenges, including sensor orientation, sensor placement, and algorithm 
choice.

In this study, we contributed to this field by evaluating the performance of previously 
introduced heuristic features [26] using our data set in intra-position (i.e., senor orien-
tation problem) and inter-position (i.e., sensor placement problem) scenarios using a 
1D-CNN–LSTM model. In the original study [26], the researchers introduced heuristic 
features to tackle the sensor orientation problem. However, they evaluated the perfor-
mance of those heuristic features by synthetically introducing orientation in the data set. 
In our study, we assessed the performance of these features in solving the orientation 
problem for three different positions, where the sensor orientations were ensured during 
the data accumulation process. Moreover, we assessed the performance of those heuris-
tic features in solving the sensor placement problem. By doing this, we wanted to inspect 
if the heuristic features alone can solve the sensor placement problem. In addition, only 
a few studies adopted the Leave-N-Subject-Out Cross-Validation approach and did it for 
a considerably small-scale data set. In our study, we adopted the Leave-N-Subject-Out 
Cross-Validation approach for a data set accumulated from 42 subjects and consisting of 
over 12 million samples. To be precise, we worked on the following contributions in this 
study,

• We evaluated the effectiveness of previously proposed sensor invariant features’ [26] 
performance in the case of sensor orientation problems in HAR for a large-scale data 
set, where the sensor orientations were practically introduced. Previously, the per-
formance of the heuristic features was evaluated using data, where the orientations 
were introduced synthetically (intra-position evaluation)

• No study in the past evaluated the effectiveness of the heuristic features in solving 
sensor placement problems. In our study, we assessed the performance of heuristic 
features in tackling the sensor placement problem in HAR (inter-position evaluation)

• We analyzed the performance of the proposed approach in HAR using a Leave-
10-Subject-Out Cross-Validation technique for a vast data set containing enormous 
variations. Previously, most of the studies used Leave-1-Subject-Out Cross-Valida-
tion and used comparatively small data sets. Our employed Leave-10-Subject-Out 
Cross-Validation technique is more challenging for the HAR system than the Leave-
1-Subject-Out Cross-Validation technique.

• We analyzed the performance of the proposed architecture for six activities with var-
ying intensities (Lying, Sitting, Walking, Running at 3 METs, Running at 5 METs, and 
Running at 7 METs). We wanted to forge the whole system as practically as possible 
by introducing sensor orientation, placement problems, and activities with varying 
intensities.
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The rest of the paper is arranged as follows. “Results” section describes activity-spe-
cific and participant-specific results for both intra-position and inter-position scenarios. 
“Discussion” section discusses our findings, and we conclude our study in “Conclusion” 
section. “Methods” section introduces the materials and methods, where we discuss the 
data accumulation procedures, data pre-processing and feature extraction approach, the 
architecture of the models, and their workflow. The entire study procedure is depicted in 
Fig. 2.

Results
We used data from three positions, and the users had the freedom to keep the smart-
phone in each position at any orientation. We used the four most common evaluation 
metrics for multi-class classification studies: Accuracy [60], Precision [60], Recall [60], 
and F1-Score [61]. Accuracy is the most suitable metric to present a classification mod-
el’s overall performance. The other three metrics are well-suited to describe the model’s 
performance for the class-specific scenario.

Results for intra‑position scenario

In intra-position evaluation, we first analyzed the model’s overall performance for each 
position. Following, we performed participant-specific and activity-specific analyses.

Overall result

For the intra-position case, the model was trained and tested using the heuristic features 
corresponding to the same position. We computed results using the Leave-10-Subject-
Out Cross-Validation procedure and averaged the test results. The average accuracy, 
recall, precision and F1-Score for each position are depicted in Fig. 3.

Fig. 2 Overall workflow diagram of our study
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In the intra-position scenario, we achieved the highest result for the position back-
pack for every evaluation metric. We recorded 73.64% accuracy, 73.34% recall, 76.83% 
precision and 72.35% F1-Score for the position backpack. We recorded the second-
best results for the position pocket. For the position pocket, the accuracy, recall, preci-
sion and F1-Score were 71.46%, 71.07%, 73.66% and 69.82%, respectively. Although the 
results were lower for the position hand among all the positions, they were not much 
lower than those for the position pocket. We recorded 70.10% accuracy, 69.98% recall, 
72.47% precision and 69.04% F1-Score for the position hand. We hypothesize that we 
achieved better results for the backpack position, because the smartphone was more 
stable in the backpack than in the other positions. For activities with high intensities, 
such as walking or running, the hand frequently moved with the body, which allowed 
additional variations for the values from the accelerator sensor of the smartphone. Con-
sequently, the values for the heuristic features were affected for the position hand, and 
the results became lower. If we observe the overall results, the evaluation metrics ranged 
between 69% and 74% for all the positions. We cannot consider it the best result com-
pared to the previously conducted studies. Still, considering the number of participants, 
the volume of the data set and the number of sensors, the results seem promising. The 
accuracies were over 70% for all the positions, which means that the 1D-CNN–LSTM 
model performed decently as a classification model. The average precision and recall 
were promising, indicating that our model tried to keep the number of false predictions 
lower and true predictions higher for each activity class. However, these two metrics will 
be more meaningful when we observe their value for the activity-specific scenario. The 
satisfactory F1-Score meant that the 1D-CNN–LSTM model tried to maintain a bal-
anced trade-off between precision and recall.

Participant‑specific scenario

We only considered accuracy as a summary metric of model performance for the partic-
ipant-specific result analysis in the intra-position scenario. We wanted to observe how 
consistent the model’s performance was for each subject. The accuracy of each partici-
pant for each smartphone location is depicted using a line plot in Fig. 4.

For the position pocket, we achieved the highest accuracy of 88.49% for Participant 
20. For most participants, the accuracy ranged from 60% to 80%. However, we recorded 
inferior accuracy in the case of some participants, such as participants 16, 35, 37 and 

Fig. 3 Bar plots with error bars showing averaged evaluation metrics for the intra-position scenario
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38. For the position backpack, we recorded the highest accuracy of 90.29% for Partici-
pant 27. The accuracy range for most participants was the same as we observed in the 
pocket case. We also observed inferior performance from the model for some partici-
pants, such as participants 4, 16, 22 and 37. For position hand, the highest accuracy was 
84.25% for Participant 33. The overall accuracy range was the same as we observed for 
other positions. Again, the model rendered insufficient accuracy for participants, such 
as 19, 25 and 37. Considering the overall pictures, for the intra-position scenario, the 
performance of heuristic features can be regarded as sufficient and propitious. Some 
participants, including 16 and 37, consistently had low accuracy across all intra-position 
scenarios. It is somewhat unclear why this is the case, but likely, the result is due to noise 
in the raw data.

Activity‑specific scenario

We also analyzed the result of the intra-position scenario for the activity-specific case. 
For this analysis, we considered the evaluation metrics such as recall, precision and 
F1-Score to demonstrate how the heuristic features performed with the help of the 
1D-CNN–LSTM model for each activity class. The results for the activity-specific case 
are depicted in Fig. 5.

First, we will discuss the values of evaluation metrics for the pocket position. We 
recorded the highest precision of 86.58% for the activity “Walking”. We generally expect 
a model to generate high precision for all the classes. Our 1D-CNN–LSTM model gen-
erated high precision for high-intensity activities such as Walking and Running at 3, 5 
and 7 METs for the data of the position pocket. However, the precision for low-inten-
sity activities such as Sitting (61.61%) and Lying (63.70%) was low. This is a well-known 
result, because sensor signals tend to be small for low-intensity activities; therefore, 
models misclassify these activities. For the pocket position, all activity classes, except 
Sitting, had a model-generated recall greater than 70%. We recorded the highest recall 
of 83.96% for the activity Running at 5 METs. We also expect high recall from a clas-
sification model along with high precision. However, our model for the pocket location 

Fig. 4 Line plot showing accuracies for all participants at every position in the intra-position scenario
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generated very poor recall (43.76%) for the low-intensity activity of Sitting. The F1-Score 
in our classification model is a critical metric, because it explains how well-balanced our 
model is for precision and recall. For the pocket position, the F1-Score was promising 
for all the activities except for Sitting. For the activity class Sitting, the F1-Score was only 
48.65%. The F1-Score was expected to be low for the activity Sitting as we experienced 
low precision and recall for that same activity. We acquired the highest F1-Score for the 
activity Walking (82.46%).

For the backpack position, we recorded the highest precision of 87.98% for activ-
ity Running at 7 METs. The precision was lower for activities, such as Lying (66.26%) 
and Running at 5 METs (69.31%). The precision for the activity Sitting was poor for 
the pocket position; however, for the position backpack, it was improved (76.60%). The 
recall for the backpack position was similar to the pocket position. We recorded the low-
est recall of 55.55% for the activity Sitting. The highest recall was found for the activity 
of Walking (81.42%). The recall ranged between 70% and 80% for all other activities. The 
scenario for F1-Score for the position backpack was similar to the position pocket. The 
lowest F1-Score was recorded for the activity Sitting (61.41%), and the highest F1-Score 
was recorded for Walking (80.95%). Considering the evaluation metrics for the position 
backpack, our model seemed to struggle to identify the activity Sitting correctly.

We expected the evaluation metrics for the hand position to be poorer than those for 
the other positions. This is because, as we mentioned before, the continuous movement 
of the hand during high-intensity activities causes extensive variations in the data col-
lected from the accelerometer sensor. The precision values for the hand position had a 
pattern similar to that observed for the pocket position. We recorded the highest and 
lowest precision for the Walking (87.17%) and Sitting (55.76%) activities, respectively. 
Regarding recall for the hand position, the scenario was the same as we observed for the 
pocket position. The recall was highest for the activity Running at 3 METs (81.41%) and 
lowest for the activity Sitting (50.95%). The recall was poor for the activity Running at 5 
METs. The lowest F1-Score for the hand position was recorded for the activity Sitting 
(51.25%), and the highest F1-Score was for the activity Walking (81.99%). Considering 

Fig. 5 Bar plot showing activity-specific results with error bars for the intra-position scenario
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the precision, recall, and F1-Score for all the positions, we found that the model strug-
gled to recognize the activity Sitting for all three positions. For other activities, the 
model performed well using the heuristic features, especially for the activity Walking.

Results for inter‑position scenario

In the case of the inter-position scenario, we performed the same analysis. We will start 
by discussing the overall results. Following, we will describe the participant-specific and 
activity-specific results.

Overall results

We trained our model using heuristic features extracted from the raw accelerometer 
data from one smartphone placement and tested the model’s performance using the 
heuristic features extracted from the raw accelerometer data of a different smartphone 
placement. We averaged the evaluation metrics over all the iterations of the validation 
procedure to calculate the final overall results. The results are shown in Table  2. The 
highest accuracy was for the backpack position when the model was trained using the 
data from the hand position. We recorded 68.66% accuracy, 69.95% precision, 67.07% 
recall and 64.77% F1-Score in this case. The lowest accuracy result was recorded for the 
data from the hand position when the model was trained using data from the backpack 
position. The accuracy and F1-Score were below 60% in this case. When the model was 
trained using data from the pocket position and tested using data from the backpack 
position, we acquired results that were almost similar to the case, where the model was 
trained using the data from hand and tested using the data from the backpack. For other 
cases, the metrics ranged between 62 and 66%.

We expected to have poorer results in the case of inter-position evaluation, since the 
training data and test data were from different positions and different participants. The 
values for the evaluation metrics were below 70%. However, the result seems accepta-
ble considering the simple heuristic features and data from a single accelerometer. The 
model seemed to perform the best when trained using the data from hand.

Participant‑specific result

We only considered accuracy as an evaluation metric for participant-specific evaluation. 
As mentioned before, the principal purpose of this analysis was to observe the number 

Table 2 Averaged values of evaluation metrics for each inter-position case

Smartphone position 
for the training set

Smartphone 
position for test 
set

Accuracy (%) Precision (%) Recall (%) F1‑score (%)

Pocket Backpack 67.80 69.56 66.93 65.00

Hand 62.39 63.27 64.20 60.86

Backpack Pocket 62.62 66.68 63.59 61.45

Hand 59.03 61.64 60.60 58.23

Hand Pocket 64.10 66.09 62.92 60.38

Backpack 68.66 69.95 67.07 64.77
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of participants for whom the model’s performance was poor. The analysis is depicted 
graphically in Fig. 6.

When the model was trained using data from the pocket position and tested using the 
data from other positions, most participants’ accuracies were above 60%. In addition, the 
accuracies were consistent for each participant for every position, i.e., for a particular 
participant, if the model performed well for the data from the hand position, the model 
performed well for the data from the backpack position. However, there were some 
exceptions; for instance, for participant 22, the accuracy of the data from the backpack 
was the lowest (40.71%), but the accuracy of the data from hand was 76.81%. For partici-
pant 23, the accuracy was 42.05% when the model was tested using data from the hand 
position, but for the same participant, the accuracy was 75.97% when tested using data 
from the backpack position.

When the model was trained using the data from the backpack, for some participants, 
the model performed very well when the test data was from the pocket. For example, for 
participants 20, 31 and 33, the accuracies were 86.22%, 83.69% and 88.13%, respectively. 
However, the scenario was not the same when the test data was from the hand posi-
tion. The highest accuracy recorded when the test data was from the hand position was 
75.91% for Participant 28. When the test data was from the hand position, the accuracy 
was below 47% for some participants, such as 19, 26 and 35. Similar accuracies were 
recorded for participants 6, 16, 21, 24 and 37 when the test data was from pocket.

Fig. 6 Participant-specific results for the inter-position scenario
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For the final case, where the model was trained using data from hand and tested for 
two other positions, the results were better for most participants when the test data 
was from the backpack position. For most of the participants, the accuracies were about 
70%. We recorded the highest accuracy of 82.67% for participant 27 when the training 
data was from the hand position, and test data was from the backpack position. Still, 
there were some participants, such as 19, 22, 35, and 37, for whom the accuracy was very 
low. When the test data was from the pocket position, we recorded the best accuracy 
(78.15%) for Participant 20. For most participants, accuracies were around 60%, except 
for some participants, such as 21, 35 and 39, where the accuracies were below 50%.

Activity‑specific results

For the activity-specific results, we will discuss each evaluation metric for all the cases 
individually. The evaluation metrics for each inter-position scenario for every activity 
class are depicted in Fig. 7.

For precision, we can see that the lowest values were found for the activity Sitting. For 
all the inter-position cases, the precision for the activity Sitting was around 50%. We 
encountered similar results for intra-position cases. The model found it challenging to 
identify the activity Sitting correctly in both inter-position and intra-position situations. 
The precision for the activity Walking was satisfactory for all the inter-position cases 
and was around 80%. For the activity Lying, we experienced precision ranging between 
50% and 60%. This means the model mislabelled many samples from other high-inten-
sity activities to Sitting and Lying. For the activity Running at 3 METs, the precision was 
lower than 60% for two cases, and in both cases, the test data was from the hand posi-
tion. For other cases, the precision was around 70%. For the activity Running at 5 METs, 
the precision was approximately 70% when test data was from the backpack position. For 

Fig. 7 Activity-specific results for the inter-position scenario
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other cases, the precision was around 60%. Finally, for the activity Running at 7 METs, 
the precision was approximately 80% except for two cases. The test data were from the 
pocket in both cases, and the precision was around 65%. Observing the precision for all 
activity classes, it is clear that the model had lower accuracy from low-intensity activi-
ties, which decreased overall precision.

Regarding the recall for all the inter-position cases, we recorded the poorest perfor-
mance for two activity classes, Sitting and Running at 5 METs. For the activity Sitting, we 
recorded poor recall (between 20% and 30%) in three cases. In two of those three cases, 
the test data was from the backpack position, the other had data from the pocket posi-
tion as test data, and the training data was from the hand position. In other cases, the 
recall was between 55 and 70%. Poor precision and recall for the activity Sitting means 
that the model mislabelled other activities as the activity Sitting and mislabelled many 
samples from Sitting activities to other activities. Although the precision was around 
60% for all the cases of activity Lying, the recall was comparatively better and around 
80% for three cases. In two of those three cases, the train data was from hand, and the 
other case had training data from the pocket position and test data from the backpack 
position. For Walking and Running at 3 METs, the recall was satisfactory and ranged 
between 70 and 80% for most inter-position cases. As mentioned before, the recall was 
poor for the activity Running at 5 METs. The recall (above 60%) was comparatively bet-
ter for the activity Running at 5 METs only when the test data was from the backpack. 
For the activity Running at 7 METs, the recall was satisfactory. After observing the preci-
sion and recall, one significant finding was that the metrics were always better when the 
test data was from the backpack position.

In the case of F1-Score, the result was similar to the previous two metrics as it is a 
harmonic mean of recall and precision. The F1-Score was promising for the activity 
Walking, at approximately 80%, and Running at 7 METs, at about 70%, for all the cases. 
The F1-Score was low for the activities Sitting and Running at 5 METs. The low value 
of F1-Score for the activities Sitting and Running was expected as we experienced low 
precision and recall for those activities. For the activities Lying and Running at 3 METS, 
the F1-Score was better for three cases. Among those three cases, two cases had the data 
from the hand as train data, and in the other case, the test data was from the backpack, 
and the train data was from the pocket.

Considering all evaluation metrics for all the inter-position cases, we can conclude 
that the heuristic features with the 1D-CNN–LSTM model struggled with low-intensity 
activities in both intra-position and inter-position cases. Along with the low-intensity 
activities, we also found poor performance for the activity Running at 5 METs.

Discussion
In our study, we wanted to explore the effectiveness of heuristic features in solving 
sensor orientation and sensor placement problems with the help of a 1D-CNN–LSTM 
model. We collected data from only a smartphone accelerometer sensor. We had 42 
participants, and we followed the Leave-10-Subject-Out Cross-Validation approach. 
Our study had two types of analysis: intra-position (i.e., sensor orientation problem) 
and inter-position (i.e., sensor placement problem) analyses. In the intra-position 
scenario, we checked the effectiveness of the heuristic features on a data set, where 
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the orientations were introduced during data collection. In the study [26], where the 
heuristic features were introduced, they evaluated the performance of the heuristic 
features on five public data sets, which they named A [62], B [63], C [64], D [65], and 
E [66]. These data sets were accumulated using sensors fixed at a constant orienta-
tion. Therefore, the data sets had orientation information for only one orientation. 
Their study claimed that the heuristic features removed the orientational information 
from the data set. Since the orientation information was removed, the data set simu-
lated the scenario, where the orientation of the sensor did not matter anymore. How-
ever, their data set did not represent a practical scenario, where multiple orientations 
can be present. Since, in our case, different orientations of smartphone accelerometer 
were ensured, we were able to evaluate the performance of the heuristic features in a 
practical scenario. In addition, the data set on which [26] performed the evaluation 
had a low volume of data. They had the highest number of data windows for data 
set C (30 subjects); the number of data windows was 10,299, with a 50% overlapping 
ratio. In our case, we had around 4 million data windows for each position. For 3 posi-
tions, the total number of data windows was about 12 million. Moreover, we had 42 
participants’ data, which offered more diversity for our data set. Their study followed 
the Leave-1-Subject-Out Cross-Validation and P-Fold Cross Validation approaches, 
whereas our Leave-10-Subject-Out Cross-Validation approach ensured a more practi-
cal test case, where 10 test participants offered completely unseen data to the model. 
In their study, three of their five data sets had more than one type of sensor. Data sets 
B and E only used a single accelerometer as we did. To be brief, our study protocol 
was more practical and simulated a real-life scenario, ensuring a more reliable evalua-
tion of the heuristic features.

As mentioned earlier, the study [26] followed two validation approaches: P-Fold 
Cross Validation and Leave-1-Out Cross-Validation. The Leave-1-Out Cross Valida-
tion approach and our Leave-10-Out Cross-Validation approach tested the model 
using data from participants unseen by the model. They introduced 9 heuristic fea-
tures and used these features by dividing them into 3 sets. The first set had the first 
3 heuristic features, the second set had the first 6 features, and the third one had all 
9 heuristic features. They evaluated the effectiveness of these features for 4 different 
classifiers: Bayesian Decision Making (BDM), K-Nearest Neighbour (KNN), Support 

Table 3 Accuracy comparison between the result obtained in [26] and our study

Data set Types of sensors Number of 
sensor units

Classifier Number of 
features

Best 
accuracy 
(%)

A Accelerometer, gyroscope, 
magnetometer

5 SVM 6 77.66

B Accelerometer 4 SVM 3 86.92

C Accelerometer, gyroscope 1 SVM 3 66.69

D Accelerometer, gyroscope 1 SVM 3 50.62

E Accelerometer 1 SVM 9 55.19

Our data set (pocket) Accelerometer 1 1D-CNN-LSTM 4 71.46

Our data set (backpack) Accelerometer 1 1D-CNN-LSTM 4 73.65

Our data set (hand) Accelerometer 1 1D-CNN-LSTM 4 70.10
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Vector Machine (SVM) and Artificial Neural Network. In Table 3, we have tabulated 
the best result for each data set using the heuristic features, number of features used, 
name of the classifier, types of sensors, number of sensor units and the same informa-
tion in our intra-position cases. We only included intra-position cases, because their 
study was conducted to solve sensor orientation problem for a fixed position.

We found better accuracies for all the intra-position cases when compared with the 
accuracies they found for data sets C, D and E. Moreover, from their results, we can see 
that they found the best result for three of their data sets using only the first 3 heuris-
tic features. Therefore, their study’s findings supported selecting the first four heuris-
tic features based on feature importance. In addition, the satisfactory results we found 
for intra-position cases depict that the heuristic features effectively solve the orientation 
problem even for practical scenarios.

In our study, we also presented the performance of the heuristic features in partici-
pant-specific and activity-specific scenarios. In participant-specific cases, we found that, 
for most of the participants at each position, the accuracies were around 70%. There were 
some participants for which the models’ performance was reduced drastically. Moreover, 
the participants for whom we found poor performance for the model changed according 
to the sensor placement. For activity-specific scenarios, in intra-position cases, we found 
that the heuristic features work better for high-intensity activities. We recorded poor 
precision, recall, and F1-Score for low-intensity activities, such as Lying and Sitting.

Regarding the inter-position cases, we found comparatively better results when we 
trained the model using the data from the hand position. The worst result was when we 
trained the model using the data from the backpack position. One interesting finding 
is that the model that we trained using the data from the hand position, which encom-
passes data of comparatively more variations because of the frequent movement of the 
hand, showed the highest accuracy when using data from backpack or pocket position 
as  test data. On the contrary, the model performed poorly when it was trained using 
the data from the backpack, which encompasses fewer data variations because of the 
less frequent movements of the backpack. The difference between the values of the 
evaluation metrics for intra-position and inter-position cases was approximately 10%. 
The accuracies for the inter-position cases were around 65%. The model performance 
was informative, considering we used data from one accelerometer and simple heuristic 
features. The heuristics features were particularly proposed for solving the orientation 
problem, and we wanted to find out the heuristic features’ effectiveness in the placement 
problem. The performance of the heuristic features in inter-position cases indicates that 
if we fuse the heuristic features with other proposed approaches to solve the sensor-
placement problem, then there is a high chance that the performance will increase. In 
addition, for both intra-position and inter-position cases, if we use other types of sen-
sors, such as a Gyroscope and Magnetometer along with an accelerometer, we may find 
better results using the heuristic features.

We had some interesting findings regarding the participant-specific and activity-spe-
cific scenarios for inter-position cases. We observed that, in some cases, when we had 
good accuracy for a particular subject’s data from one specific position, we had low accu-
racy for that same subject’s data from a different position. Such a case was for Participant 
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22 when the model was trained using the data from the backpack position and tested 
using the data from the other two positions. Similar to the intra-position scenario, in 
inter-position scenarios, we observed that the models performed poorly for some par-
ticipants in every inter-position case, reducing the average accuracy for all cases. In the 
activity-specific scenario, the findings’ pattern was similar to those for intra-position 
cases. The heuristic features could not perform well for low-intensity activities, but the 
result was good for high-intensity activities, especially for Walking. However, among the 
high-intensity activities, the performance for Running at 5 METs was unsatisfactory.

In summary, the performance of the heuristic features with 1D-CNN–LSTM was 
promising in both intra-position and inter-position cases. We used data from only one 
accelerometer and performed a Leave-10-Subject-Out Cross-Validation approach. We 
tried to replicate a practical scenario for a machine learning model and evaluate the 
performance of the heuristic feature in such cases. For inter-position cases, using other 
types of sensors might help. An interesting future study would be to observe how the 
heuristic features perform if fused with existing or newly collected data designed to 
solve the sensor placement problem.

Our study had research gaps we would like to explore in future work. We explored 
the effectiveness of the heuristic features using one type of model. Several other clas-
sifiers could be promising, and we will investigate other classifiers’ performance on the 
same data set in future work. In addition, we have not investigated the effectiveness of 
time and frequency-domain features on our data set. In the future, we will evaluate the 
performance of time and frequency domain features and compare the results with those 
achieved using heuristic features. For our data set, we used signals from a single smart-
phone accelerometer. We should explore  how the results  change by including signals 
from the gyroscope and other smartphone sensors. We can fuse the heuristic features 
with other proposed techniques for solving the sensor placement problem and evalu-
ate its effectiveness for inter-position cases. We only conducted our study for six activi-
ties. In future, we intend to conduct the same study with more activities and variations. 
However, we think that exploring the effectiveness of the heuristic features for different 
positions in a practical manner would help other studies have a proper idea about the 
potency of the heuristic features and develop accuracy using other techniques with these 
heuristic features.

Conclusion
This study examined whether simple heuristic features could help solve the sensor orien-
tation and placement problems when conducting HAR using a single smartphone accel-
erometer. Our study used the 1D-CNN–LSTM classifier as it utilizes both CNN’s feature 
extraction power and LSTM’s information-persisting ability. Our study concludes that 
the heuristic features adequately solve the sensor orientation problem despite a simple 
study protocol. We found the best accuracy (73.64%) in solving the sensor orientation 
problem using the heuristic features when the smartphone was placed in the backpack. 
When working with sensor placement issues, we acquired the best accuracy (68.66%) 
when we trained the model using the data from position: hand and tested using the 
data from position: backpack. In addition, we found the heuristic features to be more 
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effective for high-intensity activities. In future, we want to perform the same study using 
other machine learning algorithms and present a comparative analysis. Furthermore, we 
will be fusing other methods that eliminate sensor orientation and placement problems 
with heuristic features to investigate if the outcome can be improved further or not. 
We believe that the findings from our study will help other researchers decide how to 
approach solving sensor orientation and placement problems when using heuristic fea-
tures. Finally, we hope that the outcome of this study will assist in building a robust HAR 
model in terms of sensor orientation and position variation in the future.

Methods
In this section, we will first discuss the data accumulation process. Following, we will 
explain the data pre-processing and feature extraction procedure. Then, we will briefly 
discuss the feature selection approach and describe the 1D-CNN–LSTM architecture 
we used.

Data accumulation

For our study, we collected data from 42 healthy participants for six different activities 
with varying intensities: Lying, Sitting, Walking, Running at 3 METs, Running at 5 METs, 
and Running at 7 METs. We acquired ethical approval from the Memorial University 
Interdisciplinary Committee on Ethics in Human Research (ICEHR #20180188-EX). 
Before commencing the data accumulation procedure, each participant had to com-
plete the Physical Activity Readiness Questionnaire (PAR-Q). There were 18 male and 24 
female participants. The average age, height and weight were 29 (range = 18–56 years) 
years, 169.17 cm (range = 143–185 cm) and 68.19 kg (range = 43–95.2 kg), respectively. 
Each participant performed nine trials to complete the data collection protocol. While 
performing the trials, the participant carried three Samsung Galaxy S7 smartphones 
(SM-G930W8) in three locations. The locations were the participant’s right pocket, 
backpack and right hand. The data accumulation process was 65 min long. The order of 
the trials with duration is given in Table 4. Trial 1 is the trial with which the participants 
started the data collection protocol, and Trial 9 refers to the last trial to be completed.

An android application called Ethica Data [67] was used to collect sensor data. The 
application recorded the data from the accelerometer sensor’s X, Y and Z axes embed-
ded into the smartphone. The application continuously recorded the sensor’s value and 

Table 4 Trial order and duration of data collection protocol

Trial order Activity Duration 
(min)

1 Lying down 5

2 Sitting 5

3 Walking 10

4 Lying down 5

5 Running at 3 METs 10

6 Lying down 5

7 Running at 5 METs 10

8 Sitting 5

9 Running at 7 METs 10
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uploaded the value to the server. During the data collection, the participants were free 
to keep the smartphone in any arbitrary orientation. We collected the data in an indoor 
environment. We used a treadmill to accumulate data for walking and running at three 
speeds. We used the Metabolic Equivalent of Task (MET) to quantify the running inten-
sities or speeds. METs are a ratio of the oxygen consumption rate of a person to the cor-
responding person’s weight. We preferred MET to walk speed, cadence or stride length 
to measure the intensity, because those units are prone to generate different expendi-
tures for different persons. We wanted to ensure that the participants performed the 
activity with the same intensity. The mathematical equation to define the MET is given 
in (1):

We selected these particular activities in our study to ensure the presence of the most 
common daily activities. Besides, few HAR studies combined activity types and activity 
intensity recognition in their work.

Data pre‑processing

We performed data resampling and data imputation on the data set. The optimization 
technique of the Ethica App did not let the app maintain the same data uploading fre-
quency. As a result, the frequency ranged from 5 to 19 Hz. We upsampled the data set to 
a constant frequency of 30 Hz to eliminate this data imbalance using a published method 
[68]. Another challenge with the data was missing values. Missing data occurred because 
of the temporal connection loss between the Ethica App and the server. We used linear 
data imputation to impute missing values. The number of samples for each activity at 
each position after pre-processing is shown in Table 5,

Feature extraction

We extracted 9 orientation-invariant heuristic features using the formula [26] to address 
the orientational dependency problem. Since the participants had the freedom to place 
the smartphones in the pre-determined position in any orientation, we experienced 
different ranges and patterns in sensor values for different participants, even though 
they were performing the same activity. Figure 8 shows the differences in patterns and 

(1)MET =
Oxygen Consumption Rate

(

milileter
minute

)

3.5× weight
(

kg
) .

Table 5 Number of samples for each activity class at each position after pre-processing

Position: pocket Position: backpack Position: hand

Activity name Sample count Activity name Sample count Activity name Sample count

Sitting 879,325 Sitting 879,612 Sitting 879,855

Lying 1,266,292 Lying 1,268,078 Lying 1,269,428

Walking 765,246 Walking 765,375 Walking 765,266

Running at 3 METS 984,997 Running at 3 METS 986,512 Running at 3 METS 986,310

Running at 5 METS 986,446 Running at 5 METS 986,064 Running at 5 METS 985,187

Running at 7 METS 992,654 Running at 7 METS 995,726 Running at 7 METS 992,154
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ranges of accelerometer axes due to the sensor orientation, while different participants 
performed the same activity (Running at 7 METs), keeping the smartphone in their 
backpacks.

We extracted the previously introduced 9 orientation invariant heuristic features to 
eliminate this problem. The formulas to extract the 9 orientation-invariant heuristic fea-
tures are given below,
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∥
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vn

∥
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Fig. 8 Accelerometer axis for different participants performing running at 7 METs (position: backpack)
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Here,
−→
vn =

(

vx[n], vy[n], vz[n]
)

 defines a vector, where vx[n] , vy[n] , vz[n] , were values 
of the accelerometer x-axis, y-axis, and z-axis, respectively, at any time sample n. 
�
−→
vn = vn+1 − vn and �2−→vn = vn+1 − vn, defined first-order and second-order time 

differences, respectively.
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wt = extracted heuristic features for t = 1 to 9,

� �m� = Euclidean norm of vector m,
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where �a · �b denotes their dot product.

Fig. 9 First 4 heuristic features for different participants performing running at 7 METs (position: backpack)
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A more detailed explanation of the features can be found in [26]. Although they intro-
duced the nine features mentioned and used them to eliminate the orientational effect, 
in a previous study [69], we found the first four features w1,w2,w3, and w4, to be the most 
significant and effective in reducing the orientational effect. Therefore, for our study, we 
only used the first four features.

Heuristic features for different orientations

From Fig. 9, we can observe that the 4 heuristic features were able to introduce enough 
similarity for the feature values, while two different participants placed the smartphone 
in a backpack and performed the same activity (Running at 7 METs).

Visual inspection of Fig.  10 shows that features were able to maintain dissimilar-
ity for the feature values, while two different participants placed the smartphone in 
a backpack and performed different activities (Sitting and Running at 5 METs). The 
heuristic features reduced the sensor orientation effect from the sensor values. The 
four features are also simple to extract, which can reduce computational complexity 
compared to the other feature-extracting methods with numerous features that need 
to be extracted to eliminate the orientational problem.

Fig. 10 First 4 heuristic features for different participants performing sitting and running at 5 METs (position: 
backpack)
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Fig. 11 Differences in range and patterns of accelerometer axes due to different sensor placements

Fig. 12 First 4 heuristic features for different smartphone placements and different participants running at 5 
METs
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Heuristic features for different placements

We investigated the patterns and ranges of the raw accelerometer values and heuristic 
features for different smartphone placements. The raw accelerometer values should 
differ in ranges and patterns for the same activity performed by different participants 
when keeping the smartphone in different placements. From Fig. 11, we can observe 
the dissimilarity in patterns and ranges of raw accelerometer values, while two partic-
ipants performed Running at 5METs, keeping the smartphone in two different loca-
tions (Backpack and Pocket).

From Fig.  12, we can observe that the first heuristic feature showed similarities 
in the values and patterns, while the two participants performed the same activity, 
Running at 5 METs, by keeping the smartphones in different locations (Backpack 
and Pocket). For the remaining 3 heuristic features, the similarities in ranges looked 
promising, but the patterns differed substantially.

Besides, the heuristic features could maintain the dissimilarity in the feature val-
ues and range for different activities (Sitting and Running at 5 METs) performed by 
different participants, keeping the smartphone in different locations (Backpack and 
Pocket), as depicted in Fig. 13.

Fig. 13 First 4 heuristic features for different smartphone placements and different participants performing 
different activities
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1D‑CNN–LSTM architecture

In this section, we will discuss our deep-learning approach. Although the heuristic fea-
tures tried to reduce the gap between the sensor values for the same activity in differ-
ent placements (i.e., hand, pocket or backpack), there were still substantial differences 
among the sensor values for different placements. We used a hybrid 1D-CNN–LSTM 
architecture to address the sensor placement problem. In our proposed model architec-
ture, there were two significant parts. The first part contained the CNN model, and the 
second included the LSTM and fully connected layers. The reason behind using CNN 
was its automatic feature extraction capability. In general, a CNN model takes images or 
data matrices as input. The convolution layer of CNN applies multiple filters or kernels 
on the feed images or data matrices and extracts meaningful feature maps. The num-
ber of feature maps depends on the number of filters used. If n number of filters are 
applied on a single data matrix, then we will get n number of feature maps, where each 
feature map will try to extract a distinctive feature for that data matrix. After extracting 
the feature maps, CNN uses the pooling layer to reduce the size of the feature maps. The 
average or max pooling layer reduces the feature map’s size. The feature maps can be 
regarded as the automatically extracted features for the input data matrices. In the con-
volution layer, we propagate the kernels or filters on the data matrices in two different 
ways. If we propagate the filters in two directions at a time, we call the model 2D-CNN or 
conventional CNN. If we propagate the filters in only one direction, we call it 1D-CNN. 
In general, we use 2D-CNN for images and 1D-CNN for data matrices. As mentioned, 
CNN can be combined with LSTM to maintain temporal and spatial dependency. In an 
LSTM model, there can be one or more LSTM layers. Each LSTM layer contains multi-
ple LSTM cells, and each LSTM cell has three gates: Forget gate, Input gate and Output 
gate. We need to feed data matrices as input to the LSTM model. If a data matrix has n 
samples, then we can denote the samples as ti , where i = 1, 2, 3 . . . n . When the Input 
gate processes any particular sample ti , the Forget gate decides the information to pre-
serve from the previous sample ti−1 . The Output gate then combines the information 
from the Input gate and Forget gate to predict the current sequence or data matrix. If an 
LSTM model follows a CNN model, then the feature maps generated by the CNN model 
act as input to the LSTM model. Using the extracted feature maps of the CNN model, 
the LSTM model can find better temporal dependency for a sequence or data matrix. 
The output from the LSTM model goes to the fully connected layers made of conven-
tional neurons to make the final prediction. We assumed that the CNN portion of the 
proposed architecture would be capable of bringing meaningful feature maps, which will 
help reduce the similarity gap in heuristic feature values observed in the case of non-
identical placements of smartphones.

Our proposed 1D-CNN–LSTM architecture was designed as a classification model 
for classifying human activities. The 1D-CNN–LSTM model contained six convolution 
layers with 512, 256, 64, 128, 256, and 512 filters, followed by an LSTM layer with 512 
LSTM cells. Then, we added four fully connected layers with 100, 28, 64 and 6 neurons. 
We had average pooling layers after the first, third and final convolution layers with a 
pool size of 3. We also introduced some dropout layers to reduce the overfitting issue in 
our model. A more detailed description of the model is depicted in Table 6. We used an 
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“Adam” optimizer with a learning rate of 0.0001. We determined all the hyperparameters 
for our deep learning algorithm using the trial and error method.

Validation procedure

There were data from 42 participants. We used 30 participants’ data in the training 
phase, 10 for testing and 2 for validation in each iteration of our validation procedure. 
The participant’s data in the validation set were constant, but the training and test data 
changed as we used Leave-N-Subject-Out Cross-Validation. In our case, the value of N 
was 10, which made our procedure a Leave-10-Subject-Out Cross-Validation technique. 
As we had data from 40 participants for the training and testing phase, 4 iterations were 
required for the whole validation procedure. We had 10 different participants’ data in 
the test set at each iteration. As mentioned, we decided to inspect two separate scenar-
ios: intra-position (i.e., sensor orientation problem) and inter-position (i.e., sensor place-
ment problem) evaluations. In the intra-position evaluation, the 1D-CNN–LSTM model 
was trained and tested using the data from the same position. In the inter-position sce-
nario, the model was trained using data from one position but tested using the data from 
the other two positions. To accomplish the intra-position and inter-position evaluation, 

Table 6 Architecture of the 1D-CNN-LSTM model

Parts of 
architecture

Components of each part

Layer’s name Number 
of filters

Kernel size Pool size Activation 
function

Padding 
type

Dropout ratio

CNN Convolution 512 5 relu Same

Dropout 0.3

Average 
pooling

3 Same

Convolution 256 3 relu Same

Dropout 0.3

Convolution 64 3 relu Same

Average 
pooling

3 Same

Convolution 128 3 relu Same

Convolution 256 5 relu Same

Dropout 0.3

Convolution 512 7 relu Same

Dropout 0.3

Average 
pooling

3 Same

Layer’s name Number of units Activation 
function

LSTM LSTM 512 tanh

Layer’s name Number of neurons Activation 
function

Fully con-
nected 
network

Dense 100 relu

Dense 28 relu

Dense 64 relu

Dense 6 softmax
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we trained the 1D-CNN–LSTM model for a particular position using the heuristic fea-
tures for the 30 participants in the training set. Then, we computed the evaluation met-
rics using the data of 10 participants in the test set for all three positions. For instance, 
if the model was trained using the heuristic features of 30 participants in the training 
set for the pocket position, then we computed the evaluation metrics using the heuristic 
features of 10 participants in the test set for all three positions: pocket, hand and back-
pack. In this manner, both intra-position and inter-position results were accumulated 
for all three positions. According to our validation approach, we had to train the model 
4 times to follow the Leave-10-Out Cross-Validation technique for each position. Since 
we were conducting our study for 3 different positions, we needed to train the model 
12 times. We used an early stopping technique in the training of the 1D-CNN–LSTM 
model. The early stopping technique was designed, so that the model would stop training 
if the model’s accuracy for the validation data did not improve within the successive 20 
epochs. The 1D-CNN–LSTM model needed the training and test data to be segmented 
into data matrices or windows, because 1D-CNN–LSTM works with data windows or 
data matrices. We segmented the training and test data in each iteration using a window 
length of 65 samples with an overlapping ratio of 98.46%. That means each window had 
65 samples, and two consecutive windows had 64 samples in common. We used the win-
dow length of 65, because we found it to be both computational and time-efficient in our 
previous study [69]. The information for the validation approach is organized in Table 7.
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