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Abstract 

Pulse wave, as a message carrier in the cardiovascular system (CVS), enables infer-
ring CVS conditions while diagnosing cardiovascular diseases (CVDs). Heart failure 
(HF) is a major CVD, typically requiring expensive and time-consuming treatments 
for health monitoring and disease deterioration; it would be an effective and patient-
friendly tool to facilitate rapid and precise non-invasive evaluation of the heart’s blood-
supply capability by means of powerful feature-abstraction capability of machine 
learning (ML) based on pulse wave, which remains untouched yet. Here we present 
an ML-based methodology, which is verified to accurately evaluate the blood-supply 
capability of patients with HF based on clinical data of 237 patients, enabling fast 
prediction of five representative cardiovascular function parameters comprising left 
ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVDd), left 
ventricular end-systolic diameter (LVDs), left atrial dimension (LAD), and peripheral 
oxygen saturation  (SpO2). Two ML networks were employed and optimized based 
on high-quality pulse wave datasets, and they were validated consistently through sta-
tistical analysis based on the summary independent-samples t-test (p > 0.05), 
the Bland–Altman analysis with clinical measurements, and the error-function analysis. 
It is proven that evaluation of the  SpO2, LAD, and LVDd performance can be achieved 
with the maximum error < 15%. While our findings thus demonstrate the potential 
of pulse wave-based, non-invasive evaluation of the blood-supply capability of patients 
with HF, they also set the stage for further refinements in health monitoring and dete-
rioration prevention applications.
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Introduction
Heart failure (HF) has become a significant health concern affecting approximately 26 
million people worldwide, particularly older adults who normally require lifelong treat-
ment [1–3]. HF is characterized as “a condition in which the heart cannot adequately 
pump blood to fulfill the body’s requirements” or “a condition leading to an abnormality 
in cardiac structure or function that results in the failure of effective oxygen transport 
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for metabolic requirements” [1]. HF is clinically diagnosed using the Framingham crite-
ria, which are primarily used in most research [4]. Because patients with HF have poor 
blood circulation throughout their bodies, most of them suffer from concurrent cardio-
vascular diseases from an early stage [5]. The cardiac chambers of patients with HF are 
generally morphologically remodeled, causing dysfunctions with a significant decline 
in the pump function of the heart and reduced blood-supply capability [6–9]. Conse-
quently, the oxygen levels in the arterial blood vessels throughout the body decrease, 
showing symptoms, such as shortness of breath, fatigue, weakness, and decreased exer-
cise capability, which severely affect the patients’ daily lives and necessitate long-term 
medication to maintain normal daily activities [10].

Patients with severe HF require hospital visits for prompt medical diagnosis and com-
prehensive evaluation by clinicians. Various physiological signals and medical images 
are normally obtained using medical devices, such as the echocardiography test, which 
is the most standard tool to assist physicians in assessing patients’ conditions every 
three to six months [11]. Digital imaging of cardiac chambers is crucial for evaluating 
the blood-supply capability in patients with HF, including the left ventricular ejection 
fraction (LVEF), left ventricular end-diastolic diameter (LVDd), left ventricular end-sys-
tolic diameter (LVDs), and left atrial dimension (LAD), because patients with HF show 
irregular characteristics of lower LVEF and higher values of LVDd, LVDs, and LAD [5, 
12]. However, echocardiography tests are time consuming and expensive, posing chal-
lenges for patients with HF [13]. For instance, in the United States, even a 45  min to 
1 h echocardiography test may cost approximately 2000 dollars for a patient, and it is 
unavailable for the daily monitoring of patients with HF [14–16]. When patients tempo-
rarily suffer from severe chest pain, fainting, weakness, arrhythmia, or severe shortness 
of breath [17], a timely diagnosis of their blood-supply capability to appropriately decide 
on a medical intervention is crucial to avoid overtreatment and prevent deterioration. 
Thus, it is necessary to utilize the limited medical resources for accomplishing real-time 
home health monitoring of patients with HF and providing them with a timely deterio-
ration warning.

Physiological signals, such as pulse waves, have been widely used for health monitor-
ing and disease prediction [18–23]. Pulse waves provide vital physiological information 
associated with the blood-supply capability and delivery efficiency [24, 25]. The non-
invasive and convenient nature of pulse wave measurements allows the employment of 
various low-cost home electronic devices for the initial diagnosis of cardiovascular dis-
eases and related complications [26–28]. Considering that the abnormal heart chamber 
geometry typically observed in patients with HF alters the ejection fraction, ultimately 
impacting blood production and delivery efficiency [5], it would be an effective and 
patient-friendly tool to achieve non-invasive assessments of the heart’s blood-supply 
capability through physiological and pathological information embedded in pulse waves. 
Such assessments provide significant potential for health monitoring and prevent dis-
ease deterioration in patients with HF.

Although quantitative analysis of pulse wave signals has been applied to certain car-
diac functions or specific diseases [13, 18, 29], previous studies only targeted healthy 
subjects and other patients without HF. In particular, the quantitative evaluation of the 
pulse wave-based blood-supply capability of patients with HF remains unexplored [30].  
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Owing to the uncertainties caused by the noise and interference generated in the 
pulse-wave sampling process [31], such pulse wave-based prediction of blood-supply 
capability is normally restrained by the limitations of conventional qualitative sta-
tistical methods [32, 33]. To establish a fast and non-invasive strategy for effectively 
predicting the blood-supply capability of patients with HF, we proposed a machine 
learning (ML)-based model in this study to predict five representative cardiovascu-
lar function parameters associated with the heart’s blood-supply capability [34]. As 
illustrated in Fig. 1, the parameters, i.e., LVDd, LVDs, and LAD, directly evaluate the 
morphological condition of the heart chamber and the heartbeat functions at systole 
and diastole; the LVEF quantifies the ratio of blood supply from the heart; and the 
 SpO2 determines the patient’s blood oxygen level at the end of the blood supply as 
well as the supply efficiency. It has been broadly recognized that the ML methodol-
ogy has powerful and feasible capabilities in robust feature extraction [33, 35–39]. 
Remarkable achievements have been accomplished in various research fields, such as 
intelligent medicine, medical image processing, and autonomous driving, by integrat-
ing multiple basic features into complex features, enabling the mapping of the image 
or multi-dimensional signal data onto different prediction targets [40–44]. Our previ-
ous study verified that the ML-based strategy enabled the fast and efficient prediction 
of cardiac functions based on peripheral pulse waves [45], demonstrating the high 
potential and capability of multilayer feature extraction in accurately predicting the 
relevant indicators for clinical application owing to ML methods. In this study, we 

Fig. 1 Schematic of blood-supply capability. RA right atrium, LA left atrium, RV right ventricle, LV left 
ventricle, SpO2 peripheral oxygen saturation, LVDd left ventricular end-diastolic diameter, LVDs left ventricular 
end-systolic diameter, LVEF left ventricular ejection fraction, LAD left atrial dimension
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further explored the capability and feasibility of ML-driven, pulse wave-based predic-
tion of the blood-supply capability of patients with HF for clinical application.

Results
After critical screening and preprocessing of the pulse wave data of the 237 patients 
with HF, a high-quality ML dataset was successfully constructed in a suitable manner 
for flexible input data formats and datasets. To ensure that the screened patients fit in 
the clinical statistics of the patients with HF associated with the five parameters  (SpO2, 
LVDd, LVDs, LVEF, and LAD) for evaluating blood-supply capability and the relevant 
clinical information summarized in Table  1, we conducted a summary independent-
samples t-test based on the statistical results and a comparison with reliable data of pre-
vious studies [46–48]. Our results showed good consistency in terms of p value (p > 0.05) 
(Table 1) in the test analysis for the five parameters and other physiological information.

Five parameters were used to evaluate the blood-supply capability of the two selected 
ML structure models. During ML training, 10 network optimizations were accom-
plished, in which reduction in the loss function MSE resulted in a rapid and monoto-
nous decline in each epoch. Using DenseNet as an example, as shown in Fig. 2, the MSE 
curves for every evaluation parameter with a training epoch of 500 exhibited a con-
stantly decreasing trend to the minimum level. This indicates that the relevant param-
eters and weights of the network were eventually optimized when the training process 
converged to a stable stage, which was then stored for ML-based testing. Moreover, the 
MSE curves of the fully connected network exhibited a decreasing trend, similar to that 
of DenseNet. In the test phase, both ML models outputted the predicted values for the 
five parameters within 1 s using the input of the pulse wave signals in the test set.

To examine the predictive performance of the two networks on the five param-
eters, we summarized the error function results in Table  2. The DenseNet model 
consistently shows lower MAPE values, indicating more accurate predictions. For 
 SpO2, DenseNet and the fully connected network achieve MAPEs of 5.6% and 6.6%, 
respectively. In measuring left ventricular dimensions, DenseNet reports MAPEs of 

Table 1 Characteristics of patients with heart failure (HF)

Data are presented as mean ± SD

BMI blood mass index (kg/m2), BPs blood pressure systole (mmHg), BPd blood pressure diastole (mmHg), HR heart rate 
(beats/min), SpO2 peripheral oxygen saturation (%), LVDd left ventricular end-diastolic diameter (mm), LVDs left ventricular 
end-systolic diameter (mm), LVEF left ventricular ejection fraction (%), LAD left atrial dimension (mm)

Characteristics Range Others’ reports p values

Age (years old) 66.4 ± 16.4 68.0 ± 15.0 0.162

BMI 24.2 ± 5.7 23.5 ± 3.9 0.076

BPs 129 ± 35.4 133.0 ± 29.9 0.105

BPd 80.2 ± 22.7 79.6 ± 18.6 0.703

HR 76.8 ± 15.1 76.0 ± 14.0 0.447

SpO2 96.9 ± 2.6 97.2 ± 1.8 0.501

LVDd 56.8 ± 10.7 55.9 ± 14.9 0.604

LVDs 46.5 ± 12.9 48.7 ± 11.9 0.153

LVEF 38.3 ± 15.3 38.0 ± 15.0 0.779

LAD 44.4 ± 9.1 42.3 ± 9.4 0.074
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12.9% for LVDd and 14.6% for LVDs, compared to 14.7% and 17.3% by the fully con-
nected network. A significant difference is observed in the prediction of LVEF, where 
DenseNet has a MAPE of 18.2%, lower than the fully connected network’s 21.2%. 
For LAD, the MAPEs are 12.0% for DenseNet and 14.9% for the fully connected net-
work, further indicating DenseNet’s enhanced predictive capability for blood-supply 
indicators.

Fig. 2 Illustration of DenseNet model-based learning curves from the training set for blood-supply capability 
parameters of peripheral oxygen saturation  (SpO2), left ventricular end-diastolic diameter (LVDd), left 
ventricular end-systolic diameter (LVDs), left ventricular ejection fraction (LVEF), and left atrial dimension 
(LAD)

Table 2 Comparison between the predictions of the two machine learning models for the values of 
the five parameters associated with blood-supply capability

SpO2 peripheral oxygen saturation, LVDd left ventricular end-diastolic diameter, LVDs left ventricular end-systolic diameter, 
LVEF left ventricular ejection fraction, LAD left atrial dimension, MAPE mean absolute percentage error

ML networks Error function Predicted values

SpO2 (%) LVDd (%) LVDs (%) LVEF (%) LAD (%)

Fully connected network MAPE 6.6 14.7 17.3 21.2 14.9

DenseNet 5.6 12.9 14.6 18.2 12.0



Page 6 of 17Wang et al. BioMedical Engineering OnLine            (2024) 23:7 

We further applied the Bland–Altman method to assess the consistency between 
the ML predictions and clinical measurements by analyzing the average values and 
mean bias, which were visualized in a scatter plot, as shown in Figs. 3 and 4, where 
the horizontal and vertical axes represent the average value and the difference [with a 
95% distribution range, that is, the confidence interval (CI)], respectively. Good con-
sistency between the two methods occurs when the points within a CI of the scat-
ter plot account encompassing over 95% of all points, with the CI not exceeding the 
range of critical values for clinical applications [49]. Most sets of the predictions of 
the two ML networks were within the 95% CI. For the DenseNet, those excluding the 
sets of LAD were fell into the 95% CI, other parameters (i.e.,  SpO2, LVDs, LVEF and 
LVDd) had only one set of data samples outside the 95% CI. For the fully connected 
network, although the LVDs had two sets not within the 95% CI, the other parameters 
 (SpO2, LVDs, LAD, and LVDd) contained only one set outside the 95% CI. Thus, the 
ML network-based predicted results agreed well with the clinical measurements.

Fig. 3 Bland–Altman analyses between DenseNet-based predictions and clinical measurements for five 
parameters in terms of peripheral oxygen saturation  (SpO2), left ventricular end-diastolic diameter (LVDd), 
left ventricular end-systolic diameter (LVDs), left ventricular ejection fraction (LVEF), and left atrial dimension 
(LAD)
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Discussion
In this study, we successfully applied ML method to perform a non-invasive evalua-
tion of blood-supply capability through pulse wave signals without performing echo-
cardiography in patients with HF. Our model takes an averaged pulse waveform as the 
input and predicts specific scalar values for parameters like LVEF, LVDs, LVDd, LAD, 
and  SpO2 and has verified that ML networks have high potential and feasibility for 
achieving good performance in predicting five cardiovascular function parameters. 
In clinical practice, patients with HF have various cardiac functions that distinguish 
them from healthy people, making it difficult for expert physicians to make a reason-
able diagnosis. Therefore, the ML model-based evaluation methodology developed 
in this study can be used as a fast and effective tool to assist physicians in provid-
ing patient-specific diagnoses and medical treatments. Moreover, LVEF and LAD are 
crucial factors for physicians to determine the indication for treatment; for instance, 
patients (less than 40%) with LVEF are normally recommended to use cardioprotec-
tive medications, whereas LAD is important for ablation therapy in patients with HF 
having atrial fibrillation [1].

Fig. 4 Bland–Altman analyses between fully connected network-based predictions and clinical 
measurements for five parameters in terms of peripheral oxygen saturation  (SpO2), left ventricular 
end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs), left ventricular ejection fraction 
(LVEF), and left atrial dimension (LAD)
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The dataset used in this study was collected only from patients with HF without infor-
mation on healthy subjects, and physiological information such as age and other car-
diovascular function-related parameters may interfere with pulse wave signals after 
data screening, as pointed out by Scolletta et al. in a study of the correlation between 
pulse waves and LVEF [50]. To resolve the issue on methodological consistency associ-
ated with the ML model-based analysis, we performed a summary independent-samples 
t-test to validate the filtered data-based results with reliable datasets. The DenseNet 
model achieved a high-prediction performance owing to rigorous data screening, which 
was verified to be capable of successfully ruling out the potential interference of numeri-
cal discrepancies in the datasets used for ML analysis, thus ensuring the validity and 
quality of the datasets.

This exploration is particularly salient in the context of heart failure patients undergo-
ing routine health monitoring. The ML model developed here not only identifies quan-
tifiable relationships between easily measurable signals and critical health parameters 
but also holds the potential to provide early alerts to medical practitioners, streamlining 
timely interventions. As these patients often lack access to advanced diagnostic tools, 
such proactive diagnostic capabilities can bridge the crucial diagnostic gap and facilitate 
timely patient-specific treatments. Furthermore, while there are existing studies utilizing 
ECG signals for prediction of related parameters via ML method [51, 52], our approach 
leverages pulse wave signals, which are notably less expensive and easier to obtain, thus 
potentially revolutionizing the daily monitoring and deterioration prevention in heart 
failure patients. Clinical measurements of blood-supply capability parameters are nor-
mally performed using various expensive and high-tech medical devices under the 
guidance and operation of highly skilled technicians, which likely hinders patients with 
HF from receiving timely diagnosis and monitoring. Although configurations of ML 
networks, such as epochs, batch size, and the Adam optimizer, require a considerable 
amount of training and testing, as well as manual adjustments to improve the prediction 
accuracy and performance, the ML-based strategy proposed here can reduce the time, 
cost, and usage of medical devices. In addition, recent portable and multifunctional 
electronic devices such as smartwatches and smartphones have been innovating non-
invasive measurements of various physiological signals in a more convenient and cost-
effective manner [53–56]. Therefore, using these portable electronic devices, the pulse 
wave-based ML methodology proposed here could provide an inexpensive and patient-
friendly tool to achieve fast and accurate evaluation of the blood-supply capability of 
patients with HF for real-time monitoring and diagnosis.

The pulse wave-based ML strategy was verified to have high clinical potential and feasi-
bility. Based on the pulse wave signals of 237 patients with HF, together with clinical infor-
mation on their heart’s blood-supply capability, a high-quality dataset was constructed 
after rigorous data screening and preprocessing of the pulse waves. Using five selected car-
diovascular function parameters: LVEF, LVDd, LVDs, LAD, and  SpO2, which were based 
on pulse waves using the fully connected network model and DenseNet model, the non-
invasive predictions agreed well with the clinical measurements. The prediction perfor-
mance, which was evaluated through statistical analysis in terms of the error function and 
consistency, indicated that the proposed ML model achieved a highly accurate prediction 
(MAPE < 13%) for LVDd, LAD, and  SpO2. In achieving the optimal predictive performance 



Page 9 of 17Wang et al. BioMedical Engineering OnLine            (2024) 23:7  

with the limited dataset, we acknowledge that our hyperparameter tuning was constrained 
to grid and random searches without the utilization of a separate validation set. This con-
straint will be addressed in future studies by incorporating more rigorous validation pro-
cesses, like k-fold cross-validation or expanding the dataset for a dedicated validation set, 
enhancing the robustness and generalizability of our model.

While our approach shows promise, its foundation on a dataset has certain limitations. 
The limitations of this study were mainly caused by the insufficiency of datasets in terms of 
the clinical parameter scope and data quantity in comparison with previous studies of HFs 
or physiological signal analyses [57–59]. Although we had a comparatively large and rig-
orously screened dataset, it was difficult to interpret whether the classification of patients 
with HF considering specific cardiovascular diseases, such as arrhythmia or heart valve 
problems, could improve or reduce the prediction performance of the ML models. In addi-
tion, other clinically important indicators, such as B-type natriuretic peptide, a hormone 
produced by the heart in response to increased pressure and volume that is commonly used 
for diagnosing patients with HF [60], have yet to be considered. In addition, the diversity of 
patients with HF may also be an essential factor affecting the generalizability and flexibility 
of our findings, because this study used patient data collected only from a single institution, 
and pulse wave signals were obtained from the same device. The demographic and clini-
cal characteristics of the patient population [61] may alter the prediction performance of 
the ML methodology. We acknowledge the immense value of real-time prediction based 
on time series for clinical diagnostics. Acknowledging the limitations of our current data-
set, our future work will focus on expanding the dataset to include diverse demographics 
and varied heart failure severity levels to enhance the model’s generalizability and robust-
ness. While our current methodology diverges from this approach, we see potential syner-
gies and avenues for integration in the future. To explore real-time health monitoring and 
deterioration prevention in patients with HF, our future task will focus on the optimiza-
tion of the proposed ML networks, the use of larger datasets for training and testing, and 
incorporation of relevant clinical information. Additionally, we aim to expand our dataset 
to include a more diverse patient population, encompassing varied demographics and dif-
ferent levels of heart failure severity, to enhance the generalizability and robustness of our 
ML model. This will involve gathering data from multiple institutions and potentially from 
a multi-center study, to foster a model that can adapt and perform accurately across diverse 
patient groups. Moreover, understanding the dynamic interplay between these cardiovas-
cular function parameters like LVEF, LVDd, LVDs, LAD, and  SpO2 will be pivotal. By delv-
ing deeper into how these parameters influence each other in various scenarios, we can 
refine our model predictions and offer more comprehensive insights to clinicians. This mul-
tifaceted approach, taking into account not just the individual parameters but their intricate 
relationships, will undoubtedly pave the way for more precise and patient-specific diagnos-
tic tools.

Conclusions
We have proposed a machine learning (ML)-based strategy for pulse wave-based, non-
invasive evaluation of the blood-supply capability in association with patients with heart 
failure (HL) compared with conventional echocardiography, which is verified capable of 
achieving fast and robust prediction of five cardiovascular function parameters of LVEF, 
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LVDd, LVDs, LAD, and  SpO2. The ML models developed based on either the optimized 
fully connected network and the DenseNet demonstrated significantly high performance 
through consistency and error analyses, and comparison with clinical measurements. 
Given that the five parameters, particularly the LVEF and LAD are crucial for physi-
cians to make a medical treatment decision, the ML-based evaluating system is of high 
clinical potential and feasibility for health monitoring and deterioration prevention in 
patients with HF. Moreover, this methodology could be applied to various health moni-
toring applications, providing timely warnings and diagnosis for HF patients by means 
of various non-invasive, portable, and patient-friendly devices to record pulse wave sig-
nals. In the future, to enable real-time health monitoring and deterioration prevention 
for various patients with HF even suffering from specific cardiovascular diseases, such 
as arrhythmia or heart valve problems, we will make further improvement on the pre-
diction performance by optimizing the ML networks while building up sufficiently large 
pulse wave datasets and accounting for more relevant clinical information as well.

Materials and methods
Clinical data acquisition and screening

All data used in this study were obtained from 237 patients with HF, including raw 
extremity pulse wave data and relevant clinical, physiological, and pathological infor-
mation. HF was diagnosed based on the Framingham heart failure diagnostic criteria 
[4]. All participants were admitted to Chiba University Hospital between January 2019 
and August 2021. After stabilizing the HF condition with treatments, patients were 
positioned supinely for measurements. The blood pressure and pulse wave data were 
recorded using the blood pressure/pulse wave detection equipment BP-203RPEIII 
(Omron Corporation, JP), with each session lasting approximately 5  min. Simultane-
ously,  SpO2 was measured using a Nonin Onyx Vantage 9590 Finger Pulse Oximeter 
(Nonin Medical Inc., USA). All patients underwent transthoracic echocardiography 
(Vivid E9; GE Healthcare, Horten, Norway) within one week before or after the pulse 
wave tests, and experts of the echocardiography measured the values of LVEF, LVDd, 
LVDs, and LAD from the echocardiography test and relevant clinical information (e.g., 
age and body mass index (BMI)) was also collected. During hospitalization, none of the 
patients consumed spicy food or alcoholic drinks. While there is limited specific lit-
erature on the stability of echocardiographic parameters over such a short period, our 
patient cohort consisted of individuals with stabilized HF condition post-treatment, 
where significant variations in these parameters are less likely. However, we acknowl-
edge this as a potential limitation that needs further investigation.

Dataset creation

As shown in Fig.  5, we performed rigorous data screening to ensure the quality of 
the data, and 215 patients with HF complied the following screening criteria: (1) the 
pulse wave data were collected from the left upper arm; (2) more than five valid pulse 
wave cycles were recorded; and (3) the five parameters (i.e.,  SpO2, LVEF, LVDd, LVDs, 
and LAD) associated with blood-supply capability were concurrently measured and 
recorded for each patient. To ensure the validity of the screened data, we applied the 
summary independent-samples t-test method to implement a statistical analysis of the 
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consistency of the data with previous studies [46–48], which were examined in terms of 
the mean ± standard deviation, resulting in p > 0.05, thus a reasonable dataset [8, 62, 63].

The pulse wave data preprocessing methods developed in previous studies [64, 65] 
were employed to eliminate various noise and interference signals during the pulse wave 
sampling process: (1) using the averaged target pulse wave of over more than five valid 
heartbeat cycles in a steady state [66, 67], wavelet transform decomposition was con-
ducted to remove noise [19, 45]; (2) as per Nyquist’s theorem, and considering a sam-
pling frequency of 1000 Hz, the sampling nodes of pulse wave were converted from 1000 
to 100; and 3) the pulse wave amplitude was normalized within a 0–100 scale. Subse-
quently, a pulse wave dataset was established from the data of 215 patients with HF, 
which was then segregated into training and testing datasets following a 9:1 ratio. The 
details of the dataset used for the ML analysis are encapsulated in Table 3.

Machine learning network

To clarify, each of the five parameters (i.e.,  SpO2, LVEF, LVDd, LVDs, and LAD) was 
trained separately using the ML networks. By predicting them independently, we aimed 
to ensure a focused and precise prediction for each clinical measurement without poten-
tial interference from the others. After conducting numerous preliminary tests to com-
prehensively compare the predictive performance among various ML networks (e.g., 
RNN and LSTM), we finally selected two optimized ML networks for further analyses, 
as shown in Fig. 6. It comprised a fully connected network and a DenseNet network [68, 
69]. Fully connected networks are known for their efficiency and are a widely used tool 
in various investigative domains. On the other hand, DenseNet is a novel network that 
has been recently proposed and has exhibited outstanding performance in executing 

Fig. 5 Flow-chart of patient screening. Screening criteria: (1) six patients without complete pulse wave 
measurement were excluded, and (2) 16 patients without simultaneous measurement and recording of the 
five parameters were excluded
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regression prediction tasks due to its effective feature extraction capabilities [70]. The 
selection was based on a critical evaluation of prediction performance, computational 
efficiency, and convergence speed, ensuring that the chosen networks were best suited 
for precise and efficient parameter prediction.

In the fully connected network, the input layer consisted of 100 neurons, which 
were identical to the sampling nodes of the input pulse waves. There were three fully 
connected layers with 256, 64, and 16 neurons. The output layer was composed of one 
neuron, with five evaluation parameters selected separately as the output of five train-
ing times. Except for the input layer, the calculation process for each neuron in the 
(n + 1)th layer of the fully connected network is described as:

Table 3 Machine learning datasets for five parameters

SpO2 peripheral oxygen saturation, LVDd left ventricular end-diastolic diameter, LVDs left ventricular end-systolic diameter, 
LVEF left ventricular ejection fraction, LAD left atrial dimension

Parameters SpO2 LVEF LVDs LVDd LAD

Total number of included 
patients

215 215 215 215 215

Training set 193 193 193 193 193

Testing set 22 22 22 22 22

Fig. 6 Structures of two machine learning networks
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where F denotes the activation function ReLU, which was introduced to alleviate gradi-
ent vanishing during ML training and to accelerate the convergence of loss functions 
[71]. mn and Bn are the number of neurons and the bias in the nth layer, respectively, and 
Wn+1

j  is the weight of the jth neuron in the nth layer.
The DenseNet that was verified to be capable of effectively increasing the usage of data 

features and achieving high performance even with limited data, while avoiding overfit-
ting [70], shared the same input and output layers as in the fully connected network. 
The network contains three dense block modules to connect all the layers while transfer-
ring various features between the layers, and it begins with an initial convolution layer 
equipped with 64 kernels, each having a size of 3. This layer serves as the foundation for 
extracting primary features from the input data before it is passed through to the subse-
quent dense blocks. Following the dense blocks and transition layers, the network imple-
ments a MaxPooling layer with a pooling window of size 2 and a stride of 2 to reduce the 
spatial dimensions of the feature maps, which is aimed at reducing the computational 
complexity and helps in making the detection of features invariant to scale and orienta-
tion changes. After that, a fully connected layer consisting of 64 neurons, which is tasked 
with the role of regression, effectively mapping the extracted features to the output val-
ues. The input and output of the (n + 1)th layer (featured map) associated with the dense 
block module can be expressed as follows:

where G denotes multiple operations including the ReLU, batch normalization, and 
convolution.

The training was carried out using the mean square error (MSE) as a loss function to 
evaluate the two ML networks combined with the Adam optimizer. The two ML net-
works were trained utilizing TensorFlow (v2.0.0rc, Python 3.7) on an NVIDIA GeForce 
GTX 1660 Ti GPU. Hyperparameter tuning was performed using a blend of grid and 
random searches to determine the optimal model settings, taking into account a trade-
off between prediction performance and computational efficiency. During the ML train-
ing, the utilization of different amounts of data associated with the back-propagation 
algorithm for adjusting the parameter configuration of the network (e.g., the number of 
network layers and neurons) may lead to a decline in the loss function and an alteration 
in the prediction performance. As a result, the network structure size was adjusted to 
ensure promising convergence in the loss function during network training. Additionally, 
we employed the early stopping strategy, a common practice in ML to prevent overfitting 
during training process as well as the preliminary experiments, which we have previously 
detailed and visually represented in our published work [45, 72]. This strategy involves 
monitoring the predictive accuracy during training and ceasing further iterations 
when no improvement is observed for the predictive performance on the test dataset 
more than consecutive 50 epochs. The Adam optimizer was chosen under the follow-
ing conditions: learning rate = 0.001, ε = 0.001, ρ1 = 0.9, ρ2 = 0.999, and δ = 1E−8 [73],  

(1)Outputn+1
= F




mn�

j=1

Wn+1
j Outputn + Bn



,

(2)Outputn+1
= feature map = Gn

(
Output1, Output2, . . . , Outputn

)
,
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and the epoch parameter was set to 500. After training, each loss function curve and 
the relevant optimal configuration of the networks associated with the five parameters 
 (SpO2, LVEF, LVDd, LVDs, and LAD) were recorded and stored. For testing, the ML-
predicted parameters were used for statistical analysis and comparison with clinical 
measurements.

Performance evaluation

Following previous studies [45, 74, 75], we employed the mean absolute percentage error 
(MAPE) as the error function to verify the ML-based prediction for the test datasets:

where yn and ŷn are the clinical-measured and ML-predicted values of the five param-
eters, respectively, and n is the size number of the test dataset.

In addition, the Bland–Altman method was used for consistency analysis of clinical 
measurements and ML-based predictions. The Bland–Altman can dissect the discrete 
trend, clustering tendency, and correlations of the five parameters between the two data-
sets of clinical measurements and ML-based predictions. When the five parameters fell 
within the permissible range, the two datasets were considered to possess good consist-
ency, and the two methods could potentially replace each other [44, 76].
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