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Abstract 

Background: Haemorrhage transformation (HT) is a serious complication of intrave-
nous thrombolysis (IVT) in acute ischaemic stroke (AIS). Accurate and timely prediction 
of the risk of HT before IVT may change the treatment decision and improve clinical 
prognosis. We aimed to develop a deep learning method for predicting HT after IVT 
for AIS using noncontrast computed tomography (NCCT) images.

Methods: We retrospectively collected data from 828 AIS patients undergoing 
recombinant tissue plasminogen activator (rt-PA) treatment within a 4.5-h time 
window (n = 665) or of undergoing urokinase treatment within a 6-h time window 
(n = 163) and divided them into the HT group (n = 69) and non-HT group (n = 759). HT 
was defined based on the criteria of the European Cooperative Acute Stroke Study-II 
trial. To address the problems of indiscernible features and imbalanced data, a weakly 
supervised deep learning (WSDL) model for HT prediction was constructed based 
on multiple instance learning and active learning using admission NCCT images 
and clinical information in addition to conventional deep learning models. Threefold 
cross-validation and transfer learning were performed to confirm the robustness 
of the network. Of note, the predictive value of the commonly used scales in clin-
ics associated with NCCT images (i.e., the HAT and SEDAN score) was also analysed 
and compared to measure the feasibility of our proposed DL algorithms.

Results: Compared to the conventional DL and ML models, the WSDL model had 
the highest AUC of 0.799 (95% CI 0.712–0.883). Significant differences were observed 
between the WSDL model and five ML models (P < 0.05). The prediction perfor-
mance of the WSDL model outperforms the HAT and SEDAN scores at the optimal 
operating point (threshold = 1.5). Further subgroup analysis showed that the WSDL 
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model performed better for symptomatic intracranial haemorrhage (AUC = 0.833, F1 
score = 0.909).

Conclusions: Our WSDL model based on NCCT images had relatively good perfor-
mance for predicting HT in AIS and may be suitable for assisting in clinical treatment 
decision-making.

Keywords: Noncontrast computed tomography, Haemorrhagic transformation, Deep 
learning, Machine learning, Ischaemic stroke

Background
Stroke is the second leading cause of mortality and a major cause of disability worldwide 
[1]. Acute ischaemic stroke (AIS) is the most common type, accounting for 69.6–70.8% 
of strokes [2]. At present, the prognosis of AIS patients can be significantly improved 
by reperfusion therapy, such as intravenous thrombolysis (IVT) with recombinant tissue 
plasminogen activator (rt-PA) and endovascular thrombectomy [3, 4]. However, intrac-
ranial haemorrhagic transformation (HT), especially symptomatic intracranial haem-
orrhage (SICH), after IVT remains the most dreaded complication, as it can lead to a 
lifelong deterioration of neurological function and even death [5]. Epidemiological inves-
tigations show that the incidence of HT after IVT in patients with AIS is 1.70–10.30% [6, 
7]. The incidence of this complication can be reduced by accurate and efficient identifi-
cation of individuals at risk. Therefore, accurate and timely prediction of the risk of HT 
before IVT may change the treatment decision and improve the clinical prognosis [8].

The roles of medical imaging in diagnosing AIS are expanding rapidly, and blood‒
brain barrier permeability studies via computed tomography perfusion (CTP) imaging 
and magnetic resonance imaging (MRI) have a high sensitivity for predicting HT [9, 
10]. However, MRI scans are not part of the routine imaging procedures in emergency 
green channel settings in most hospitals. Computed tomography (CT) imaging proce-
dures, including noncontrast computed tomography (NCCT), computed tomography 
angiography (CTA), and CTP, are the first choice for AIS diagnosis and are important 
in HT prediction. However, CTA and CTP are time-consuming and limited by contrain-
dications, and they are not readily available in most grassroots hospitals. Thus, these 
two imaging methods for predicting HT are still far from clinical use. NCCT, due to 
its relatively high speed, broad accessibility and cost-effectiveness compared with MRI 
and CTP, is most widely used in the emergency settings. Therefore, HT prediction 
based on NCCT may be the most practical application direction. However, little infor-
mation for HT prediction can be detected visually on NCCT. It has been reported that 
neuroimaging signs based upon acute NCCT scans can predict HT after thrombolytic 
therapy, including visible acute cerebral ischaemic lesions, hyperdense cerebral artery 
signs, leukoaraiosis, and calcification in the main cerebral vessels [11, 12]. However, 
some features, such as hypoattenuation of the middle cerebral artery territory, are dif-
ficult to visually detect on NCCT, and its detection is highly dependent on the raters’ 
experience, resulting in inaccurate quantification and significant interrater variability 
[13, 14]. Furthermore, HT after IVT is a complex pathophysiological process that can 
be predicted not only by imaging changes but also by clinical data and biochemical indi-
cators. Therefore, comprehensive consideration of imaging and clinical information is 
appropriate for clinical settings. However, the existing scales to assess the risk of HT 
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after thrombolysis, including the Haemorrhage After Thrombolysis (HAT) score [15], 
SEDAN score [16], Multicentre Stroke Survey (MSS) score [17], Safe Implementation 
of Treatments in Stroke (SITS) score [18], and GRASPS score [19], have limitations and 
disadvantages. The predictive value of these scores is limited by the variation in sample 
populations, the diagnostic ability of radiologists, and the complexity of all the factors 
that are involved, resulting in the predictive value varying amongst different studies [19–
21], which implies a certain degree of inaccuracy. Therefore, it is imperative to develop a 
more reliable and effective tool for the early and timely prediction of HT in AIS patients 
after IVT.

Deep learning (DL), a subfield of machine learning (ML), has provided state-of-the-art 
algorithms for medical image recognition with the advantage of automated featuriza-
tion [22, 23]. DL methods have been used to diagnose and predict final stroke lesion 
volume, tissue outcome, and treatment effect based on MRI images [24, 25]. DL meth-
ods have also been applied to predict clinical functional outcomes following reperfu-
sion therapy for AIS using radiological image data [26–28]. Notably, most applications 
of DL are currently based on supervised learning with a large number of training sam-
ples that are strictly and meticulously annotated [29]. However, the general labelling of 
included image data with strong supervision information is difficult to perform due to 
the requirements of the intensive labour force. To tackle this problem, weakly supervised 
learning methods emerged using coarse-grained labels and so on. It is noteworthy that 
multiple instance learning (MIL), which is a typical weakly supervised learning method, 
has shown great advances in medical imaging analysis [30, 31]. Due to the requirements 
of numerous data needing meticulous annotation, it is difficult for conventional DL 
algorithms to achieve better performance in predicting HT after IVT in AIS patients. 
However, weak supervision may be a potential method to solve the problem under the 
current situation. Recently, no weakly supervised learning-based DL algorithm for pre-
dicting HT using NCCT images has been reported [32, 33].

In this study, we developed a fully automated DL framework for predicting the HT of 
AIS patients based on baseline NCCT images and clinical risk factors. We aim to provide 
an alternative, reliable, and convenient method using available data at admission and to 
assist in the clinical selection of patients suitable for thrombolysis. To address the data 
problems of indiscernible features and imbalanced samples, weakly supervised methods 
of multiple instance learning (MIL) and active learning were added. To verify the efficacy 
of the weakly supervised deep learning (WSDL) model, we compared the WSDL model 
with the conventional baseline DL model, various ML models, and the existing HT risk 
assessment scales (HAT and SEDAN score), which were related to NCCT images.

Results
Baseline clinical features and data characteristics

A total of 885 patients with AIS who received IVT were enrolled in this study. The flow 
diagram of patient inclusion is shown in Fig. 1. After the exclusions, data for 828 patients 
were used in the final analysis. The patients were split into the HT group (positive sam-
ple, n = 69, 8.3%) and the non-HT group (negative sample, n = 759, 91.7%). The baseline 
clinical features of patients in the HT group and non-HT group are shown in Table 1. 
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Age, atrial fibrillation, diabetes mellitus diagnosis, glucose level, and NIHSS score on 
admission between the two cohorts were statistically significant (P < 0.05).

Continuous variables were expressed as medians with corresponding interquartile 
ranges and categorical variables were described as proportions. Continuous variables 
were compared using the Mann–Whitney U test for non-normally distributed and dif-
ferences in categorical variables were assessed by the chi-squared test or Fisher’s exact 
test between the HT and non-HT patient groups.

Performance comparison of the WSDL model with ML models

As mentioned, the WSDL model was proposed and developed in this study to 
address the problems of indiscernible features, imbalanced data, and needed 

Fig. 1 Flow diagram of the dataset selection process for eligible patients
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intensive labelling force. As a comparison, a baseline DL model and five ML models 
were also developed to predict HT after IVT. The following five ML models were 
used: support vector machine (SVM), logistic regression (LR), k-nearest neighbours 
(KNN), random forest (RF), and eXtreme gradient boosting (XGBoost). As shown in 
Fig. 2 and Table 2, after being trained with the coarse-grained labels, the WSDL and 
baseline-DL models showed better performance than the ML models. In particular, 
the WSDL model achieved the highest AUC value of 0.799 (95% CI 0.712–0.883). 
There were significant differences in the AUCs between the WSDL model and the 
SVM, KNN, RF, and XGBoost models (P < 0.05, DeLong test), whereas there was no 
significant difference between the WSDL model and the LR model (P > 0.05, DeLong 
test). At the operating point of a fixed sensitivity of 0.8 and fixed specificity of 0.7, 
the other indicators for the WSDL model were superior to those of the other models.

Performance comparison of WSDL model with HAT and SEDAN score

The performance of the WSDL model and current established clinical prognostic 
tools (HAT and SEDAN score) were evaluated and are shown in Fig. 3 and Table 3. 
The prediction performance of the WSDL model outperforms the HAT and SEDAN 
scores at the optimal operating point (threshold = 1.5), except the HAT score shows 
higher accuracy and specificity. Notably, the AUC (0.799, 95% CI 0.712–0.883) and 
sensitivity (79.7%, 95% CI 63.2–95.5%) of our WSDL model were higher than both 
the AUC value for the HAT and the SEDAN (0.753 and 0.777, respectively) as well as 
the sensitivity values for both scores (55.1% and 76.8%, respectively).

Table 1 The baseline clinical features of patients in the HT group and non-HT group

HT haemorrhagic transformation, IQR interquartile range, BP blood pressure, NIHSS National Institutes of Health Stroke Scale, 
OTT symptom onset to treatment time, PLT count platelet count

Characteristics HT (n = 69) Non-HT(n = 759) P value

Age (year) (median, IQR) 70 (62–82) 67 (59–77) 0.022

Male, n (%)/female, n (%) 46 (66.7)/23 (33.3) 501 (66.0)/258(34.0) 0.912

rt-PA, n (%)/urokinase, n (%) 57 (82.6)/12 (17.4) 608 (80.1)/151 (19.9) 0.617

Hypertension, n (%) 49 (71.0) 569 (75.0) 0.470

Diabetes mellitus, n (%) 36 (52.2) 302 (39.8) 0.045

Atrial fibrillation, n (%) 29 (42.0) 146 (19.2) 0.000

Hypercholesterolemia, n (%) 18 (26.1) 139 (18.3) 0.115

Currently smoking, n (%) 26 (37.7) 374 (49.3) 0.065

Previous stroke, n (%) 46 (66.7) 487 (64.2) 0.678

Antiplatelets/Anticoagulation, n (%) 21 (30.4) 167 (22.0) 0.109

Glucose level (mmol/L) (median, IQR) 7.5 (5.9–9.5) 6.4 (5.3–8.4) 0.015

Systolic BP (mmHg) (median, IQR) 150 (130–169) 157 (140–170) 0.138

NIHSS score on admission(median, IQR) 12 (6–18) 4 (2–8) 0.000

OTT (min) (median, IQR) 120 (60–188) 120 (60–180) 0.640

PLT count  (109/L) (median, IQR) 199 (158–247) 206 (170–245) 0.397

Body temperature (°C) (median, IQR) 36.5 (36.5–36.6) 36.5 (36.4–36.5) 0.406
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Visualization of the regions on which the WSDL model focussed using gradient-weighted 

class activation mapping (Grad-CAM)

The activation of the WSDL model when predicting HT was mainly focussed on the 
brain tissue region related to infarct lesions, small-vessel ischaemia, leukoaraiosis, and 
atrophy or the location where HT would occur in most cases. Figure 4 shows a typical 
HT case to visualize the class activation maps (CAMs).

Fig. 2 Illustration of the accuracy in terms of ROC curves for various predictive models of HT based on NCCT 
imaging data and clinical information

Table 2 Performances of all the models

AUC High sensitivity operating point High specificity operating point

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

WSDL 0.799 
(0.712,0.883)

0.826 
(0.669,0.980)

0.635 
(0.576,0.694)

0.651 
(0.596,0.706)

0.783 
(0.609,0.942)

0.701 
(0.642,0.756)

0.708 
(0.653,0.760)

baseline-
DL

0.748 
(0.638,0.856)

0.826 
(0.671,0.984)

0.518 
(0.457,0.579)

0.544 
(0.486,0.601)

0.681 
(0.496,0.869)

0.701 
(0.642,0.758)

0.699 
(0.644,0.754)

LR 0.737 
(0.632,0.839)

0.826 
(0.670,0.980)

0.557 
(0.497,0.618)

0.579 
(0.523,0.636)

0.609 
(0.407,0.807)

0.701 
(0.646,0.758)

0.693 
(0.639,0.749)

XGBoost 0.703 
(0.584,0.821)

0.826 
(0.678,0.981)

0.380 
(0.324,0.437)

0.418 
(0.364,0.471)

0.638 
(0.456,0.835)

0.701 
(0.644,0.757)

0.695 
(0.641,0.750)

SVM 0.626 
(0.524,0.735)

0.826 
(0.670,0.980)

0.302 
(0.251,0.351)

0.346 
(0.297,0.393)

0.391 
(0.238,0.566)

0.701 
(0.643,0.755)

0.675 
(0.620,0.727)

RF 0.619 
(0.516,0.751)

0.826 
(0.671,0.982)

0.315 
(0.259,0.370)

0.358 
(0.305,0.410)

0.464 
(0.27,0.659)

0.729 
(0.675,0.782)

0.707 
(0.655,0.758)

KNN 0.566 
(0.496,0.637)

0.638 
(0.512,0.761)

0.506 
(0.472,0.541)

0.517 
(0.485,0.550)

0.638 
(0.512,0.761)

0.506 
(0.472,0.541)

0.517 
(0.485,0.550)
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Fig. 3 Illustration of the accuracy in terms of ROC curves for WSDL model and HAT and SEDAN scores of HT 
based on NCCT imaging data and clinical information

Table 3 Performances of WSDL model and HAT and SEDAN score

AUC Accuracy Sensitivity Specificity PPV NPV

WSDL 0.799 
(0.712,0.883)

0.735 
(0.683,0.787)

0.797 
(0.632,0.955)

0.730 
(0.674,0.784)

0.213 
(0.163,0.263)

0.976 
(0.956,0.994)

HAT 0.753 
(0.697,0.807)

0.797 
(0.771,0.824)

0.551 (0.438,0.66) 0.819 
(0.793,0.847)

0.217 
(0.174,0.260)

0.953 
(0.941,0.964)

SEDAN 0.777 
(0.721,0.837)

0.673 
(0.642,0.704)

0.768 
(0.670,0.872)

0.664 
(0.632,0.697)

0.172 
(0.150,0.196)

0.969 
(0.957,0.983)

Fig. 4 CAM of a correctly predicted HT case, as shown in C. The patient was admitted to our hospital 
with sudden inactivity of the left limb for 2 h, and haemorrhage and clear infarct lesions were not found on 
baseline NCCT (A). Then, the patient was given rt-PA 56 mg. The cranial NCCT was re-examined within 24 h, 
and there were HTs in the left thalamus and midbrain cerebral peduncle (D). Superimposing the heatmap on 
the native image (B) highlights the left thalamus and midbrain cerebral peduncle, which were the regions of 
HT that occurred after IVT (as shown by the arrow), thus proving that the model predicting upcoming HT was 
favourable
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Performance of the WSDL model in HT subgroups

The patients were categorized into three groups (patients without ICH, n = 759; patients 
with SICH, n = 6; patients with asymptomatic ICH, n = 63) based on clinical outcome, 
and subgroup analyses were conducted (Table 4). The WSDL model performed better 
for SICH, reaching an AUC of 0.833 (95% CI 50.0–100.0%) and an F1 score of 0.909 (95% 
CI 66.7–100.0%).

Discussion
We used a WSDL model to predict HT risk in AIS patients with baseline NCCT and 
clinical risk factors. The WSDL model demonstrated good discriminatory ability com-
pared with the baseline DL model, five ML models, and existing clinical prognostic tools 
(HAT and SEDAN scores), and especially exhibited a high performance in predicting 
SICH. This study showed that HT risk prediction could be achieved conveniently with 
the WSDL method based on the limited admission data before IVT.

Classical ML methods have been developed for HT prediction using clinical informa-
tion [34–38]. However, DL algorithms and NCCT have not been used to predict the risk 
of HT in AIS patients. Most previous ML models were based on the Electronic Health 
Record dataset or used only structured data [35–38]. However, the prediction perfor-
mance was unsatisfactory or less practical in the clinic. For example, Wang et al. used a 
public dataset to build an LASSO logistic regression prognostic model predicting symp-
tomatic HT that achieved a mean external AUC of 0.71 [35]. The study selected 612 risk 
predictors as inputs for the model, which are difficult to collect for routine clinical diag-
nosis and treatment; thus, the method is less practical. The clinical information used in 
our WSDL model is readily available within a few minutes of a patient’s arrival at the 
emergency room in almost all medical centres. It can be embedded into CT image analy-
sis software for HT prediction, and the HT warning will be automatically given imme-
diately after the CT examination is completed, which is more practical and has crucial 
application value in clinical settings. Consequently, our method could provide an effi-
cient and easy-to-use solution for assisting clinical decision-making.

The clinical factors included in our study are readily available and critical for predict-
ing HT after IVT. Many risk factors have been previously confirmed to be associated 
with HT after IVT [11, 39, 40], including age, the severity of the stroke, baseline glu-
cose, the presence of atrial fibrillation, diabetes, hypertension, previous cerebral vascu-
lar diseases or ischaemic heart disease, congestive heart failure, renal dysfunction, use 
of antiplatelet drugs or statins, leukoaraiosis, and early signs of infarction on head CT. 
Consistently, similar risk factors were also observed in our study and selected for model 
development. Of note, in addition to those factors (age, atrial fibrillation, NIHSS score, 
and glucose level on admission) that were previously confirmed as the most important 

Table 4 Performance of the WSDL model in HT subgroups

Accuracy Accuracy 95% CI F1 F1 95% CI

Without ICH 0.686 (0.655,0.721) 0.814 (0.791,0.838)

Asymptomatic ICH 0.619 (0.508,0.73) 0.765 (0.674,0.844)

SICH 0.833 (0.5,1) 0.909 (0.667,1)
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independent predictors for individualized HT prediction [39, 40], we included more 
clinical information, which might provide more predictive information than the HAT 
and SENDA scores. Moreover, existing HT prognostic models cannot address the full 
complexity of all the factors that are involved, the current feature selection method is to 
explore the linear relationship between factors, and it is difficult to capture the nonlinear 
relationship. In this study, our DL model learned these clinical factors using a convolu-
tional neural network with a more powerful feature extraction ability and fully explored 
their interactive relationship.

Previous studies indicated that the HAT and SENDA played key roles in predicting 
HT after IVT [6, 20, 21], and it is worth noting that the two scores also involve CT signs. 
Therefore, the DL model we developed was compared with the conventional two scores 
to verify its efficacy in HT prediction. In this study, our proposed DL model utilizing 
raw CT images and essential clinical information outperformed these standard prognos-
tic scores. We noticed that the HAT and SENDA scores involve early infarct signs on 
CT and hyperdense cerebral artery signs for the individualized prediction of HT; how-
ever, these scores are limited by the use of dichotomization/categorization of predictors 
and may decrease the predictive accuracy. In sharp contrast, our DL model used whole-
brain images as its input rather than selected subparts, given that certain brain CT back-
ground appearances related to small-vessel ischaemia, leukoaraiosis, previous strokes, 
and atrophy were recognized predictors of HT [11, 41, 42]. Our proposed DL model was 
able to predict HT occurring remotely from the infarcted territory, which also implied 
that background brain features might be just as important as focal CT markers of acute 
ischaemia, which was consistent with a previous research report [14].

Some studies have constructed HT prediction models using medical images and 
multiple ML methods [14, 43–45]. Yu et  al. developed multiple ML models and long 
short-term memory (LSTM) models for predicting HT based on MRI perfusion- and 
diffusion-weighted images [43, 44]. The regression model performed best with an accu-
racy of 83.7 ± 2.6%, and the LSTM model reached an AUC-ROC of 89.44%. Although 
multiparametric MRI offers more information about stroke pathophysiology, MRI takes 
longer than CT scans, which may delay the treatment of critically ill patients. NCCT, 
due to its speed and limited contraindications, is most widely used in the emergency 
green channel diagnosis and treatment of AIS. Bentley et al. [14] collected CT images 
and clinical features of patients with AIS and IVT and constructed an SVM model to 
predict SICH. However, the prediction performance was unsatisfactory, with an AUC 
of 0.744, which was lower than our DL model. In addition, the sample size was rela-
tively small (training sets: n = 106, test sets: n = 10), which to some extent weakened the 
robustness of their results. In addition, the developed ML model also worked via a com-
plex process, including drawing the region of interest, feature definition, feature reduc-
tion, and sample inference, which hinders its practical use in routine clinical diagnosis.

The innovative algorithm design is critical to the success of our WSDL model. In this 
study, we used the weakly supervised MIL method and active learning algorithm to cope 
with inherent data problems. MIL helps to address the difficulty in labelling ambiguous 
edges and labour costs. Because AIS lesions tend to be missed in NCCT images, lesion 
identification was achieved using MIL by the cross-combination of the image slices inte-
grating varied window widths and centres instead of elaborate lesion outlines. Compared 
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to conventional DL and radiomics methods, MIL could reduce the bias induced by radi-
ologists’ experience and improve model generalizability. Because HT is related to collat-
eral circulation and white matter lesions, inputting the whole-brain image also helps to 
extract more HT information for the DL model. Although the MIL method has relevant 
applications in COPD or glioma [46, 47], this is the first study to apply MIL to HT iden-
tification. Active learning-based active smoothing loss (AS loss) improved the model’s 
ability to identify outcome-related features and increase the importance weight of reli-
able positive cases by increasing the weight of the effective features. We used the idea of 
active learning and selected high-quality annotation samples online for feature learning 
during model training, which greatly improved the generalization ability of the model 
and addressed the data imbalance problem.

Our retrospective study has some limitations that need to be addressed. The number 
of positive sample cases in this study is small. This increases the risks of model overfit-
ting and thus affects the model performance, although the proposed model was designed 
to solve the problem of a small, skewed dataset. The number of cases with SICH was also 
small due to the limited incidence of the condition. Therefore, studies involving larger 
samples of HT, especially SICH, are needed to validate and optimize the DL model, and 
the results for SICH should be interpreted with caution. In addition, the standard of HT 
used in the study is NCCT 24  h after IVT, which may underestimate the ratio of HT 
because the haemorrhage time and volume would influence the result; therefore, sus-
ceptibility weighted imaging (SWI) would be included as the standard in future work. 
In addition, this is a retrospective study from a single institution. A multicentre pro-
spective study is warranted to validate the generalization ability of the model. Moreover, 
only NCCT images and clinical risk factors were used in this study. Incorporating other 
imaging modalities may improve the model’s performance further; previous non-DL 
studies have shown that HT prediction could be improved by including CTP and reper-
fusion data [9]. We are planning to investigate this in future work.

Conclusions
We constructed a DL model for predicting the risk of HT for patients with AIS after 
IVT based on baseline NCCT images and easy-to-collect clinical data, which is conveni-
ent for use in clinical diagnosis and treatment, especially in resource-limited areas. This 
information may provide a theoretical basis for clinicians to develop hierarchical follow-
up and treatment plans, assist in clinical treatment decision-making, and improve the 
prognosis of patients with AIS.

Materials and methods
Study population and design

We retrospectively enrolled consecutive patients who suffered from AIS and received 
IVT in the emergency green channel from November 2018 to September 2020. All 
patients received rt-PA treatment within a 4.5-h time window or urokinase treatment 
within a 6-h time window. The inclusion criteria were as follows: all patients underwent 
baseline NCCT scans at admission, and routine follow-up NCCT scans were performed 
within 24 h after IVT; another NCCT scan exceeding 24 h was performed immediately 
in cases of rapid neurological deterioration to evaluate the presence of SICH; and the 



Page 11 of 17Ru et al. BioMedical Engineering OnLine          (2023) 22:129  

clinical data most relevant to HT were recorded. The exclusion criteria were as follows: 
patients who did not have baseline clinical information or for whom the imaging quality 
was substandard; patients who had bridging arterial thrombolysis or received endovas-
cular mechanical thrombectomy after IVT; and patients who did not complete throm-
bolysis. A total of 828 patients were eligible for analysis, and 57 patients (6.4%) were 
excluded (Fig. 1). The protocol for this retrospective study was approved by the Ethics 
Committee of Dalian Municipal Central Hospital Affiliated with Dalian University of 
Technology, and the requirement for written informed consent was waived.

Baseline data collection

At the time of admission, essential clinical information and baseline NCCT images were 
collected for each patient. Baseline information included patient demographic infor-
mation (age, sex), thrombolytic drugs and dosage, past and personal medical history 
(hypertension, diabetes diagnosis, atrial fibrillation, current smoking status, hypercho-
lesterolemia, previous stroke, antiplatelet, or anticoagulation therapy before enrolment), 
admission clinical and laboratory results (blood glucose level, blood pressure, platelet 
(PLT) count, temperature), baseline National Institutes of Health Stroke Scale (NIHSS) 
score at presentation, and time from stroke onset to treatment (OTT) (Table 1).

Identification of intracranial HT

HT was defined as any type of ICH according to the European Cooperative Acute Stroke 
Study II (ECASS II) criteria [48] that could be seen on NCCT; this usually occurs within 
12–36 h after IVT [49]. SICH was defined as any type of ICH on posttreatment imaging 
after the initiation of thrombolysis and an increase in the NIHSS score by 4 points from 
baseline or death (ECASS II) [7].

The presence of HT was evaluated separately by two attending radiologists with more 
than 5 years of experience in neuroimaging diagnosis. When the two radiologists dis-
agreed in evaluating the HT, they discussed until a consensus was reached. Figure  5 
included representative NCCT images of HT vs non-HT groups.

HT scores

The HAT and SEDAN scores were used for the HT score assessment. All of the patients 
were evaluated based on the scales by the on-duty neurologist and were recorded and 
proofread by a senior radiologist. Higher scores indicate a greater risk that the AIS 
patients would develop HT after IVT.

Study overview and module introduction

An overview of the design of this study is shown in Fig. 6. The NCCT images and the 
clinical information were united as model inputs. A series of models were used, and the 
results were compared. The components are described in detail in the following section, 
including image preprocessing, data augmentation, our proposed WSDL model, the 
conventional baseline DL model, and the ML models.



Page 12 of 17Ru et al. BioMedical Engineering OnLine          (2023) 22:129 

Image preprocessing

HT signs on NCCT are not obvious, and only partial slices showed positive specific 
information. Thus, we borrowed an idea from the MIL framework [50], a typical 
weakly supervised learning paradigm, to address patient-level (bag-level) predic-
tion with no region-level annotation, as shown in Fig. 7. In the MIL setting, the CT 
scan was divided into M subparts with an equal height, and one slice was randomly 
selected from each subpart as one instance (piecewise random sampling; Fig. 7). Radi-
ologists complete the CT image diagnosis with varying window levels and widths. 
To mimic this, after resampling each slice to a fixed size of 256 × 256 with INTER_
NEAREST on OpenCV, we used three window widths and window levels ((W:80, 
L:40), (W:200, L;80), (W:300, L:40), respectively) to process the CT images, and then 

Fig. 5 Representative pre-IVT baseline NCCT images and post-IVT follow-up NCCT images for HT and non-HT 
groups

Fig. 6 Study overview. This study incorporates both NCCT and clinical information for HT prediction. The 
WSDL model includes a pipeline of preprocessing, ImageNet pretrained dynamic convolution neural network 
(DCNN) and AS loss. The baseline DL was built without AS loss to output the prediction probability. For the 
ML models, both DL-based features and clinical information were combined with feature engineering to 
give the predictions. The system produces seven outputs, including predictions of five ML models, the WSDL 
model and the baseline of the WSDL model
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we stacked their outputs along the channel dimension to obtain the channel-aug-
mented CT slices, which were the inputs of our DL model.

Data augmentation

The imbalance of class, that is, where the number of non-HT cases is much larger than 
that of HT cases, is harmful to model stability. To tackle this problem, instance-level 
data augmentation was performed by randomly flipping in both horizontal directions 
and randomly scaling by uniform [0.8, 1.2]. The slices were rotated randomly by uniform 
[−90°, 90°] around the upright axis and uniform [−8°, 8°] around the other axis. The 
slices were also cropped randomly on each side by a random fraction sampled uniformly 
from the continuous interval [0, 0.1].

Fold 0 (total of 278 cases, 23 positive cases, and 255 negative cases), fold 1 (total of 
276 cases, 23 positive cases, and 253 negative cases), and fold 2 (total of 274 cases, 23 
positive cases, 251 negative cases) were used for threefold cross-validation. Threefold 
cross-validation and transfer learning were performed to confirm the robustness of the 
network.

Our proposed WSDL model

As shown in Fig.  7, to reduce the difficulty of training and improve the convergence 
speed, the conventional lightweight Siamese MobileNetV2 network was used as the 
backbone of the DL model as the feature to obtain instance-level feature vectors of 
CT images. Clinical information with normalization (“gender”, “age”, “rt-PA”, “Uroki-
nase”, “Diabetes”, “Blood Glucose”, “Smoking”, “Stroke”, “Antiplatelets/Anticoagulation”, 
“HBP”, “HC”, “Afib”, “PLT”, “NIHSS score”, “SBP”, “OTT”, “Temperature”) was stacked as 
instance-level feature vectors. The combination of the instance-level feature vectors of 

Fig. 7 Illustration of our WSDL framework. Multi-instance learning and attention mechanisms were 
adopted to construct the model. To increase the representation information of the input image, we use the 
multiwindow transfer module to integrate the image information with three window widths and window 
levels in the channel dimension. In addition, we proposed a novel loss, i.e., AS loss, which was used during 
model training to ensure the classification performance
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the NCCT images and the clinical information was passed through the fully connected 
layer to obtain the corresponding fusion feature vectors.

Attention-based MIL pooling was used to fuse the instance-level feature vectors, 
obtaining the patient-level (bag-level) feature vectors. Finally, the predicted values of HT 
and non-HT were output through the fully connected layer.

Attention-based MIL pooling and a loss function called AS loss based on the concept 
of active learning were designed, which are shown in Additional file 1.

The details of the model implementation are described in Additional file 1.

Conventional baseline DL model and ML models

To validate the performance of our proposed WSDL model, a conventional baseline DL 
model without the AS loss module and five machine learning models were built.

The conventional baseline DL model was built using only the lightweight Siamese 
MobileNetV2 network as the backbone. The image processing and model inputs were 
exactly the same as our proposed WSDL model.

Five ML models were built using the combination of NCCT vectors obtained using 
the MobileNetV2 network and the normalized clinical features. As shown in Fig. 6, the 
following five ML models were used: support vector machine (SVM), logistic regression 
(LR), k-nearest neighbours (KNN), random forest (RF), and eXtreme gradient boosting 
(XGBoost). During model fitting, hyperparameters for each ML model were randomly 
assigned via grid search. To explore the effects of clinical information and CT images 
on HT identification, combinations of clinical information and DL-based features were 
investigated by modelling.

Visual validation of DL diagnosis

Grad-CAM was used to identify the most important areas in distinguishing HT from 
non-HT [51]. Grad-CAM uses gradient information about the target class flowing into 
the last convolutional layer to assign importance values to each neuron and produces a 
localization map highlighting the important spine regions in the CT images.

Statistical analysis

SPSS 22.0 was used for statistical analysis. Receiver operating characteristic curve (ROC) 
analysis was performed to obtain the area under the curve (AUC). For clinical applica-
tions, to ensure the effectiveness and practicality of the model, two operating points 
were chosen on the ROC curve with a sensitivity of 0.8 and specificity of 0.7. The 95% 
confidence interval (CI) associated with each result was obtained using the bootstrap-
ping method [52]. The hyperparameters were optimized using nested cross-validation 
[43]. DeLong’s test was used to compare the AUC-ROC of each of the models, which 
were analysed using “R” statistical computing software (R version 3.6.3 [2020]; R Foun-
dation for Statistical Computing). Two-tailed significance values were applied, and sta-
tistical significance was defined as P < 0.05.
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WSDL  Weakly supervised deep learning
DL  Deep learning
ML  Machine learning
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MIL  Multiple instance learning
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IVT  Intravenous thrombolysis
rt-PA  Recombinant tissue plasminogen activator
AIS  Acute ischaemic stroke
NCCT   Noncontrasted computed tomography
CTP  Computed tomography perfusion
CTA   Computed tomography angiography
MRI  Magnetic resonance imaging
NIHSS  National Institutes of Health Stroke Scale
ECASS II  European Cooperative Acute Stroke Study II
SVM  Support vector machine
LR  Logistic regression
KNN  K-nearest neighbours
RF  Random forest
XGBoost  EXtreme gradient boosting
Grad-CAM  Gradient-weighted class activation mapping
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