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Abstract 

Deep Self-Attention Network (Transformer) is an encoder–decoder architectural model 
that excels in establishing long-distance dependencies and is first applied in natural 
language processing. Due to its complementary nature with the inductive bias of con-
volutional neural network (CNN), Transformer has been gradually applied to medical 
image processing, including kidney image processing. It has become a hot research 
topic in recent years. To further explore new ideas and directions in the field of renal 
image processing, this paper outlines the characteristics of the Transformer network 
model and summarizes the application of the Transformer-based model in renal image 
segmentation, classification, detection, electronic medical records, and decision-mak-
ing systems, and compared with CNN-based renal image processing algorithm, analyz-
ing the advantages and disadvantages of this technique in renal image processing. In 
addition, this paper gives an outlook on the development trend of Transformer in renal 
image processing, which provides a valuable reference for a lot of renal image analysis.

Keywords: Deep learning, Transformer, Convolutional neural network, Attention 
mechanism, Kidney disease

Background
Kidney disease is a series of infections caused by kidney damage in function, morphol-
ogy, or structure. Common kidney diseases include glomerulonephritis, pyelonephritis, 
diabetic nephropathy, hypertensive nephropathy, kidney stones, etc. Glomerulonephritis 
and diabetic nephropathy are the leading causes of chronic kidney failure. Today, ten 
percent of the world’s population suffers from chronic kidney disease (CKD), which has 
become one of the most prevalent and fatal diseases and seriously affects people’s health 
[1]. Kidney stones disease (KSD) is a common disease caused by solid mineral deposits 
that form in the kidneys [2]. According to the World Health Organization, approximately 
5–10% of the global adult population suffers from kidney stones, with 10% and 14% in 
some developed countries in Europe and North America, respectively [3]. Meanwhile, 
kidney stones have been on the rise in the past decades. Renal cancer is a common uro-
logical malignancy, with more than 4 million new cases diagnosed yearly [4]. Therefore, 
improving the accuracy of diagnosis and early detection rate of nephrolithiasis is very 
important for the treatment and prognosis of patients.
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With the development of digital medical technology, medical image processing 
technology has also been rapidly developed and has become one of the crucial tools 
in the medical field, especially in diagnosing renal diseases. Several medical imag-
ing modalities exist, such as ultrasonography, computed tomography (CT) [5], and 
magnetic resonance imaging (MRI) [6]. However, imaging tests may require longer 
scanning times, and diagnostic images need more time and effort from healthcare 
professionals. Long-term fatigue of healthcare workers is likely to result in subjec-
tive misdiagnosis or underdiagnosis.

Some studies have shown that using machine learning in medical imaging can 
reduce the possibility of diagnostic errors and thus effectively improve diagnostic 
accuracy [2]. Therefore, improving the ability and automation of image analysis is a 
widespread issue in medical research today. Deep learning, as a branch of machine 
learning, has been tried to be applied in diagnosing CKD and predicting the decline 
of renal function [7], renal insufficiency, and diabetic nephropathy.

Deep Self-Attention Network (Transformer), as a new type of sequence model, 
has been widely recognized for its excellent performance in fields such as natural 
language processing [8]. Kidney CT/MRI images are sequential structural data with 
complex structural correlations between different parts. The transformer can simul-
taneously learn the contextual information of other parts of kidney images through 
the mechanism of multi-attention and capture the global structural relationship of 
the images more comprehensively and accurately to improve the recognition effect. 
The focus of current research is how to introduce it into medical image processing, 
especially in kidney disease. Moreover, the Transformer framework is more general, 
and the trained base model can be used for other renal image analysis tasks, such 
as classification, detection, segmentation, etc. This paper outlines the current stage 
of the Transformer’s application in kidney image classification, segmentation, and 
detection and compares it with traditional CNN models.

Introduction to transformer
The Transformer model is the first transduction model that relies exclusively on 
self-attention to compute its input and output representations without recur-
rent neural networks (RNNs) or CNNs for sequence comparison [8]. Compared to 
commonly used models such as RNNs and CNNs, Transformer has a higher par-
allel computation capability due to an attentional mechanism that simultaneously 
allows the computation to consider all input words or characters. Moreover, the 
self-attention mechanism can effectively handle long sequential data and improve 
the modeling ability of long-range dependencies. The transformer abstracts the 
encoder and decoder into individual modules (as shown in Fig.  1). In the encoder, 
the inputs are mapped to a multidimensional space, and the input representation is 
learned through the multi-head self-attention mechanism. The feed-forward neural 
network uses the ReLU transform for the nonlinear transformation. In the decoder, 
the model also uses a standard attentional mechanism to compute the attentional 
weights between the input and its corresponding context for the decoding operation.
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Vision transformer

Vision transformer (ViT) is the application of Transformer models to computer 
vision, especially for image classification tasks. ViT transforms images into sequences 
by segmenting them into different paths and encodes and classifies them using stand-
ard Transformer models. Compared to traditional CNN models, ViT is based on a 
multi-head self-attention mechanism [9], which can adapt to inputs of different sizes 
and shapes, provides better flexibility, and allows migration learning after large-scale 
pre-training.

Self‑attention

Self-attention is a unique mechanism for computing the interaction between two ele-
ments in a sequence. Given a sequence input, each element can be used simultaneously 
as a query, key, and value. The attention function can be described as mapping a query 
and a set of key-value pairs to an output, where the query, key, value, and production 
are vectors. The outcome is computed as a weighted sum of values, where the weights 
assigned to each value are calculated by the compatibility function of the query with the 
corresponding key [8]. These weights can be used in a weighted sum to add the encoded 
vector at that location.

Fig. 1 Basic structure of transformer
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Multi‑head attention

Multi-head attention is a combination of multiple sets of self-attention mechanisms, 
each mapping between a pair of queries, keys, and values, thus allowing the model to 
simultaneously attend to different representation subspaces from other locations [8]. 
In this process, multiple attention mechanisms form a "head", each getting a sepa-
rate set of queries, keys, and values and generating the corresponding output [10]. It 
captures multiple feature representations simultaneously and detects the relationship 
between different parts, thus developing more contextual relevance and significantly 
improving the model’s ability to learn the original drawing.

Other techniques

Recent studies have found that multilayer perceptual network (MLP) models excel in 
solving image tasks without convolution or self-attention mechanisms. Such mod-
els learn representations only through basic linear algebra operations, which can be 
computed repeatedly for different spatial locations and feature channels. Despite the 
long-term dominance of CNNs and ViT, simple MLP models perform well on specific 
kidney image processing tasks. This demonstrates that MLPs can learn efficient rep-
resentations, opening up new ideas for deep learning. A typical example is that Saikia 
et al. [11] proposed a model MLP-UNet based only on MLP architecture for glomeru-
lar segmentation tasks. The results show that MLP-UNet performs on PAS-stained 
whole kidney images comparable to the pre-trained model TransUNet but with a 20% 
reduction in the number of parameters without needing pre-training. The research 
advancement of MLP models has proposed many novel architectures such as gMLP 
[12], ResMLP [13], ASMLP [14], Cyclemlp [15], etc. Transformer, CNN, and MLP 
perform differently on different tasks, and there is yet to be a unified optimal struc-
ture for deep learning. This section will focus on applying Transformer and its variant 
architectures to the kidney image processing task to find a network architecture more 
suitable for a specific task and thus advance the field.

Application of transformer in renal image processing
Currently, the Transformer mechanism has more applications in renal image process-
ing, mainly including image classification [16], tumor lesion segmentation [17], renal 
organ segmentation [18, 19], etc. In addition, Transformer can achieve prognostic 
assessment of renal diseases [20, 21], provide treatment plans [22], help doctors write 
pathology reports [23], construct electronic medical records [24], and so on.

Using the Transformer mechanism, the application that can be used in renal image 
processing can realize the fast and accurate automated analysis and processing of 
renal images, improve clinicians’ efficiency and diagnosis level, and bring new oppor-
tunities and challenges for renal disease research and clinical treatment.

Transformer applied to kidney image segmentation

Renal cancer is now considered one of the most common malignant tumors in urol-
ogy, leading to a large number of deaths every year [19]. In the past 30 years, the num-
ber of new cases of renal cancer in China has dramatically increased from 110,700 to 
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598,300 cases [25]. Traditionally, the lesion areas of renal cancer patients are mainly 
identified by clinicians’ depiction, which relies heavily on the clinical experience of 
doctors and is very time-consuming and prone to erroneous judgment. Accurate 
measurements from medical images can help doctors make accurate diagnoses and 
provide timely treatment. Medical image segmentation aims at identifying tumors 
and depicting different sub-regions of an organ from the corresponding background 
by assigning labels of predefined categories to each pixel in a medical image, e.g., CT 
[5] MRI [6]. Therefore, the emergence of automatic medical image segmentation tech-
niques is crucial to improve the accuracy and efficiency of clinical diagnosis.

CNN-based and U-Net-based [26] medical image segmentation algorithms have per-
formed better in recent years. Still, based on the limitations of convolutional operations, 
they cannot capture long-range relationships. To solve this problem, there have been 
some research works applying network models based on Transformer with improve-
ments to kidney image segmentation and have achieved good results. In renal image 
segmentation, more application scenarios are renal organ segmentation, renal lesion 
segmentation, and automatic target area outlining.

In this paper, the goodness of segmentation performance is usually expressed in 
terms of the following metrics. Dice similarity coefficient (DSC): measures the over-
lap between the segmentation result and the ground truth. Hausdorff distance (HD): 
computes the maximum distance between two sets, assessing differences between the 
predicted boundary and the ground truth boundary. IOU (Intersection over Union): cal-
culates the ratio of the intersection area to the union area of the predicted region and 
ground truth, reflecting the degree of overlap. MIoU (mean IOU): represents the average 
IOU values of multiple samples, offering a comprehensive evaluation of model perfor-
mance. F1 Score: considers both precision and recall, providing a balanced assessment of 
classification model performance. AUC (area under the ROC curve): reflects the overall 
performance of a classification model by measuring the relationship between true and 
false positive rates at different thresholds. Accuracy (ACC): indicates the model’s overall 
classification performance. Sensitivity: measures the correct identification rate of posi-
tive cases. Specificity: measures the correct identification rate of negative cases.

Models for renal image processing based on transformers typically employ simple 
random rotation data augmentation for preprocessing, using cross-entropy as the loss 
function and optimization methods such as SGD and Adam. Regularization techniques 
include dropout and weight decay. Key hyperparameters encompass the learning rate 
(usually ranging from 1e−4 to 1e−5), batch size (4 to 16), and dropout rate (0.1 to 0.3)
[27].

Multi‑organ segmentation of the abdomen

Accurate kidney organ segmentation can provide clinicians with important informa-
tion, and the task is often integrated with abdominal multi-organ segmentation. In the 
abdominal multi-organ segmentation task, the algorithm needs to segment all the organs 
in the abdomen at once. The synapse dataset (https: //doi.org/https:// doi. org/ 10. 7303/ 
syn31 93805) is the most common publicly available dataset for abdominal multi-organ 
segmentation. Previous researchers usually use CNN for multi-organ segmentation [28]. 
The algorithm needs to consider global and local information to improve further the 

https://doi.org/10.7303/syn3193805
https://doi.org/10.7303/syn3193805
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segmentation accuracy, which led to a combined Transformer–CNN model. According 
to the way of combining CNN and Transformer, hybrid Transformer model methods are 
usually classified into three categories (as shown in Fig. 2):
①Methods based on the encoder of the Transformer model.
②Methods using the Transformer model between the encoder and decoder.
③Methods utilizing the decoder based on the Transformer model-based decoder 

methods.
The first class of methods aims at extracting higher-quality coded features by tak-

ing advantage of the Transformer model’s strength in modeling remote dependencies. 
Therefore, some studies have directly adopted a Transformer as an encoder. TransU-
Net is a successful attempt to introduce a Transformer into medical image segmenta-
tion tasks [29]. This model employs a Transformer as an encoder, which combines 
the strengths of a Transformer and U-Net and can extract the global context from the 
labeled image chunks. At the same time, the Transformer helps to capture spatial rela-
tions over long-range distances. Compared with V-Net, AttnUNet, and ViT, TransUNet 
performs better on multi-organ and heart segmentation tasks. In this way, TransUNet 
can handle large image sizes without the memory constraints of traditional encoder–
decoder models. Similarly, there are many models inspired by the U-shaped architecture 
described above. For example, Atek [30] et  al. designed a two-scale encoder (Swin-
Transformer) U-shaped architecture (SwinT-Unet) to integrate the Shift Window (Swin) 
Transformer module and the Transformer Interactive Fusion (TIF) module. Models 
incorporating hierarchical SwinT modules into the decoder include UNETR [31], Swin-
Unet [32], TransClaw U-Net [33], MISSFormer [34], and others. In order to aggregate 
features from multiple scales of an image, many methods propose a Transformer model 
block based on parallel shift windows to improve SwinT. For, Feng et al. [35] proposed 
the ConvWin-UNet structure, which combines the ConvWin, Transformer, and UNet 
and utilizes the W-MSA (weighted multi-scale aggregation) mechanism and convolu-
tion operation to accelerate the convergence and enrich the information exchange 

Fig. 2 a–c Shows the transformer model-based encoder method, the method of using the transformer 
model between encoder and decoder, and the decoder based on the transformer model
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between patches. Using convolutional window operations for each convolutional layer 
in the encoder and decoder, the model achieves an Average DSC of 79.39% and an HD of 
21.39 mm in the Synapse dataset. And to deal with multiple related tasks simultaneously, 
some methods U-Net based on the introduction of numerous parallel branches, such as 
Wang [36] designed a hybrid MT-UNet network; MTM first computes the self-factor 
efficiently by Local–Global Gaussian Weighted Self-Attention (LGG-SA) and then mines 
the interconnections between data samples by external attention (EA). The MT-UNet 
model achieved 78.59% and 90.43% DSC on the Synapse and ACDC datasets, respec-
tively. Finally, a U-shaped model is constructed for accurate medical image segmenta-
tion. The method consistently outperforms Trans-Unet and other visual Transformers 
for complex-shaped organ segmentation (e.g., liver and left kidney).

Unlike the above approaches, the second class of techniques aims to enhance the 
network’s modeling capability in cross-layer feature transfer by incorporating a Trans-
former between the encoder and decoder to improve the performance of the segmenta-
tion task. For example, Zhou et al. [37] proposed a new 3D Transformer model called 
nnFormer. nnFormer introduces a self-attention mechanism based on local and global 
volumes to learn 3D volume representations and uses skip attention instead of skip con-
nections to improve further the performance, which can be used to use less computa-
tional cost to model global feature relationships efficiently. The model achieved 86.4%, 
86.57%, and 92.06% DSC on the BraTs2016, 2017, Synapse, and ACDC datasets. Outper-
formed the LeViT-UNet-384s and TransUNet and was more advantageous in segment-
ing the pancreas and the stomach in terms of mean HD and DSC, respectively. Similarly, 
introducing the cross-attention cross-convolution Transformer module instead of skip 
connections are DAE-Former [38], DSTUNet [39], and so on.

The third class of methods incorporates the Transformer into the encoder. For exam-
ple, the Trans-U model proposed by Guo et al. [40] uses the combined high-resolution 
positional data from CNN features and the global context stored by the Transformer 
to compensate for the loss of feature resolution caused by the Transformer. The DSC 
result of this model on the Synapse dataset is 76.56%, which is lower than the U-Net 
and attnUNet models. The main reason is that the Transformer cannot extract low-level 
morphological details in medical images. However, it works well in capturing high-level 
semantic information that helps classify. For this reason, it is proposed to combine the 
Transformer with U-Net and let the Transformer learn the positional features through 
the jump connection of U-Net so that the model can utilize the high-level semantics 
as well as consider the low-level morphology and may obtain better results in medical 
image segmentation.

Unlike the U-shaped model-based approach mentioned above, to enhance the Trans-
former network’s ability in local feature extraction, Wang et al. [41] proposed the use of a 
pyramid structure to construct multiscale representations and deal with multiscale vari-
ations, firstly, using a lightweight convolutional layer to extract the low-level features and 
reduce the amount of data, and then, using the Transformer block and the convolution 
block’s mixture of Transformer blocks and Convolutional blocks to handle high-level 
features. Models with similar ideas include ECT-NAS [42], C2Former [43], CASTformer 
[44], etc. Niu et al. [45] proposed a novel symmetric supervised network based on the 
traditional two-branch approach, which utilizes a symmetric supervisory mechanism to 
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enhance the supervision of the network training and introduces a Transformer-based 
global feature alignment module to improve the global consistency between the two 
branches. Compared with the baseline SE-Net [46], the method improved by 16.9% 
and 25.98% on the MS-CMRSeg and CHAOS datasets, respectively, and showed sig-
nificant performance in the multi-organ left and suitable kidney segmentation experi-
ments with 78.46% and 81.45%, respectively. To solve the problem of information loss 
or resolution degradation due to downsampling or cutting of the input image by tra-
ditional Transformer, Themyr et  al. [47] proposed a full-resolution memory (FINE) 
Transformer model, which learns the memory Token by learning the memory Token, 
which scales well in terms of memory and computational cost, and allows for localized 
image segmentation. It scales well and interacts with local image regions and all 3D 
volumetric regions. FINE has better performance and superiority over CNN and recent 
Transformer model baselines (e.g., CoTr [48] and nnFormer [37]) to focus entirely on 
high-resolution images. FINE obtained 87.1% DSC and better segmentation of small and 
complex organs such as the pancreas (Pa) and gallbladder (Gb).

Furthermore, to reduce the dependence on expensive labeled kidney data and to be 
more efficient in data acquisition, Wang et  al. [49] proposed a cross-teaching semi-
supervised medical image segmentation model based on CNN and Transformer mod-
els, aiming to improve the efficiency of automatic segmentation of multiple organs in 
abdominal CT. However, it was found in the validation on the FLARE2022 challenge 
dataset that the segmentation effect could have been more satisfactory. Although the 
separation network could segment most organs, the location of organs such as kidneys 
shifted. In contrast, Xin et al. [50] used U-Net, the backbone network of nnU-Net [51], 
as the final prediction network based on the combination of CNN and Transformer. An 
average DSC of 75.80% was obtained in the FLARE2022 challenge. To perform accurate 
organ segmentation without the need for manual annotation, Wang et al. [52] designed 
a self-supervised learning-based framework for one-time kidney organ segmenta-
tion, which is used to build a network model of global correlation between the refer-
ence samples (VALUE) and the desired segmentation samples (QUERY). Local features 
are extracted using a CNN, and then global features are removed from the local feature 
space via a Transformer. A semantic dependency embedding method introduces channel 
and spatial standard information into the Transformer to establish global corrections. 
The experiment compares the model with PANet [53], SENet [54] and SSL-ALPNet 
[55], and the test scenarios include observed organ settings (OO) and unobserved organ 
settings (UO). The results show that the model outperforms the others in the MICCAI 
2015 CT and ISBI2019 MRI datasets. This demonstrates the effectiveness of using self-
supervised learning to train Transformer and Convolutional Hybrid Networks to handle 
better OO and UO scenarios in medical image segmentation tasks.

Segmentation of renal tumors

Renal tumor segmentation refers to accurately segmenting the tumor region in the kid-
ney from the surrounding normal tissue in medical images to quantitatively identify and 
locate the location and extent of the renal tumor, which can effectively assist doctors in 
tumor diagnosis, treatment, and monitoring.
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To further improve the segmentation and save the running time and memory of the 
algorithm. Some approaches apply a Transformer to the encoder for feature extrac-
tion of kidney images. For example, Yu et al. [56] proposed UNesT, which employs a 
simplified and faster converging Transformer model encoder design to achieve local 
communication between positional information by hierarchically aggregating spa-
tially adjacent patch sequences. The model performs state-of-the-art on the four data-
sets BTCV, KiTS2015, BraTS2021, and KiTS2021, outperforming the state-of-the-art 
integrated model SLANT [57] in a whole-brain segmentation task. Some methods 
learn more straightforward mappings, focusing on normalized pose and size images. 
For example, Barbera et al. [18] proposed a new CNN architecture that contains three 
consecutive modules: a regression module, a differentiable module, and a segmenta-
tion module. The architecture uses a spatial Transformer model network (STN) to 
normalize the input image to improve the accuracy of subsequent segmentation tasks. 
The differentiable module automatically localizes the regions of interest to reduce the 
manual labeling effort. The segmentation module uses a UNet-based architecture, 
and the model achieved good DSC scores (88.01% for kidneys and 87.12% for tumors) 
in the segmentation task for kidneys and tumors on pediatric data and KiTS19 data. 
Inspired by the hierarchical structure in the visual Transformer model, Yu et  al. 
[58] proposed a method to segment kidney components using a 3D block aggrega-
tion Transformer model. They constructed a kidney substructure segmentation data-
set containing 116 subjects. The model enables localized communication between 
sequential representations without changing the self-attention mechanism. It showed 
advanced performance in the segmentation task with a DSC metric of 84.67%. Bous-
said et al. [59] used the spatial Transformer model and linear subspace projection to 
compare segmentation masks in feature space and to characterize global shape prop-
erties. The authors experimented on a 3D ultrasound dataset of left and right adult 
kidneys from 667 patients and obtained a DSC metric of 92.07%, demonstrating the 
validity and accuracy of the method.

Chen et  al. [17] proposed a multi-stage 2.5D semantic segmentation network for 
multi-stage fine segmentation to address the high cost of computational resources for 
kidney mass segmentation. The first stage uses ResSENormUnet [60] combined with 
deep residual connectivity and attention mechanism to pre-segment the kidney and pre-
dict the approximate location and shape. In the second stage, fine segmentation is per-
formed using the DenseTransUnet [61] network combined with dense connectivity and 
self-attention mechanism to more finely segment the contours of the kidney, tumor and 
cyst. Finally, post-processing operations based on 3D-connected regions remove possi-
ble false-positive segmentation results. The model obtained good DSC for kidney seg-
mentation (Kidney: 94.3%, Tumor:77.79%, Cyst:70.99%), but the network approach can 
be improved for segmenting smaller kidneys, tumors, and cysts. To enhance the spatial 
modeling capability of the network while maintaining the efficient use of computational 
resources, Yang et al. [62] proposed that the EPT-Net network effectively combines the 
edge sensing and Transformer structures and introduces the Dual Position Transformer 
to enhance 3D spatial localization capability. Meanwhile, the Edge Weight Guidance 
module extracts edge information without additional network parameters. Good perfor-
mance is demonstrated on the relabeled KiTS2019 dataset (KiTS19-M).
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Outlining of the renal target area

Radiation therapy is one of the most crucial localized treatment modalities for abdomi-
nal malignancies (e.g., cervical, prostate, pancreatic, renal, and liver cancers). Depict-
ing abdominal organs at risk (OARs) on CT images is essential during radiation therapy 
management [63]. The method currently used in clinical practice is manual contouring 
of CT images, which is often very tedious and time-consuming. The results also vary 
depending on the skill level of the observer, environment, or equipment type. Deep 
learning-based automated contouring techniques for segmenting OAR would help elim-
inate these problems and produce consistent results with minimal time and labor [64].

Traditionally, there are conditional generative adversarial network (GAN) techniques 
proposed by Seenia et al. [64] for semantic segmentation of OAR in CT images of organs 
such as kidneys and Pan et  al. [65] for multi-organ segmentation of abdominal CT 
images utilizing a V-net-like structure, a U-shaped multilayer perceptron mixer (MLP-
Mixer) and a convolutional neural network (CNN). These methods need to use the image 
feature information effectively. At the same time, Jiang et al. [66] proposed the MRRN-
NBSA method incorporating self-attention to segment multiple key OARs of head and 
neck (HN) and abdominal organ (BTCV) datasets. Comparison of MRRN-NBSA with 
Unet using cross-attention (CCA), dual-SA, and transformer-based (UNETR) methods 
showed that MRRN-NBSA obtained a DSC of HN: 88% and BTCV: 86%. The technique 
applies NBSA in a decoder that incorporates interactions between regional contexts 
while extracting non-local attentional information in a fast and memory-efficient man-
ner. Overall, the network extracts relevant feature sets to generate accurate segmenta-
tion of organs such as kidneys by combining a deep multiresolution residual network 
and nested block (SA) self-attention to take advantage of multiscale features and self-
attention mechanisms. To address the limitations in global and local information feature 
fusion in the classical TransUnet model decoder, Jiang et al. [67] proposed BiFTransNet, 
which introduces the BiFusion module into the decoder stage to achieve effective global 
and local feature fusion by enabling feature integration from various modules. It is used 
in the Synapse dataset to develop automated gastrointestinal image segmentation to 
help radiation oncologists accurately target the X-ray beam to the tumor.

Summary of segmentation algorithms

A literature search reveals that TransUNet, Swin-Unet, AgDenseU-Net 2.5D, LeViT-
UNet, ViTBI, UNETR, and HiFormer are the more popular algorithms in the field of 
renal medical image segmentation at present and show different degrees of advantages 
in kidney image segmentation tasks. We conducted a comprehensive evaluation of the 
above segmentation algorithms, as shown in Table 1.

Transformer applied to kidney image classification

Kidney image classification is categorizing kidney image data into different categories or 
labels. With deep learning technology, kidney images can be automatically analyzed and 
classified to provide more accurate and faster diagnostic results. This helps to improve 
the early detection and treatment of kidney diseases. Due to the complexity of mor-
phological and structural features of kidneys and surrounding tissues, the task of renal 
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image classification usually needs to consider different levels of features [81], including 
renal morphology, size, texture, and so on. Traditional CNN models have limitations in 
dealing with complex kidney morphological and structural features. In contrast, Trans-
former can extract multiple sets of feature representations in parallel and incorporate 
a fully connected layer to fuse and classify the features, thus improving the model per-
formance [82]. Therefore, applying Transformer to the renal image classification task 
can improve the accuracy and sensitivity, especially for the classification of renal cysts, 
tumors, stones, etc., thus helping doctors to understand renal lesions more accurately 
and provide better treatment plans and prognosis assessment.

Classification network model based on the combination of Transformer and CNN networks

The first class of approaches applies the Transformer to an encoder–decoder structure, 
where the encoder–decoder consists of multiple identical layers, each containing an 
Attention mechanism and a feed-forward neural network. For example, the MT-ONet 
network [83], combines CNN, hybrid Transformer and LGG-SA into the encoder com-
ponent of the proposed O-Net architecture to improve the classification accuracy. The 
second class of approaches uses the Attention mechanism between the encoder and 
decoder to capture the dependency between input and output. For example, the CTrans-
Path [84] network uses a new Semi-Supervised Learning (SSL) strategy called Seman-
tic Relatedness Contrastive Learning (SRCL), which utilizes the local features of CNNs 
mining capability and the global interaction capability of Transformer, which has some 
advantages in solving small sample data.

In diagnostic pathology, whole-slice images are typically huge and often have only 
overall labels and no labels corresponding to specific instances (e.g., cells or lesions). 
This leads to the fact that traditional supervised learning methods cannot be directly 
applied to this problem. To transform the weakly supervised classification problem into 
an overlooked learning problem, Shao et al. [16]. proposed a new framework called Mul-
tiple Instance Learning (MIL) to explore the correlation between different instances to 
solve the weakly supervised classification problem in pathological diagnosis based on 
the whole section images of the kidney, based on the MIL framework, the paper designs 
A Transformer model-based MIL (i.e., TransMIL), which can efficiently handle unbal-
anced/balanced and binary/multiple classification with good visualization and interpret-
ability. TransMIL achieved an AUC of 93.09% and TCGA-NSCLC: 96.03% TCGA-RCC: 
98.82% on the CAMELYON16 and TCGA datasets.

CNNs are more commonly used for renal image classification tasks than Transformer 
models; for example, Cicalese et al. [85] proposed an uncertainty-guided Bayesian Clas-
sification (UGBC) scheme for glomerular and renal level classification tasks. Qadir 
et al. [86] used a deep migration learning model based on the DenseNet201 network to 
classify the tumor, normal cysts and stone regions of the kidney. Aruna et al. [87] used 
networks such as CNN and VGG19 to diagnose polycystic kidneys, and the classifica-
tion task covered cysts, tumors, and stones. Hossain et al. [88] used three classification 
methods, namely, EAnet, ResNet50, and a customized CNN model, to classify the four 
types in CT images of the kidney (cysts, normal, stones, tumors). Chanchal et al. [89] 
proposed the RCCGNet network for fully automated renal cell carcinoma grading from 
renal histopathology images.
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Summary of classification algorithms

In kidney image classification, algorithms based on CNN or combining CNN and 
Transformer have become a hot research topic. These algorithms utilize the feature 
extraction capability of CNN and the sequence modeling capability of Transformer 
to improve the accuracy and efficiency of kidney image classification. In this paper, 
we summarize some crucial algorithms, including TransMIL, CTransPath and other 
algorithms and CNN and DNN-based algorithm models, and their performance 
is summarized and compared in detail in Table  2. This provides an opportunity to 
analyze their strengths and limitations in depth and provides a reference for future 
research and applications.

Multi‑modal image alignment

Multimodal image alignment is aligning and matching renal image data from different 
modalities. By aligning images from other modalities, the correlations and implied 
relationships between them can be revealed, providing researchers with more infor-
mation and insight. In clinical practice, doctors often need to refer to renal image data 
from multiple modalities simultaneously, such as MRI, CT, and ultrasound images. 
By aligning these images, the correlation analysis between different modalities can be 
realized, improving the accuracy of diagnosis and treatment decisions.

Chi et  al. [90] proposed a new depth alignment pipeline for free-breathing 3D CT 
and 2D ultrasound (U/S) kidney scans. The pipeline consists of a feature network and a 
3D–2D CNN-based alignment network. The feature network has hand-textured feature 
layers to reduce semantic gaps. The alignment network adopts the encoder–decoder 
structure of feature image mismatch (FIM), is first pre-trained with a retrospective 
dataset and training data generation strategy, i.e., the kidneys are uniformly aligned on 
the upper and lower axes on the CT images, and then the kidneys are aligned with the 
center of mass on the U/S images, and successfully achieves accurate alignment between 
kidneys on CT and U/S images. The pipeline solves the challenge of 3DCT–2DUS kid-
ney alignment during free-breathing with a new network structure and training strategy 
and obtains a DSC of 96.88% and 96.39% in CT and U/S images, respectively.

Other clinical applications for transformer
In addition to intelligent analysis and intelligent diagnosis of medical images, the Trans-
former mechanism can also be applied to renal image detection, disease prediction, 
image alignment, electronic reports related to renal diseases, clinical decision models, 
etc. [91]. These renal image processing tasks involve large and complex image data, and 
the models constructed by traditional convolutional neural networks can hardly meet 
the actual clinical needs. Using an improved Transformer for kidney image data applica-
tion is an efficient strategy that can help the medical imaging field accomplish quantita-
tive analysis and clinical diagnosis of kidney images more accurately [92].

Transformer application for kidney disease prediction

The main clinical applications of renal ultrasonography include ruling out revers-
ible causes of acute kidney injury, such as urinary tract obstruction, or identifying 
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irreversible CKD to rule out unnecessary tests, such as renal biopsy [93]. Traditional 
methods of assessing kidney injury have relied on metrics such as kidney length, vol-
ume, cortical thickness, and echogenicity [94]. However, in recent years, advances in 
deep learning and computer vision have enabled machine learning and artificial intel-
ligence techniques to more accurately and objectively assess kidney images, providing 
more comprehensive information to diagnose kidney injury and treatment decisions. 
Compared to traditional qualitative or semi-quantitative assessment methods, these 
techniques can reduce the influence of operator experience and subjective factors and 
provide more accurate assessment results [95].

Ma et al. [96] used a novel multimodal data model combining Transformer’s bi-direc-
tional encoder representation and optical gradient boosters to improve CKD prediction. 
The MD-BERT-LGBM model was used in a CKD prediction experiment using over 3 
/ls of medical data from 3295 participants and compared with traditional LR, LGBM 
and multimodal disease risk prediction algorithms. The results showed that MD-BERT-
LGBM is expected to play an essential role in predicting and preventing CKD for clinical 
applications. Zeng et al. [97] constructed a sequential model for the prediction of acute 
kidney injury (AKI) induced by sepsis in the ICU. The attention-based sequential con-
duction model outperforms logistic regression, XGBoost, and RNN through a compre-
hensive performance evaluation. Its AUROC is 79.5% and AUPRC is 65.0%. Asif et al. [7] 
proposed a deep migration learning architecture based on the pre-trained VGG19 [98] 
model and Inception module, i.e., the architecture of the VGG19 model was customized 
by removing the fully connected layer and placing a randomly initialized plain Inception 
module and other coatings. It is used to detect major renal diseases from CT images. The 
experiments considered two migration learning approaches: feature extractor and fine-
tuning. An AUC of 99.25% was achieved on 4000 renal CT images. The proposed model 
is of great benefit to urologists in detecting renal diseases. Shickelae et al. [99] designed 
a multi-stage end-stage renal disease (ESRD) prediction framework for ESRD based on 
the Transformer model. The framework was based on nonlinear dimensionality reduc-
tion, relative Euclidean pixel distance embedding, and spatial self-attention mechanisms 
for predictive modeling. Researchers developed a deep transformer network for coding 
WSI and predicting future ESRD using a dataset of 56 renal biopsy WSIs from patients 
with diabetic neuropathy at Seoul National University Hospital. The subjects had an 
AUC of 97% for the prediction of 2-year ESRD. Aboutalebi et al. [21] designed a clini-
cian assessment-based dataset containing clinical and biochemical data of 1366 patients. 
Different machine learning models were developed and trained to predict kidney injury, 
including gradient-based augmented tree and deep Transformer architecture.

Transformer in electronic reporting

Electronic reporting has also been progressively applied in the medical field. Schuppe 
et al. [23] used the large-scale language Transformer model open source artificial intel-
ligence ChatGPT, a patient diagnosed with bilateral renal cell carcinoma who underwent 
right partial and left total nephrectomy as well as episodic biliary atresia (BA) exhibited 
nephrotic syndrome (NS) signs and symptoms article reports were written. Yang et al. 
[24] described a methodology to develop a language model for reporting renal trans-
plant pathology. The study aimed to answer two predefined questions: what rejection 
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did the patient exhibit, and what was the grade of interstitial fibrosis and tubular atrophy 
(IFTA)? For this purpose, a corpus containing 3.4K renal transplant ports and 1.5 million 
words were used in the paper for pre-training in clinical BERT and fine-tuned with QA 
headers. Additionally, an extended renal BERT (i.e., exKidneyBERT) model was created, 
pre-trained and fine-tuned using the same corpus to capture the complex vocabulary of 
a narrow technical domain.

Application of transformer in decision‑making systems

Zhang et al. [22] utilized the Decision Transformer model, an offline RL (reinforcement 
learning) paradigm for continuous time decision-making in the healthcare domain. In 
the paper, the model was generalized to a continuous-time decision-making scenario, 
considered past clinical measurements and treatments, and learned methods for sug-
gesting future visit times and per-treatment schedules. Experimental results show that 
the continuous-time decision-making Transformer model can outperform its competi-
tors. It has clinical utility in improving patients’ health and prolonging their survival by 
learning high-performance strategies from log data generated using strategies of differ-
ent quality levels.

Other applications summary

Kidney images play an essential role in clinical applications, and different algorithms 
have been proposed to achieve kidney image alignment and disease detection. Table 3 
compares the performance and usage of several standard algorithms for clinical applica-
tions of kidney images.

Discussion and outlook
This paper presents a comprehensive overview of Transformer model-based methods 
used for renal image processing tasks. After extensive comparisons and systematic anal-
ysis, compared with traditional CNNs, the Transformer model-based approach can cap-
ture the correlation between different locations in an image through the self-attention 
mechanism. It can consider global and local contextual information, improving the mod-
el’s ability to understand and judge images. It shows excellent performance and potential 
to become the backbone network model in the renal disease image processing task.

In the clinic, the Transformer model-based approach can provide quantitative image 
analysis for doctors, thus assisting in the diagnosis and treatment planning of kidney dis-
ease. It has certain advantages in the segmentation and classification of kidney images: 
① compared with other traditional models, the Transformer can effectively deal with 
long-range dependencies through the self-attention mechanism and can better capture 
the relationship between each part of the image, thus improving the accuracy of segmen-
tation and classification; ② transformer model is more suitable for dealing with long 
sequence data and global information. The self-attention mechanism in Transformer 
allows interaction between arbitrary positional information without limiting parameter 
sharing and local sense fields, thus providing greater flexibility; ③ transformer model 
can be easily extended to handle multimodal data, such as the combination of image and 
text, which is advantageous in the task of multimodal information.
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Table 3 Performance comparison of kidney image algorithms for other applications

Algorithms Datasets Evaluation 
indicators/results

Main views and 
contributions

Usage

VGG19 [87] Private dataset ACC: 98% VGG19 uses a 
deeper network 
structure and a 
small convolutional 
kernel for improved 
feature extraction

Kidney cysts detec-
tion

EANet [88] CT KIDNEY DATASET: 
Normal-Cyst-Tumor 
and Stone

ACC: 83.65% Introduction of 
attention mecha-
nism, multi-scale 
feature fusion, 
efficient network 
design, cross-layer 
feature interaction

Kidney cyst classifica-
tion

ResNet50 [88] CT KIDNEY DATASET: 
Normal-Cyst-Tumor 
and Stone

ACC: 87.92% Having introduced 
Residual Block and 
Batch Normalization

Kidney cyst classifica-
tion

MD-BERT-LGBM [96] private dataset ACC: 78.12%
AUC: 85.15%

The model 
integrates a bi-
directional encoder 
representation of 
the Transformer with 
an optical gradient 
lifter, a multimodal 
data model

CKD disease predic-
tion

KidneyRegNet [90] KiTS19/in-house 
datasets

KiTS19 (DSC: 96.88%, 
Sensitivity: 0.9711, 
Specificity: 0.9667)/
in-house (DSC: 
96.39%, Sensitivity: 
0.9736, Specificity: 
0.9560)

A new depth-align-
ment pipeline for 
free-breathing 3D 
CT and 2D U/S renal 
scans is proposed

Kidney alignment

ChatGPT [23] NA NA The core algorithm 
is the Transformer, 
which combines the 
Transformer model’s 
self-attention 
mechanism with the 
language model’s 
generative power

Nelson syndrome 
(NS) pathology report 
writing

MulGT [100] TCGA-KICA/TCGA-
ESCA

KICA (Typing: 
AUC: 98.44%, 
ACC: 93.89%, F1: 
93.89%, Staging: 
AUC: 80.22%, ACC: 
74.98%, F1: 72.55%)/
ESCA (Typing: 
AUC: 97.49%, 
ACC: 92.81%, F1: 
92.74%, Staging: 
AUC: 71.48%, ACC: 
66.63%, F1: 65.73%)

A domain knowl-
edge-driven graph 
pooling module 
was designed to 
simulate diagnostic 
patterns for different 
analysis tasks

WSI task diagnostics

Transformer [22] DIVAT (Database 
of Kidney Trans-
plantation Medical 
Records)

NA For use in 
medical fields where 
continuous-time 
decision-making is 
required

Medical decision 
system

Transformer [99] Dataset of 56 renal 
biopsy WSIs in 
patients with DN

AUC: 97% A multi-stage ESRD 
prediction frame-
work based on the 
Transformer model

For encoding WSI 
(whole-slice images) 
and predicting future 
ESRDs
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Although the Transformer model has unique advantages and potential in kidney 
image segmentation and classification tasks, some challenges and limitations must be 
addressed. For example, ① the Transformer may suffer from information loss when 
dealing with long-range dependencies compared to traditional CNNs;② the Trans-
former model consumes a large amount of computational resources, including memory 
and computational power, when dealing with large-scale image data. This may limit its 
feasibility and efficiency in practical clinical applications. ③ Transformer models usu-
ally require a large amount of training data for good generalization ability. However, in 
medical images, especially kidney images, acquiring large-scale labeled data is a chal-
lenging task.

Future research directions include the more effective integration of CNN and Trans-
former, the design of novel Transformer model architectures, the handling of multi-
modal data, addressing unstructured data, and leveraging weak supervision and 
self-supervised learning to enhance the performance of clinical applications. The devel-
opment of versatile and robust Transformer methods will facilitate improved analysis 
and application of clinical data. In the context of implementing this model in real-world 
medical diagnostics, three key challenges and considerations emerge. Firstly, privacy 
and security of data must be taken into account. Patient’s private data should be appro-
priately handled and protected to prevent data leakage. Secondly, there is a need for 
diversity in training data. Currently, clinical sample sizes remain limited, resulting in 
constrained model generalization to different populations and disease types. Collabora-
tion with more healthcare organizations is essential to collect large-scale clinical sam-
ples for model training to enhance its quality. It is worth noting that Transformer models 
typically require substantial training data to achieve strong generalization. However, 
obtaining extensive annotated data, especially in the field of medical imaging, such as 
kidney images, poses a challenging task. Lastly, it is necessary to validate the model’s 

Table 3 (continued)

Algorithms Datasets Evaluation 
indicators/results

Main views and 
contributions

Usage

Transformer [20] Private dataset F1: 96.3%,
AUC: 98.9%

Predicting Kidney 
Transplant Function 
Using the Critical 
Mask Tensor of the 
Transformer Dot 
Product Attention 
Mechanism

Predicting kidney 
transplant function

COVID-Net [21] Private dataset Survival prediction: 
ACC:93.55%,
Kidney Injury 
Complications: 
ACC:88.05%

Proposing an inter-
pretability-driven 
framework for 
building machine 
learning models 
to predict survival 
and kidney injury 
in patients with no 
coronary pneumo-
nia from clinical and 
biochemical data

Predicting survival 
and kidney injury in 
patients with new 
crown pneumonia

ExKidneyBERT [24] Private dataset OneQA (ACC: 83.3%)
TwoQA (ACC: 95.8%)

Linguistic modeling 
of renal transplan-
tation pathology 
reports

Renal pathology 
reports
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stability across multiple datasets, collecting diverse samples from different healthcare 
organizations for validation to test the model’s robustness in various settings.

Through our review, we recognize the crucial importance of preprocessing methods 
in current kidney CT image processing. In our future work, we plan to further optimize 
and propose more effective CT image preprocessing approaches to overcome current 
challenges and limitations. Our method involves multi-step data preprocessing, includ-
ing voxel size resampling, grayscale normalization, noise reduction, contrast enhance-
ment, histogram equalization, region cropping, and data augmentation techniques. 
These comprehensive preprocessing steps aim to optimize model input, enhance perfor-
mance, and improve generalization capabilities.

Conclusion
In kidney image analysis, diverse architectures and optimization techniques have sig-
nificantly improved model performance. Transformer architectures for kidney image 
analysis are typically optimized in three main aspects: ① hybrid CNN and Transformer 
models, such as TransUnet [29]and U-Net variants, are employed to extract local fea-
tures and learn global dependencies; ② introduction of 3D Transformer architecture, 
e.g., TransBTSV2 [19], focuses on learning CT/MRI 3D structural relationships, prov-
ing advantageous in volumetric image analysis compared to 2D models; ③transformer 
model modifications, including attention mechanism updates and depth increase for 
richer feature learning. For instance, the DSGA-Net [74] model introduces a Depth Sep-
arable Gated Visual Transformer (DSG-ViT) module to learn deeper features of kidney 
images. Multimodal data fusion, exemplified by MD-BERT-LGBM, combines different 
imaging modalities (CT, MRI, ultrasound) and text/label data, enhancing feature charac-
terization. In summary, to enhance kidney image analysis task performance, appropriate 
model architectures need to be selected or modified based on data and task character-
istics. We have summarized the features and performance of each model, providing a 
valuable reference resource for advancing and expanding kidney image analysis research.

Abbreviations
CNN  Convolutional neural network
CKD  Chronic kidney disease
KSD  Kidney stones disease
CT  Computed tomography
MRI  Magnetic resonance imaging
RNNs  Recurrent neural networks
ViT  Vision Transformer
TIF  Transformer interactive fusion
W-MSA  Weighted multi-scale aggregation
LGG-SA  Local–global Gaussian-weighted self-attention
EA  External attention
FINE  Full-resolution memory
STN  Spatial Transformer model network
FCN  Full convolutional network
OARs  Organs at risk
GAN  Generative adversarial network
MLP-Mixer  U-shaped multilayer perceptron mixer
HN  Head and neck datasets
BTCV  Abdominal organ datasets
KiTS 2019  Kidney Tumor Segmentation Challenge 2019
KiTS 2021  Kidney Tumor Segmentation Challenge 2021
Synapse 2015  Synapse Multimodal MRI Segmentation and Classification Challenge 2015
ACDC  Automated Cardiac Diagnosis Challenge
Thorax-85  Thoracic Disease Screening in Chest Radiographs Dataset and Challenge
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BCV  Brain Cancer Vision
SegTHOR thorax  Segmentation of THoracic Organs at Risk
BraTS2019  Multimodal Brain Tumor Segmentation Challenge 2019
BraTS2020  Multimodal Brain Tumor Segmentation Challenge2020
LiTS 2017  Liver Tumor Segmentation Challenge 2017
MSD  Medical Segmentation Decathlon
AMOS22  AMOS Medical Image Analysis Challenge 2022
BraTS21  Multimodal Brain Tumor Segmentation Challenge 2021
COVID-DS36  COVID-19 Diagnosis using Chest X-ray Images Dataset and Challenge
GlaS  Glasgow Retinal Image Analysis Challenge: Image Registration
ISIC 2018  2018 International Skin Imaging Collaboration: Skin Lesion Analysis Towards Melanoma Detection 

Challenge
DIVAT  Database of Kidney Transplantation Medical Records
CAMELYON16  Camelyon16: A Benchmark for Fully Automatic Multi-Path Segmentation of Lymph Nodes
TCGA   The Cancer Genome Atlas
SSL  Semi-supervised learning
SRCL  Semantic relatedness contrastive learning
MIL  Multiple instance learning
UGBC  Uncertainty-guided Bayesian Classification
U/S  Ultrasound
FIM  Feature image mismatch
AKI  Acute kidney injury
ESRD  End-stage renal disease
BA  Biliary atresia
NS  Nephrotic syndrome
IFTA  Interstitial fibrosis and tubular atrophy
MS-CMRSeg  MICCAI 2019 Multi-sequence Cardiac MRI Segmentation Challenge
CHAOS  ISBI 2019 Combined Healthy Abdominal Organ Segmentation Challenge
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